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INFLUENCE OF TANGENTIAL DISPLACEMENTS ON THE DYNAMIC

BUCKLING OF VISCOPLASTIC .CYLINDRICAL SHELLS

5. TOZWIAK and W._WOJ.EWODZKI (WARSZAWA)

A theory of dynamic buckling is developed for viscoplastic cylindrical shells subjected to
uniform radially inward impulses. The irfluence of tangential displacements on the magnitude
of radial displacement, buckling mode and critical impulse is investigated. Asymmetrical and axi-
symmetrical mode of buckling are considered. It is shown that the asymmetrical mode occurs,
what is in accord with the experimental observations reported in the literatare.

1. INTRODUCTION

The experimental investigations have shown that the metal cylindrical shells,
buckling plastically, exhibit a characteristic wrinkled shape when subjected to
sufficiently large uniform radially inward impulses, ABRAHAMSON, GOODIER [1],
LINDBERG [2], ANDERSON, LiNDBERG [3], FLORENCE, VAUGHAN [4], FLORENCE [5],
L,yons [6]. The papers [1-4], Stuiver [7], VAUGHAN, FLORENCE [8], TonEs, OKAWA [9]
dealt with the model of an elastic-plastic or rigid-plastic body with linear hardening.
In the papers by FLORENCE [5, 10], Woisw0ODZKI [11-14], Perrong [15] the viscosity
cffects were considered.. In most of the above mentioned .papers, to explain the
buckling process, the problem was described within the framework of the linearized
shell theory and only the radial displacement was taken into account. The buckling
mode and the threshold impuise were determined. In the paper [6] the nonlinear
geometric relation for the circumferential strain component was used and in conse-
quence the threshold impuise was found to be smaller than that obtained in [3].
FLORENCE, ABRAHAMSON [16] found that the stability of a viscoplastic cylindrical
shell subjected to a large radial impulse improved during the deformation process
when the increase in wall thickness was taken into account.

The aim of the present paper is to invesiigate the influence of the tangential
displacements on the magnitude of radial displacement, buckling mode and critical
impulse. The thin viscoplastic cylindrical shell is loaded by a uniform radially inward
impulse,

2. Basic .EQUATIONS

The influence of strain rate on the material response can be described by the
tollowing equations, PerzyNA [17]:

. 4 Sig : . ;"2 _{é (F) for F>0’
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I
where £;; is the strain rate tensor, s;, denotes the stress deviator, Jzﬁ?si 5 S

k=0,/312, @, is the static yield stress and y stands for the viscosity coefficient of
the material. The material is incompressible. The linear function @ (F)=F is assumed.
The physical equations of the Saint Venant-Levy-Mises theory of plastic flow,
§,,=As;;, are obtained from Egs. (2.1) if.y=occ and J =,

The dynamic equilibrium equations are assumed in the following form [18] Fig. 1:
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where.
P.=q,—phil, Py=gy—phv, P,=q,—phw,
p denotes the density of the material,
The strain rate components are taken in the form (Fig. 1)

- o w1 & wo oz [Pw o
ST ol BT a“az“:‘—“(aaz +EE)’
(2.3) ' éz='—(éx+ée),
a0 1 aa a8
R P (3x80+ ) ety =0.

3. METHOD OF THE SOLUTION

In the case of thin shells, o, =63,=0, Egs. (2.1) yield for J1>>k the following
nonlinear equations:
1

(3.1) aiJ.:k(w

1
?0 +'I]_T) (élj_}'éum 51‘j)a iﬂj=]‘3 25 39 0L=1, 2’
2 .

1
where y,=y/2 and for the incompressible material (§,;=0, =1, 2, 3), Iz-=§- &5 65

is the second invariant of the strain rate deviator, d,; denotes the Kronecker delta,

Let us consider a cylindrical shell loaded by a pressure impulse directed radially
-and inwards (Fig. 2). In the state of compressive plastic flow the shell buckles as
a result of imperfections. A characteristic feature of dynamic buckling is the
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Fig, 2. Cylindrical shell; dimensions and loading.

