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SOME RESULTS IN THE NUMERICAL ANALYSIS OF STRUCTURAL
INSTABILITIES
PART 1. STATICS

M. KLEIBER (WARSZAWA)

Some problems of nonlinear structural statics are dealt with in the paper. Attention is restricted
to numerical analyses carried out by means of the finite element method. The paper contains a short
discussion of the static stability problem which is followed by a number of numerical examples.

1. INTRODUCTION

The purpose of static stability analysis is to supply some important information
about the structural behaviour in the vicinity of critical points on the primary equi-
librium path. Such an analysis is aimed at both quantitative and qualitative esti-
mates derivable at a significant reduction in cost as compared with a detailed
numerical study of the structural behaviour in the whole external loading range
of interest. Static stability analysis is particularly helpful at the preliminary design
stage when the analyst must rely on design charts for simple model structures. For
final design the analyst can then use the refined nonlinear analysis programs, the
effective use of which is strongly dependent on a general understanding of the basic
buckling phenomena of the model structure. The above is valid for both elastic
and inelastic structures. However, bifurcation buckling analyses involving plas-
ticity have so far been applied to simple structures with uniform prestress only.
Nevertheless, basis conceptual difficulties have been cleared up so that now it is
widely understood that the complicated nature of the plastic flow does not preclude
the use of bifurcation buckling analysis to predict instability failure of practical
structures (). The fact that the collapse load is only slightly above the bifurcation
load for vanishingly small imperfections makes elasto-plastic bifurcation analysis
in principle just as suitable for design purposes as elastic bifurcation analysis.

There is a great number of structures for wich either elastic or, at the other
extreme, rigid-plastic material models can supply interesting information as to
their ultimate critical behaviour. However, there exist also situations in which
a complete elasto-inelastic model is the only appropriate one to analyse buckling
phenomena in the whole load range of interest. To illustrate the need for such an
analysis, we could cite two structures discussed throughly in [4]. In Figs. 1 and 2

(*) The reader is referred to [1-3] for a detailed explanation and further comments on this
subject.
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the elastic and plastic zones are shown as derived numerically, corresponding to
the static pre- and postcritical load levels. It is seen that both purely elastic and
rigid-plastic material models could be inadequate for buckling load estimation.
In both examples the plastic zones played an obviously important role in the cal-
culation process while the elastic zones had a great influence upon the structures
prebuckling shape, thus contributing significantly to the buckling loads calculated.

£

lt———
©
H=0.08589"

-y

e

?—-
-1

73500
3
)
e

qLv=4

g ey

E=10"psi
A=2[3(1-v8)]) A (yt) " v=03 :
5[12(1-\12)]1/; 4 Bl

Rt)"?

10 layers to account for plastic
zone distribution across the
beam thickness

/ e
Right before buckling
| p=321b
o ———L\
. —— iedagsan
_—— Stortly after buckling
P=281b

Buckling load P=3Z b

FiG. 1. Progression of plastic zones and deflection profiles.

Buckling analysis becomes by far more complex when we pass to the transient
problems. It is by no means obvious that the fruitful concepts of static buckling
can also be taken advantage of in the domain of dynamic problems. Inclusion of
time as an additional parameter complicates matters considerably. It can be said
in general that the determination of dynamic buckling loads for structures is still
not a very developed area, even with regard to the definition of reasonable failure
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criteria(?). Nonlinear dynamic stability solutions available in the literature for
curved structures are very limited in scope; most are confined to symmetric analysis
under ideal impulse loadings often within a one degree-of-freedom approximation.
The extent to which designers can safely use either of these idealized dynamic so-
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Fi1G. 2. Progression of plastic zones and deflection profiles.

4 2 - Number of layers with plastic flow

(%) We note at this place that the fruitful Lyapunow concept of direct stability analysis is not
very useful in practice as it concerns the analysis in the infinite time domain, considers the initial
disturbances of the motion only and assumes certain smoothness conditions which are often diffi-

cult to satisfy. The applications of this approach have so far been restricted to rather simple elastic
problems.
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lutions or static solutions to determine realistic dynamic buckling loads requires
clarification. A need exists, therefore, for a thorough exploration of representative
problems dealing with some characteristic structures which will shed light on the
understanding of dynamic buckling behaviour in general and will lead to the eva-
Iuation of existing dynamic buckling criteria.