significance of inertial effect in restraining the growth of buckling mode amplitudes
at an early stage of the motion. This effect results in the yielding of the shell
before the instabilities can become dominant. Analytically, the problem is formulated
as a superposition of small perturbations u, (x, 6, 1), v, (x, 0, £), w, (x, 8,¢) on the
basic unperturbed motion u, (X,7), 2o=0, w (¢). The amplitudes of perturbed
motion are so small that the hiomogeneous compressive deformation is predominant
over the local bending. Also, this condition permits the constitutive equations ot
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be linearized by the expansion of Egs. (3.1) into Taylor’s series of five variables
in the vicinity of unperturbed motion and to retain two terms only.
We get

1 1 k
(3.2) cr”—k( +]/_)(8”+&m(5¢_,) Ws”a”(cu+sm5”),

where 7,7, 1, r=1,2,3, a=1, 2, &, &, denote the strain rate tensors of the unper-

1
turbed and perturbed motion and I3= —2-st £y)-

According to the Kirchhoff-Love theory, ¢,3=6,3=0 (Egs. (2.3)) and the
indices 7, f, [, r, « in Bas. (3.2) can take on 1, 2 only. In this case Egs. (3.2) can be
rewritten in the form

(3.3) Gi_i=a?j+0fp
where

1 .
O’o =k ( ‘}‘7:') (é?J+é?¢ (s’,-j),
1 1 . . k
(3.4) on =k I‘I'V;‘D: (&7, +e,6:)— 2152 (511“1‘3:1 8.) (€5 55:4‘8“ Stt)
p

. 1 '
Ig 2 [E” 515515 5JI+(511 &) BilLs t=1,2;

; is the strain rate tensor of perturbed motion.

Equauons {3.3) may now be used together with Egs. (2. 3) and (2.2) to obtain
the differential equations governing the viscoplastic flow buckling of the shell.
Buckling stems from the growth of small imperfections in the otherwise uniform
initial displacements and loading fields. It turns out that certain harmonics grow
rapidly and cause the shell to exhibit a characteristic wrinkled shape which. is char-
acterized by the critical mode numbers. This property of the amplitudes is used
to determine the threshold impulse that the shell can tolerate without excessive
deformation.

The constitutive equatlons (3.1) may be used if the loa.dlng criterion Ji? >k
is satisfied. It is equivalent to 71/2>0: After linearization this condition has the
form
(3.5 &5 @, +40,6:0>0, Lj=123, ‘a=I,2.

In the case of Eqgs. (2.3) the subscripts i, f, « become 1, 2.

4, EQUATIONS OF VISCOPLASTIC FLOW BUCKLING

4.1. Unperturbed motion

Let us assume the unperturbed displacement functions in the form

(4.9 o=ty (%, 1), vo=0, wo=wy{t).
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Making use in Eqs. (2.3) and (3.4) of the functions (4.1), we obtain the non-
vanishing stress components .

1 i ( dity }%)
D= _ﬁ+_________ e
& "[% (13)”2] Yo el

(4.2)
o ][1+ 1 ](61’10 zwo)
S PO HIEN A

where

a &x @’

Integrating the components (4.2) over the thickness of the shell, the membrane
forces can now be computed. Inserting these forces into Egs. (2.2), we get the
set of two nonlinear differential equations, The solution of these equations is very
difficult. The problem can be simplified by taking the relation

4.3) a=—ifi for z=0, O<a<lf2.

The change of the value of « from «=1/2 to «=0 corresponds to variation of the

length of the shell from very short to infinitely fong. The relation was originally

proposed by VAUGHAN and FLORENCE [8]. On the basis of experimental tests on

cylindrical shells made of aluminium alloy the relation «=0.5exp (—//4a) was

determined, where 7 is the shell length and a is the radivs. FLORENCE [10] proposed
"— -1

the relation a=0.5 [cos b (%Ei)] . The values of « calcnlated from these two
a

refations do not differ appreciably and the discrepancies involved have a negligible

influence on numerical results, From Eqgs. (4.3), (2.3) and (3.4), we get

T )
(@.4) agx(zami)(% —'%“—+;—‘i) og=(am2)(% %JF%) o0, =0;
NO= _hfza,?dz=(2oc—1)(~—&+%)h,
—~hf2
NO= }fzaé’ dz=(oc—2)(—~k: —%‘1+%)h,

5
@3 No N0, MO=MI=0, MI=-—MZ=0,

~ where K= I/B(mz —a+1).