The aim of this and the following [29], part of the paper is to present some
preliminary numerical results concerning the estimation of static and dynamic
buckling loads. We would like to illustrate the possibilities of performing effective
numerical analyses by using the computer programs developed at the author’s
home institution rather than to give a complete review of the theory of structural
stability. We focus our attention on the buckling and postbuckling behaviour of
structures which are, according to Koiter’s theory, imperfection sensitive when
buckling takes place in the elastic range. We confine ourselves to one-parameter
loadings only. As an introductory model example we take a spherical cap of re-
volution clamped at the boundary and loaded axisymmetrically by a constant,
statically or dynamically-applied uniform external step pressure. Our further exam-
ples will serve as illustrations of the buckling phenomena only and, therefore, some
of then will be discussed in the deformation range without any practical significance.

2. STATIC BUCKLING PROBLEM

The design of structures subjected to static loads may be controlled by one
of the following, cf. [5]: a) maximum allowable stress, b) limit analysis, c) exces-
sive inelastic deformation, d) elastic buckling, €) inelastic buckling. Only when the
relationship between each of the foregoing is fully understood, can the designer
approach the problem on the rational basis. In general, however, such a full under-
standing of a specific structural problem can hardly be achieved. Therefore, basing
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FiG. 3. Typical load-displacement curve for an elastic spherical cap.
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upon our engineering intuition, we try to identify classes of problems in which
a simplified method can be used supplying limited informations about some of
the design factors only. As we shall see, some of our numerical analyses will aim
at giving a full nonlinear description of the problem. There will, however, exist
some which will be confined to the analysis of very limited aspects of the problem.

A typical load-deflection curve for an elastic spherical cap is shown in Fig. 3.
There are two types of singular points on the fundamental (primary) equilibrium
path. The first type is identified as the bifurcation (branching) point(*) while the
second as the limit point (point of the local maximum load). The branching point
characterizes the situation in which the initial axisymmetric deformation mode can
bifurcate into an (stable or unstable) asymmetric deformation mode. The limit
point in turn corresponds to the loss of stability by the so-called snap through
behaviour.

Ideally the response of axisymmetric shells loaded axisymmetrically does not
contain asymmetric components because there is no mechanism present to excite
the asymmetric deformation mode. In real structures (and loadings), however,
natural imperfections are present to induce such a deformation. When such imper-
fections do exist and the load exceeds some critical value, it may force the structure
to follow the secondary, asymmetric equilibrium path with the branching point
referred to as a bifurcation point. This can subsequently lead to the (asymmetric)
snap-through behaviour. It has been observed by many researchers that there exist
critical cap parameters implying an asymmetric buckling to precede the axisymmetric
snap-through. Moreover, it has been found that in certain cases the asymmetric
buckling behavior of the spherical cap is characterized by a loss of load carrying
capacity (as it is in the case of a clamped elastic cap under pressure distributed
uniformly over the entire surface) whereas in other cases this behaviour can be
characterized by an increase in load carrying capacity (as it is for the same shell
under certain uniform pressure distributed over a region of the cap surrounding
the apex or under axisymmetric concentrated ring loads).

We shall come back to the discussion of the elastic cap behaviour in the context
of dynamic analysis in [29]. Now we give a short matrix description of the static
buckling problem. ; ;

The governing finite element incremental equations for the static structural
problem can be written in the framework of the total Lagrangean description as

(2.1) [K(ons) L K(@) L K + K®®] dr=4R~-J,

where K(const) K@) K@ K® are nxn stiffness matrices referred to as the consti-
tutive, the initial stress, the initial displacement and the load matrix, respectively,
n is the global number of the displacement-type degrees of freedom in the discre-
tized structure, Ar is the vector of the incremental generalized displacement, 4R
is the vector of the incremental external loading while J is the so-called initial load

(®) As a matter of fact, in rotationally-symmetric spherical caps we observe the so-called asym-
metric bifurcation points.
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vector corresponding to nonequilibrated nodal forces resulting from accumulated
errors of the numerical algorithm.