The shell is subjected to the action of radial pressure impulse, thus ¢,=0. The
longitudinal deformation occurs freely during motion; no axial restraint and no
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axial forces exist at the ends of the shell. Longitudinal inertia will also be disre-
garded. In this situation Egs. (2.2) reduce to the following equation:

(4.6) Ny =~a(q; ()—phw,)
which, combined with the expression for N, Eqgs. (4.5), yields

. 2=k . (2-wa, g¢°i1)
4.7) wo + v Wo =

apk ph

This equation of unperturbed motion will be solved for two types of the impulse.
In the case of ideal impulse loading (uniform initial velocity), ¢2 (£)=0 and the
solution of Eq. (4.7) with the initial conditions w, (0)=0, W, (0)=V, has the form

(4.8) Wo= Yo pa’ (VO“Fm)[l—exp((a—z)k f)]" ]/3 yoat

B R—u)k K Yo pa2 K,

The vnperturbed motion ceases at the instant t=t, ‘when W, (¢;)=0. Thus

Yo pa® 1 ( ]/g Yo )H1
I

TRk " \VoK, ¥/3 70

(4.9)
In the case of rectangular impulée preséi]re'

for 0<t<T,
(4.10) 2= -

for >T

E

and for the initial conditions w, (0)=0, W, (0)==0. the solution of Eq. (4.7) is of
the form

1 Q (2_05)0'0)[ : ]. ]
= |t (e O<e<T,
Wo =" (ph X, pa ¢ c(.e 1}{, for
(4.11)
:(——2_@ 00(1— t— “”‘)+—g[T+i(lme‘”)e‘°‘] for T<i<t,,
Mol i K e T ) ke T ’ S

where c=k (2—a)/(yo pa®). The unperturbed motion ceases at the instant #==fy,

1 Qa K, ]
. == e ——— ] — cT .
(4.12) =~ ln[l TR (1—e7)

In Figs. 3,4, 5 and 6 are shown the graphs of the unperturbed displacement
wo calculated for a shell made of mild steel characterized by various viscosity
coefficients, The effect of the hfa and //a is readily observed and also a significant
influence of viscosity on the values of displacements of the shell and on the duration

of the deformation.
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4.2. Perturbed motion

" The total displacements in the perturbed motion are expressed by the following
functions:

Wolt
(4.13) u= p )x+u W, 0,8),  w=w,(x, 0,0,  w=wy ()+w(x,0,0).

Substituting these functions into the expressions (2.3) leads to the strain rates
formulae

wo o, 3w,

ax z ax? ? éz=_(éx+é6)s

(4.14) el

oo, i, 2z ( Py,

o T ax o0  ox ) by 0z =0

28::9 =

and hence, by Egs. (3.4) and (3.5) the stress components are

oy k [ (Bﬂp 0> wp)+l (&ép . ) z (32 \-‘.)p_'_ 31’#,,)]+
=0 Moo %o | Ta\ a0 )T\ e e
+9|/3 ak[aupm alwp+a(aﬂp ) ) z (&2wp+8?3p)]
K3 Lax - - ox? a0 " a2 \eer T aa ]l
1
k{2 (o0, 82 W, -0 ] &%
415 = g9 — i p) r_ P]+
4.15)  o6,=0, 9’0{ ( w) ( 392 pp z e
91/?0!6[ (8&,, & w,,,) ? (81‘) ) z (32 W, 9
A - b i Lyt
g K |\ o “ax ] a\eo “ 2\ e 0 l)

axﬂ:E(L+ ]./ga){aw s i, 22(52 W”+aﬁ")]_
2\y - WoKi/ldx  add ox 00 dx
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The stress distribution (4.15) produces the following resultant forces and moments:

02 oi, &, W,
M= [ oudz=NSwkn| Bt B

a of al
~nl2

na - al-{p 3731, ﬁ’p
No= [ oyde=N+kh|fo—t | —5 =),

a ot a
—ni2

il o, 85;,,
Nyo =N, ™ f O dz==kh |\ ——

adf
~hi2
(4.16)
o A2 kR [ L 9w, . (32 W, N a0, )]
* =_Mfz Gnzdi= T b T TR\ e Yl
k2 kh? [ W 0y (az Wy 0% )]
Mg:—k?f; oy 2 dz= 1247 B a? " i pr a0
2 kh? (é’z"p &* M'fp)
= = — = p 4
. M\CB Mﬂx _h}l; axa z dz 6(1 )84 v . ax 36 3
where .
2 934 5 I 93 oa
R =L
(4 17) ﬁl = Yo ZWU K}T 3 ﬁz yo ZWQ Ks S
: 2 9y3d’a 3 a
ﬁa =— l/

Yo ZWQ K? ’ ﬁ4 2}’0 ?-Wg Kl

Eliminating shear forces from Egs. (2.2), neglecting terms with the products of per-
turbation quantities and the sixth equation, we get

ON, ONy, (821: ow
+ —

a )Ng—aphié=0,

ox 90 \oxol  ox
4.18) 2 Ny n N, + IM _ M, +q o NO— aphq;m{) ,
_ ox l) dx a éf ax: F
PM, PM, *M, M, & w 1{d0 &w
T VML Wy T R oy PR N£+N"+_("3F 392)

xNg+a(g.—phw)y=0.

On substituting the expressions (4.16} in Egs. (4.18) and on accounting for Eq.
(4.6) and the relation g¢,=¢? (1)+47 (4, 0, x), we obtain the followmg equations
of the viscoplastic flow buckling:

@9 ok [ Pi, 1 P, 220, aw,,]+
S R R O v

1 (Bzvp _ 3WP)N00=0,

aph \oxaf  dx
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. kH+ hz) 327}p+1(1+ B? ) azza“r
CE0) Wil A Uiy N e s 12 |5 o

[cont.d

4 1 Bwp] kh? { 5 W, +
(ﬁ2+ﬁ4)5x36‘ a P af 12 pa? (B2 +2f2) ax? 20

1 & w,,} 1 &e,
a_253 a0 | o axwe Ne=0s
. kR [ g aggy L, L& wp]+
Wy lzpa ﬂi a 4 (ﬁ2+ ﬂ4) a 2 332 az ﬂ3 884 ]
+ k - kh? [1 30, 4 12 aﬂp]
Wﬁ&} Wy maz 53 393 (ﬁ2+ ﬁ‘!-) 8.7C2 39 hz 18373"

ko, l[ﬁzw,, o (Bzw,, 3@) o ]
@\ g Mo TE =0

axz Nx
whete N7, N, B, B, B, Ba are given by the cxpressions (4.5) and (4.11). In the
following equations the terms 4?/(6a?) and 42/(1242) occurring in the second equation
of the set (4.19) will be disregarded as small ones in comparison with unity.

paﬁ2 ax  ph

The displacement and loading perturbations can be assumed in the form of
Fourier series:

u, (1,8, x)= 2 2 Uy (1) cOs nf sin o, X

n=0 m=

v, {2, 0, X)= 2 Z Dy (t) sin #@ cos a,, x

n=1 m=

(4.20)
w,{t, 8, X)= Z Z W (£) COS 78 COS o1, X,

H=0 m=

gr (1,0, x)= Y Z g, (1) cosnt cos ay, x
fi= 0 =
where o, =mn/l, m and 2n denote the number of half-waves in longitudinal and
circumferential directions, respectively., The origin of the coordinates was taken
in the middle-length of the shell. .
Substituting the series (4.20) in Egs, (4. 19) we find the followmg equatlons
for the amplitudes u,, (1), v, () and w,, (£):

. k A ny\ ity ) Ny
o + ; ﬁl U +ﬁ4— —gg— Uim + pa k (ﬁz +ﬁ4) 2T h Ty |
@21

& . Ng
» kﬁz W __f;' W =0 >
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(4.21) o2 NO kene,,

. k .
[cont.] '?),,m ( ﬁ?s + ﬁ4 &, ) nm pk Voan + pa (ﬁz +ﬂ4) Hyn —

_ kn [( ) h? ) +h2 5 2]_ 0
pa2 ].+71‘ 12&2 ﬂ3 12 (ﬁl_l" ﬂ4) Gtm Wmn— )

. khz 4 : 2 | ??4' 12 H
an+ 12pa2 a* P ﬁ1+2f22 Eon (ﬁ2+2ﬁ4)+ —;4_“]17 ﬁs Wy +

+1 ( 03 ZNO) :+kcr,,, ) kn [hz . 4
. ph N Wi pa ﬁz Uy paz 12 Otm (ﬂ:ﬁ‘ ﬂ4)+

| 5 h? . nNg G un
+il+n 1242 ﬂ.% wfml_ paz h an_-_;h—“—"o'
The coeflicients of these equdtlons are functions of time and are determmed by the
solution for the unperturbed motion,

In a general case the solution of Eqgs. (4. 21) for given initial condrtions can be
casily obtained by numerical integration.