It is essential to note that the matrix K© is a linear and homogeneous function
of the second Piola-Kirchhoff stress components S;; while the matrix K® consists
of only the terms which are either quadratic or linear in the total displacement
components. For a broad class of elasto-plastic materials the constitutive stiffness
matrix can be written as

2.2) K(const) =K (@) 4 K@) (S),

where K© is the classical elastic stiffness matrix while K? is its correction due to
plastic effects.

The solution to Eq. (2.1) (advanced incrementally for prescribed load incre-
ments and supplemented by the Newton-Raphson iteration scheme) should, up
to some numerical accuracy, follow the primary equilibrium path of the exact
nonlinear solution for the discretized problem considered. This is so until a singu-
larity point appears at which there is no solution (in the case of the limit point)
or the solution is nonunique (in the case of the bifurcation point). The analysis
around the critical points on the primary equilibrium path will be referred to as
the stability analysis. To by-pass the singularity many algorithms have been pro-
posed in the literature. We could mention in this context:

i) Change of the load-type control of the process into a displacement-type
control. The method is effective for limit points only. Also, some complications
arise for continuously distributed loads.

ii) Imposing kinematic (buckling mode) constraints at the bifurcation point.
The method requires some knowledge of the nature of the postcritical structural
behaviour which can be gained either from the corresponding eigenvalue consi-
derations or, in simpler cases, from intuition and engineering experience.

iii) Use of the so-called scalar current stiffness parameter of BERGAN [8] to
guide the algorithm suppressing equilibrium iterations.

iv) Use of the ‘“‘constant-arc-length method” proposed by RiIks [9].

v) Use of the perturbation approach, [10-13], which forms a very general
basis for nonlinear calculations but can turn out to be expensive.

vi) Use of the dynamic relaxation method.

vii) Use of the ‘‘artificial-spring method”, [14].

A highly complicated analysis around the critical points can be sometimes
replaced by a simpler, linearized algorithm of the so-called bifurcation theory.
According to this approach, the condition for the solution nonuniqueness i3 given as

2.3) det [K®+K® (S)+K© (S)+K® (r)+K® (R, r)]=0
or, after some approximations, as
(2.4) {K@+K® (0%)+ p [K® (0*)+K® (r*)]} v=0,

where o*, r* are certain reference values of the Cauchy stress and the displacement
fields, respectively corresponding to the reference external load R*, K™ stands
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for the linear (in r) part of the initial displacement matrix while x is an unknown
multiplier of load for buckling (eigenvalue of the problem (2.4)) and v is the cor-
responding buckling mode (eigenvector). Many effective iterative algorithms are
known to handle the eigenvalue problem (2.4); the subspace iteration method was
used in the course of the present investigations, [26].

3. NUMERICAL ANALYSIS OF STATIC INSTABILITIES

Numerical illustrations of static instability analyses given in the present paper

are basically not meant to propose any new solution algorithms. Instead
we would like:

i) to show the class of problems which can be effectively treated by the advanced
numerical methods,

ii) to set up the basis for further dynamic considerations, [29]
iii) to supply highly nonlinear solutions for different structural problems which
can be used in the future for testing refined solution methods.
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As a first example we consider a shallow spherical cap supported at the edge
on a fixed hinge circle and subjected to an axial load at the apex, Fig. 4. Both a high
precision doubly-curved axisymmetric shell finite element described in [15-17]
and the flat triangular shell element TRUMP described in [4] were used for the
analysis. At the beginning the fully axisymmetric (one-dimensional) problem was
considered. In such a case a wedge-type finite element mesh (Fig. 4) is employed
when using TRUMP elements. Figure 5 shows the load-deflection curves of the
apex for both the purely elastic and the elasto-ideally plastic cases as well as for
both the element types employed. The elasto-plastic response curve shows a pro-
nounced softening region after the shell starts to yield in bending at the apex; this
is followed by a stiffening due to membrane action. The load reaches its maximum
shortly after the outer portion of the shell—first slightly lifted due to arch action—
sinks below its original spherical shape (sign change of the rotation at the support).
The load almost reaches its minimum when the edge portion of the shell moves
through the horizontal at the support (rotation and original inclination at the sup-
port coincide).