At the instant t=t, when W, (f,})=0 we have Uy =D g, =240, =0,

Bearing in mind the form of the solutlon (4.20), the initial conditions must
also be expressed in the form

u, (0, 6, x)= 2 Z oy €OS 10 sin o, X,

11 m=

N M
Uy (0,0,x)= X' 7 iy 008 10 sin a,, x,
=0 m=1
2, (0, 4, x) 2 E Ty Si0E 2O COS U X

(0 a, x) Z Z s 5111 1:9 COS &y, X,

=1 m=

(@22

o

w, (0,0, x)= 2 2 Wy COS 16 COS oty X

=0 m=0 . X
N M :
W, (0,0, x)= Z Z Wy coS 1l cos o, X,
. =0 m=0
l’ll”l (O) :—'iifﬂn 3 1"""! (O) =l'j’."" 3
(423) - B (0) '_‘_d‘ﬁnm > D (O) =6Hﬂl s
Wyin (0) =Wy s wmu (0_) =ﬂ’rfm .

The easiest way to solve Eqgs. (4.21), complying with the given initial conditions,
is by numerical integration. The analytical solution expressed in terms of power
series is also obtainable but it is too complicated for practical calculations.
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The numerical solution of the equations for the amplitudes #,, (1), Ty (£)s Wom (£)
were carried out for the following sets of initial values:
for loading by the ideal impulse,

i =0, Ty =0 Wi =t h,
(4.24) o 40 h—b
Hym =V » Uy =5 W = Vo«

and for loading by the rectangular impulse,

=0, Fou=0, W= h,
(4.25) A P
uﬂ"’l =O 2 ‘v.’l"! ﬂo ] H"nm =0 .
For @y Bums 47, =bp Q the constant values were assumed.

In general, the perturbed displacement fonctions can be expressed as a sine or
cosine sum of the # of Fourier series. The magnitudes of amplitudes are the same.
for both series, thus only the functions (4. 20) were taken into.account.

Therefore the Ioadmg condition (3. 6), ma,kmﬂ use of the relatlon (4.3), can
be written as

(4.26) _ & [(1-2«) .éx+:(2——oe) &l>0.
5, SPECIAL CASES 6F BUCKLINC.}.'MODE C '
5.1. Asymmetrical mode

The total displacements in the perturbed motion are“-expr'é:ssed by

__C’—wo(f) .
(5.1) U=, v=v,(0,1), w=wo()+w,(0,1).

Substituting u,=0 and J (...)/dx=0 into the equations of Sect. 4.2, we get the
formulae for the strain rates, stress components, resultant forces and moments.
The equations of the viscoplastic flow buckling (4.19) reduce to the form

.k [(H_”hz )'ai@p &y B aﬁwp]ﬁo
U e P 12¢2 ] 80* 20 = 12a°® 29° ’
k l( . i 34w,,)+"hz 80, ae,,]
par P\ T2a7 Taee | 12a7 T8 46

L[1[ow, aap) , ]
ph[ (392 toag Mot e }= 0

Following the serics (4.20) we assume the solution of the equations in the form

(5.2) ot

B N
v, (1, 0)= Z o, ({{}sinnd, w,{ 6= 2 w, (¢) cos nf?,
(5 3) u=1 n=0

@6 0)= D af (tycosnf.
. n=0Q :
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After substituting Eqgs. (5.3) into Eqgs. (5.2), the equations for the amplitudes
become

. kn? kn . Py
ﬂri+ﬁﬁ37§n_ﬁﬁ3 L+n _lzaz Wn=0,
.k o\ n?
(5.4) w, + ——paz ﬁs( 1+4+n* T3 ) W, + i NOw, —

kn 2 no - n

Gy
—— 2 D — 0 ———— =
P ﬂ3(1+n 27 )wn i NG v, o 0.

The obtained solution reduces to the specific simple form for »,=0,

&’ wo (£)
a——x, =0, w=w, ({&}+w, (@ 1),

u=

.k _ oo\ 1w, gl
W”+}a_2ﬂ3(“’?.+ 12¢>  36* )" ohd Y0 e o 0
(55) . B . N:--:. . N . . )
w, (t, )= 2 we (H)cosnb, q°(t, &= 2 gr (£) cos nd,
n=0 n=0

A (1 o ) PR I
Wy paz ﬁ3 +n 1202 wu phaz own [)]1

5.2. Axisymmetrical mode

In this case the total displacements in the perturbed motion are described by
the functions .

awq {£) \ :
(5.0) y= — Xtu,(x, 1), v=0, w=w,({@)+w, (%, 0).

Inserting w,=0 and 4 (...)/é0 =0 into-the equations of Sect. 4.2, we obtain the follow-
ing equations of the viscoplastic flow buckling:

k ( a8 i, aw,,) -1 N aw, o,
Mo \ P gy P dx pha ' ax O’
57 - kRE 0%, . k . k a1,
( '-) W i2p By ax*.  pa® P ¥y pa ﬁzﬁ
1 P w )
0 L3 —
—— + 481 = .
ﬂh (Nx 3x2 . Q.z 0
Assuming the perturbed displacements and loading in the form
M M
u, (t, x)= 2 Uy (1) simoy, x,  w, (f, x)= Z W, (£) cos o, x,
m=1 : m=0

(5.8)

il mm
#ODZ D o, an=p,
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we get from Egs. (5.7) the following amplitude equations:

. k 2 . % . Ng
Hy + ; G ﬂi Uy ™ —[; kﬁl Wi ﬁT Wyl = 07
{5.9)

. +k(]12 ‘ot 1 )W ;2“ NOw koc,,, I o
Wy P 12 o ﬁl ) ;33 n ph [)’zum P g, =Y.

The problem may be furthermore simplified by assuming u,=0. In this case
we have

awy (£) L o -
u= Zﬁ-x, p=0, wew, (O)+w, (X 1),

{5.10) .

- k> &t w, N k ) 1 (N° aw, N p)_ 0

_w" 12p Prpxs pa2 Ba¥y ph x sz =]

w, (¢, x) 2 Won (Heos o, x, g (t x}= 2 gl (1) cos oy X,

(5. 1 I) - m=0 . . L. m=

"+k(h2 . +1 ) oaf;,Nﬂ I 0

i p 12 .O'r"m ﬁl az ﬁS Wm ]Jh wm ph qm—' .

5.3. General mode for u,=v,=0

On putting u,=v,=0, the general solution given in Section (4.2) reduces to the
following form:
The total displacements:

oo (1)
{5.11") A 0=0, w=wo()tw,(x,0,0).

The equation gove_rning the problem of viscloplastic flow buckling:

., kW ot o, 1 8w,
W+ 12 a a ﬁl a 4 +2(ﬂ2+2184) 8x 2882 ﬁ?: 2 394 +

n Wo ph —éxz "a—z 26* g5 ]=0.

The dlsplacements and loadmg perturbauons

{5.12)

N .

W, (f, 9 X) 2 Z Am (t) cos nél cos Oy X'y
e m=0 .

(5.13)

I

gy, 0, x) Z 2 G () COS 1O COS 01, X oc,,,=‘-—’

n=0 =
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The amplitude equation:
kh* [

wnm+__ a? O(.;

nt 12
12pa2 ﬁi+2nz on (ﬁZ +2ﬁ4)+( ) ﬁS] nm

(5.14)

+__1_( 2N0+n_2NO) I
Ph OLm x £I2 8 wmu ph [

6. NUMERICAL RESULTS AND DISCUSSION

The equations of amplitudes have been solved numerically for a shell made of
mild steel, for the data: 0,=206.9 MPa, p=7.65x10-5 Ns?/em* and for many
values of the a, A, [, Vo, O, T, 9, s Do

Some of the numerical results are presented diagrammatically. Figures 3, 4, 5
and 6 show the considerable influence of viscosity of the material, of the ratio of
hla and Ja, on the magnitude of unperturbed radial displacement wo. In the case
of loading by rectangular pressure impulses (Q-pressure, T-duration), for the same
values I=QT, larger displacements w, were observed when the time of duration
was shorter. _

In Figs. 7 and 8 the amplitudes of perturbed displacements w,,, Ty, ¥y a6
shown as the functions of n, m, y, 7. The solution of Egs. (4.21) is given in figures

W

nrm

lem]

0,16

0.05 S
—— Eqs (621}
--—-Eq. (54}

Fic. 7. Final amplitudes of perturbed displicements wy, Crdy Vam tr)y tom (1) VS, the numbers
of half-waves in longitudinal and circumferential direction.