The first phase of the response was obtained by applying prescribed load in-
crements. Then, at the instability points, the numerical problems were by-passed
by changing to prescribed displacement increments. Figure 6 depicts the deflection
profiles and the progression of the plastic zones at different stages of loading. Profile
A pertains to a load slightly above the point of initial yielding (because of the ana-

Profile ‘

Progression of plastic | Defiection profiles
zones (undeformed
profile, thickness
5x enlarged )

FIG. 6. Shallow spherical can undgr central load, defiection profiles at different stages of loading.
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lysis method employed, plastic flow does not set in immediately as a concentrated
force would strictly impose). Profiles B and C clearly demonstrate the reduction
of the bending compressive zone at the apex as a consequence of increasing mem-
brane tension. Profile E, shortly below the peak, represents the stage of maximal
plastic flow. Profiles F and G show the subsequent drastic unloading, particulary
in the inner part of the shell. The response analysis is terminated after plastic flow
is renewed at the apex.

As a next step the behaviour of a class of spherical caps clamped at the boundary
has been analysed under statically applied uniform external pressure. First, the
elastic material properties were considered only. The shell parameter A defined as,
cf. Fig. 4, 7.
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F1G. 7. Analysis of asymmetric deformation modes.

was used to classify different shell problems considered. The different values of the
parameter A were generated by varying the shell thickness 7. For each value of A
(e.g. for each specific shell problem) a buckling pressure p,, and the corresponding
(axisymmetric or asymmetric) buckling mode can be found by using different ana-
lytical or numerical methods as discussed in [18-22], for instance. The lines drawn
in Fig. 8 are based upon the results given in [18-22] and are here established as some
“weighted averages” of all these results. The broken line corresponds to the axi-
symmetric snap-through buckling while the solid line collects the bifurcation so-
lutions with the numbers indicating the Fourier harmonics developed in the buckling
mode. In Fig. 7 the buckling pressure was normalized by the classical static buckling
pressure for the closed shell which is given by [2],

3 2E ( t )2
e P BaA-AI7 \R)
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The results obtained by the present author and his collaborators are also given
in Fig. 7. First, fully axisymmetric analysis was carried out incrementally for elastic
shells characterized by A=8 and A=14. Then asymmetric deformation modes were
induced by introducing load and/or geometry imperfections into the shell discretized
by means of the triangular elements TRUMP [4]. It was assumed that asymmetric
deformation modes were fully represented by a single n-th harmonic mode and the
axisymmetric mode. A finite element model for a portion of shell having an angle
of 7/n was introduced with the element mesh shown in Fig. 7. The symmetry con-
ditions on boundary nodes were introduced in such a manner that the desired har-
monic mode (or its multiples) and the axisymmetrical displacements were exactly
simulated. The nonlinear load-displacement path was traced up to a certain load
without considering harmonic imperfections. To initialize asymmetric deformations
at a certain load level a small pressure-type perturbation load was introduced along
with the axisymmetric load. The magnitude of the perturbation load was always
57, of the given load. The procedure was also tested by using geometry imperfections
(also in the form of a Fourier harmonic) instead of load imperfections. The solution
was then continued under asymmetric loading conditions. The bifurcation was
observed as a branching in the fundamental load-displacement curve obtained
before for the ideal shell. In such a case the perturbation load was removed and the
secondary equilibrium path followed under the increasing axisymmetric load. For
each shell a few wedge-type geometries (corresponding to different Fourier har-
monics) were considered and the minimum buckling pressure of such analyses
was taken as the approximation to the real critical load.

Uniform _external pressure P

o ) Elastic, n=0

% (axisymmelric)

§ 12} /}z/-“‘—‘

£

PP 4 Stalic loading

Sl ¢ \" 0 (elastic shell)

3 h \ / Elastic,n=9
sIe 08 - / e l (n=8,9,10)

4
g 3 -/T\a" 7567 8390

o Elastic, n=3 El-plastic, n=0 1 "2
' 1l B 7 [n=3,4,5) \osisymmetri) 2=203(1-v3) ™ (1)
SIS 1 a
A El-plastic, n=5 El-plastic, n=7 s[12(1-v*] (Rt) 2

& 04 (n=3,4,5,6) (n=6,7,8)

£ / 0

3 J@, El-plastic, n=0 $o=45

502 (axisymmetric)

g

S i 1 1 1 !

=]
N
£

o

@
5
8
R

2 g
(shell parameter)
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In all the cases considered the bifurcation loads were only slightly lower than

the following asymmetric snap-through loads. For 1=8 the critical load value
shown in Fig. 8 was chosen between those corresponding to n=3, 4 and 5; the
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critical pressure obtained for n=3 was the lowest. The other results obtained by
means of the TRUMP element are also shown in Fig. 8. In the case of elasto-plastic
analysis the isotropic hardening of the Ramberg-Osgood type was assumed here,
Fig. 9.
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Fi1G. 9. Different design loads for two spherical caps.

The buckling loads obtained for the elasto-plastic shells were next compared
with other characteristic pressure values used in the design process, Fig. 9. The
following notation was used: Pp¢h“*_critical axisymmetric snap-through pres-
sure as obtained from the present calculations in the case of the elastic cap, *™'p!—
critical (bifurcational) pressure for the complete elastic spherical shell given by, [2]

com 1.l — 2E ! 3
(3.2), P~ BaA-MIE R

cappel @(3)_critical bifurcation (n=3) pressure as obtained from the present calcul-
ations in the case of the elastic cap, “*"p{_ ?  —upper bound to the limit load for
the elasto-ideally plastic cap, [23], **°pf; P _—lower bound to the limit load for the
elasto-ideally plastic cap, [23], c*™P!p P —critical (bifurcational) pressure for the
complete elasto-plastic spherical shell given by, [2]

compl 8= P = 4E ( t )2
s P T T6(A+») —2+EE)2\R) °

E, is the tangent modulus obtained here assuming the Ramberg-Osgood isotropic
hardening of the form shown in Fig. 9, ®*®p¢ 7 %(5)—critical bifurcation (n=>5) pres-
sure as obtained from the present calculations in the case of the elasto-plastic cap,
cappe, P “*—critical axisymmetric snap-through pressure as obtained from the present
calculations in the case of the elasto-plastic cap.
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To make the problem clearer, the shells geometries shown in Fig. 9 illustrate
the real R/t ratios as considered in the numerical analysis. The elasto-plastic buckling
results obtained compare well with the results reported in [24].

It must be stressed that the extension of the classical elastic results to a class of
elastic-plastic shells is of great practical value as the significance of the elastic shell
buckling theories is limited to relatively shallow and thin shells. Also, the limit
analysis supplies meaningful results only if the shell is stable as the limit load is
reached (which, as seen from Fig. 9, is not always the case). It must be also empha-
sized that the parameter A in contrary to elastic-plastic shells is not sufficient for
shell classification with respect to the buckling characteristics (an additional geo-
metric parameter is needed—the angle ¢,, Fig. 8, for instance).

a
E=7000 kG/mm?
v=03 ;
G =11kG/mm?
E¢=E/200
EC=AG M
A=464-10"8 (kG /mm?) " H ™
n=443 m=0273

Fic. 10.

As a next example the elasto-plastic-creep analysis of a spherical aluminium
cap elamped at the boundary is presented, Fig. 10, [16]. The cap was subjected
to the external pressure and analysed incrementally in the elasto-plastic range up
to the loss of stability of the snap-through type. The axisymmetric “‘one-dimension-
al” finite elements were used so that bifurcation phenomena were automatically
excluded. The snap-through instability occurred at p=26.5 kG/cm?. Then the
same cap was calculated anew and simulated to creep under the pressure of 25 kG/cm?
which was 1.5 kG/cm? less than the critical value. Assuming the creep law in the form

3
(3.4) Ae“”=—23 4E©) 04y
with
(3.5) AED =A™ 1"

and the constants 4, m, n taken from [25], the results of the numerical analysis
are shown in Figs. 11, 12 and 13. The apex displacement versus time curve defines
the creep snap-through instability taking place after 1.2 hour of the process. In
Fig. 12 the mid-surface displacements ar¢ shown for three different moments, the



SOME RESULTS IN THE NUMERICAL ANALYSIS OF STRUCTURAL ... 339

last one right before buckling Figures 12 and 13 illustrate also the plastic zone
development and the distribution of the meridional stresses g,. The results were
compared with those given in [25]. The qualitative agreement was good while some
quantitative differences were attributed to the much simpler finite elements of [25]
and a bit higher constant load assumed for creep in the present paper to speed up
the calculations.
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As a next example we would like to discuss the static behaviour of a certain
space truss structure shown in Fig. 14. For simplicity we exclude in what follows
the possibility of local buckling of the truss elements. Let this shell-like structure
be loaded by a concentrated force at the apex (or, when needed, by the prescribed
vertical displacement at this point). Applying the former and assuming elastic
material properties, the incremental analysis was termined at the first limit point
L,, Fig. 15. The calculations were then continued using the prescribed displacement.
This was possible until the first bifurcation point (B;, Fig. 15) was reached. At this
point two (or more) equilibrium paths are possible—the first one fully symmetric
(fundamental) and the other with certain asymmetry in the deformation pattern.
As no eigenvalue analysis was attempted in the course of the truss calculations,
we managed to get through the point B; by imposing some symmetry constraints
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upon the vertical displacements of the truss as described in Fig. 15. By using such
constraints we were able to proceed with the incremental analysis up to the point
E, where an obvious nonuniqueness of the prescribed-displacement problem ap-
peared. So as to have a closer look at the nature of bifurcation points encountered
along the fundamental path, imperfection-type analyses were carried out. Assuming
first the imperfections in the truss geometry by modifying the initial vertical coordi-
nates of the truss nodes and imposing the asymmetry constraints of the form w,=

Aw [mm]

0 0.2 04 06 08 10 8/g,

i e

1
0.8 10 6/p,

Fic. 13. Plastic zone development in the creeping plate,
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=W3, Wa=W,, Ws=we (Where w, is the vertical displacement of the i-th nodal point)
we discovered this to lead to an unstable post-critical behaviour with the branching
point coinciding precisely with the bifurcation point B, as found before. Similar
analyses allowed to find out the character of all the post-critical equilibrium paths(#).
The whole analysis was terminated after reaching some pomt E, at which fully
stable behaviour was observed.
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Fi1G. 14. Geometry of space truss.

(*) The nature of the bifurcation point B, was not analysed.
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We would like to end up this preliminary description of a typical structura
behaviour with the remark that even very simple elastic stuctures can be charac-
terized by an extremely complicated load-displacement diagram when full range
nonlinear behaviour is of interest.
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F1G. 15. Load-deflection curves for the elastic space truss, go=2000 kG/cm.?
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The similar analyses were carried out assuming elasto-plastic material beh-
aviour of the truss elements. The results obtained for two different yield limits are
shown in Figs. 16 and 17 and compared with the fundamental elastic behaviour.
In the figures limit and bifurcation points as well as plastified elements at different
deformation stages are indicated. The imposed-symmetry approach allows again
to characterize the post-critical structural behaviour. Asymmetries of the secondary
equilibrium paths were always very distinct and resulted in the plastic unloading
of some truss elements.

\
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F1G. 16. Load-deflection curves for the elasto-plastic space truss, 6,=2000 kG/cm?.

The same truss structure was next analysed under the set of concentrated forces
described in Table 1. The results of the analysis are given in Figs. 18 and 19. Dif-
ferent small geometry and loading imperfection patterns were considered, Table 1.
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The results obtained clearly show the essential influence of the imperfections upon
the response curve characterizing the ideal problem. The truss under the specific
loading considered is said to be imperfection sensitive.

A Apex reaction
L Rx107? [kG]

Elastic

Static behaviour of

the elasto-plastic truss
G, = 1000 kG/cm?
Ramberg- Osgood isotropic
hardening with m=8

100 —
& <
Full symmetry constraints
£ {Wz: W3=W4=W5=W5=W1)
no_imperfections
50

Constraints Wp=wy=Wg ; W3=W5=Wy
no imperfeclions

No constraints
ek no imperfections

L | \ i | S
40 6.0 8.0 100 120 4.0
Apex displ. [cm]

e ——
Pl.elem. Pl.slem.

O

20
Pl.elem. 7212

F16. 17. Load-deflection curves for the elastic-plastic space truss, go=1000 kG/cm?.

o —

As a further illustration of the static instability problem the necking of a cylin-
drical tension specimen is examined below. The problem is described in Fig. 20
where the geometrical and material data as well as the mesh lay-out consisting
of the axisymmetric TRIAX 3 clements are given. The initial length-to-diameter
ratio of the bar is 4. The tensile loading is introducecd by the prescribed extension of
the end section. The bar was taken to have a reduction in the width at its midlength
centerline of 0.005 R so that a standard deformation process might be formulated.
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The exact shape of the geometry imperfection is shown in Fig. 20. The magnitude
of the incremental extension was taken as 6 - 10~# with a final overall stretch ratio
of 0.42 (this required 700 prescribed displacement increments).
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(perfect solution)
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! Geomelry tmperfections
6+  ofthetypel
S :
\ Bifurcation point
\ ey
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Fic. 18. Truss with imperfections: vertical displacement of the mode 2 versus load parameter.,

The load (e.g. the reaction) -deformation behaviour is depicted in Fig. 21. The
maximum reaction was observed at the overall extension of about 0.14 while the
unloading started to propagate at the overall extension of about 0.16. The latter
value can be identified as the beginning of the necking process; this can be seen
in Fig. 22. We observe that at the elongation of, say, 0.35 the reduced cross-section
radius was about 0.635 R, which corresponds to the cross-sectional area reduction
of about 609%. The development of plastic unloading zones is shown in Fig. 23.

An numerically highly cumbersome test example was the elasto-plastic buckling
problem of a narrow cantilever beam, solved using the TRUMP shell finite element
and described in [4], cf. Fig. 2. The elastic-perfectly plastic material model was
assumed. The geometry of the beam as well as the mesh lay-out are shown in Fig. 24.
The mesh was refined near the clamped end where extensive plastic flow is expected.
Because of linearity at the beginning of the response, cf. Fig. 25, the starting value

Rozprawy Inzynierskie — 4



Table 1.

Coordinates [cm] Vertical loading ratios
= Perfect geometry Imperfect | Perfect Imperfect
Q
Z x y ! z z z Zn Zin
1 0.00 0.00 0.00 0.00 1.0 1.0 1.0
Z 25.00 0.00 2.00 1.80 2.0 20 2.0
3 1250 | —21.65 2.00 1.80 2.0 2.0 2.0
4 | —1250 | -2165 | 200 2.00 2.0 1.5 18"
5 | =25.00 0.00 2.00 2.00 2.0 2.0 2.0
6 | —12.50 21.65 2.00 2.00 2.0 2.0 2.0
yfL 2% Be 0 K1 | 20 1.5 2.5
8 4330 | —25.00 8.22 8.22 0.0 0.0 0.0
9 0.00 | —50.00 8.22 8.22 0.0 0.0 0.0
10 | —43.30 | —25.00 8.22 8.22 0.0 0.0 0.0
11 | —43.30 25.00 8.22 8.22 0.0 0.0 0.0
12 0.00 50.00 | 8.22 8.22 0.0 0.0 0.0
13 43.30 -25.00 8.22 8.22 0.0 0.0 0.0
A P07 “en)
| [k6]
e -
Symmetric deformation mode
{perfect solution)
7+
6 -~
S B \ Bifurcation potnt
i B eia ‘
ar /
i |
~ Geometry imperfections
3 —
=" ) //\ of the type T
s L // 4 Loading imperfections
7 S 2
1V 7 Loading imperfections
y of the Type IIT
4
: 1 1 1 1 “
0 01 02 03

04

U} fem]

Fic. 19. Truss with imperfections: vertical displacement of the mode 1 versus load parameter.
e8]
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of the load increment is chosen approximately as 50 % of the linear (elastic) buckling
load of 1048 kG. A horizontal perturbation load of 0.1% of the vertical load is
also acting. Instability arises at a load of about 711 kG. Up to this critical load
the applied increments range from 59 to 0.2% of the linear buckling load. First
yielding occurs at 530 kG. Figure 2 illustrates the progression of the plastic zones.
The imposibility of applying the load increments beyond the critical point imposes
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"FiG. 20. Cylindrical tension specimen configuration and mesh lay-out.
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a change to prescribed displacement increments. The centre of the tip is moved
downwards while the perturbation force is gradually taken away. As a consequence
of increasing plastic flow which. finally covers more than one third of the beam,
the lateral bending stiffness of the beam is diminished rapidly.

In order to analyse the effective use of the eigenvalue technique, two examples
of the initial structural buckling will now be discussed. We shall illustrate such
an approach by considering some prismatic plate assemblies strained into the elastic
or elastic-plastic range. For the description of finite elements, details of compu-
tational algorithms and further numerical results, the reader is referred to [26].

As the first example of this group we take an infinitely long elastic I-profile
under uniaxial compression. We assume for this (and other thin-walled cross-sec-
tions considered) the stiffness to translation in the plane of each component flat
to be much greater than the stiffness to rotation about the edge lines. Consequently,

A Pia, [kG/mm?]

a0 -

s G=20kG/mm®
Ramberg-0sgood isotropic
hardening m=8

1 S MR . SRR RIS Y SBeon R .
/) 01 ~0M~016 02 03 -1,

Fic. 21. Necking of cylindrical tension specimen, nominal applied stress-elongation behaviour.
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Fic. 22, Reduction of necking section diameter with increasing extension,
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no component flat is allowed to translate in its own plane during buckling and the
edge lines at the junctions between flats remain fixed in space.

The longitudinal dimension of the structural components is assumed here to
be many times greater than a typical cross-sectional dimension. In such a case
any standard method of matrix buckling analysis would require a very large number
of finite elements, particularly if the cross-sectional geometry is complex. To cir-
cumvent this problem the modes of buckling are assumed to vary sinusoidally
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FiG. 26. Stability of elastic I-beam.
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Fic. 27. Stability of elasto-plastic plate with a beam stiffener,
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in the longitudinal direction with a half-wave L. Therefore the stiffness matrices

appearing in the initial buckling formulation [4] will involve the parameter L as

the additional unknown. By solving the eigenvalue problem (2.4) we consequently

obtain the critical stress ¢ in terms of the assumed half-wave length L. Performing

independent calculations for different values of L and minimizing the critical stress

with respect to L, we end up with the buckling stress ., taken as the correct solution.
The buckling coefficient K such that

R
(3.6) Ocr, xx =KE (—t—)
obtained by means of the above procedure for the elastic I-profile beam considered
is plotted in Fig. 26. Half of the cross-section was analysed here by means of nine
finite elements. The solid line curve is taken from [27]. In Fig. 26 one typical buckling
mode is also plotted.

As the second example solved, using the same approach, we consider an in-
finitely long elasto-plastic plate with a beam stiffener, Fig. 27. To analyse such
a case a special beam element was developed, based on the same assumptions used
for the plate elements, [26]. The analysis of symmetric buckling modes in this case
was not possible without the special stiffener element because of the assumption
of the fixed edge lines between the flats. The geometry and material properties of
the plate and the stiffener were taken to satisfy

3.7 - il gufiagy
el LoBRE - “3he Sopde o
S :
where I,= 12’ , b, and h, are the width and height of the stiffener, 2b is the

width of the plate, I,=t3/12, tis the plate thickness and 4,=>b, k. The finite element
results obtained were compared with those given in [28], Fig. 27.
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STRESZCZENIE

PRZYKEADY NUMERYCZNEJ ANALIZY NIESTATECZNOSCI KONSTRUKCII
CZESC 1. STATYKA

W pracy podano szereg przykladéw zastosowania metody elementéw skoriczonych do analizy

utraty statecznosci sprezystych i niesprezystych ukladow konstrukcyjnych poddanych obcigzeniom
statycznym. Oméwiono krotko podstawy teoretyczne, koncentrujac nastepnie uwage na analizie
otrzymanych wynikOw numerycznych.
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Pesome !
TIPUMEPBI YUCJIEHHOTO AHAJIM3A HEYCTOMYMBOCTU KOHCTPYKII
Y. I. CTATHUKA

B pabore npusejen psii IPUMEPOB NPEMEHEHUs METOJA KOHEYHBIX JNIEMEHTOB IJIsl aHaim3a
NOTEPH YCTOMYMBOCTH YOPYTHX M HEYHPYTHX KOECTPYKIMOHHBIX CHCTEM, IOABEPTHYTHIX CTATHYEC-
xaM RarpyskaMm. KpaTko 0OGCYKZEHBI TEOPETHYECKHe OCHOBBI, KOHLIEHTPHDYs 3aT€M BHUMAHUE
HA aHaMi€ IOJyYEHHBIX YHMCIEHHBIX PE3YIbTaTOB.
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