Rozprawy InZynlerskie — 8
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e
Yo r
Ltm] a=10c¢m m=0
L=25¢m n-13
h=0.3¢cm - =
Y, =40Mg y=8005"
Gl Qﬂm-O.I
By = G
— Egs, (4,21)
0.08 —-Eq. (534)
i = 1005
00 —
o 0 P20 30 40 50 60 70080 90 t |us)
Yom
[om]
0.02 fmg
n=2.. _ai0s
001 [ . §-5%0s
0.0 T R e 4005
¢ 0 1020 30 40 50 60 0 BO 9o ]
uﬁm : )
gm]
0.02 n-0
ool : _ ¥=8005"
0.0

O 10 20 30 40 50 60 70 B0 90 t[us]

Fic. 8. Time variation of the amplitudes Wum, Vams Hun-

by a solid line, the solution of Eq. (5.14) accounting for the radial displacement
only, by a broken line. The amplitudes w,, and z,, afe seen to reach their largest
values for m=0. The amplitudes w,,, are over ten times greater than o, and u,,;
it is the growth of w,, that mainly causes the instability of the shell. In this type
of buckling the loss of stability is not quite instantaneous, the process needs the
increment of loading and some time to develop. Since the values of w,,, o, are
the largest and u,=0 for =0, Eqs. (4.20), the generators of the cylindrical shell
remain straight. This conclusion is verified by the experimental observations [3, 5, 6).

The values of w,, obtained from Eq. (5.14), where o, =u,=0, are smaller than
those obtained from the set of equations (4.21), Figs. 8-12. For example, in the
case of m=0 and for the data given in Fig. 12 and V,=30 m/s the decrease of
W (t2) 15 equal to 12 and 10% for y=800s~1 and y==2000 s~1, respectively. For
loading by the rectangular impulse 0=98.07 MPa, T=10us and for the data:
a=10 cm,/=35 cm, i =0, 3,1, =b,, =0.1the decrease of w,, (¢,) is for y=800 s~ —
—147%, (n=15) and for 2000 s™1—10%, (n==16). This is why the threshold impulse
determined from Eq. (5.14) is larger than that obtained from Egs. (4.21), Fig. 12.

The influence of initial imperfections on the perturbed displacements was also
investigated. The numerical results show the linear influence of the coefficient of
initial perturbed displacement a,,, Fig. 10, and the weak nonlinear influence of
the coeflicient of perturbed loading. b,,, on the magnitude of w,, (7).
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FiG, 9. Amplitudes of perturbed displacement wy, (7,) vs. the number of half-waves # in circume
ferential direction for m=0 and two values of ».
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Fic. 11. Amplitudes of perturbed displacements w,., (¢5) and 0 (t7) for n=0 vs. the number
of half-waves m in longitudinal direction,
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o
a=0cm t=t, m=0
0.3 t=30cm — —_
h=0.3cm N
Am =0 nd7 4 2
bnm_=0.1
02 —eqstuzn) m=0
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. Fie. 12. Maximum amplitudes of perturbed displacement wu, (£,) vs. applied impulse Fo.
Asymmetrical (m=0) and axisymmetrical (#=0) buckling mode.

Figure 12 shows the variation of w,, (¢;) as a function of impulse applied for
the symmetrical (m=0) and axisymmetrical buckling mode (n=0). 1t can be seen
that for a given load the shell buckles exhibiting an asymmetrical wrinkled shape.
The numbers at the dots distributed along the curves denote the critical modes.
The function w,, (¢,) reach large values in a certain narrow interval of the impulse
variation; Hence it is natural to detérmine the critical value of the impulse graphically
as the abeissa of such a point on the curve at which a small increment of the pulse
beings to produce considerable increments of the deflection amplitude.
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STRESZCZENIE

WPLYW PRZEMIESZCZEN STYCZNYCH NA I)YNAM[CZ})IE’WYBOCZENIE
LEPKOPLASTYCZNYCH POWELOK CYLINDRYCZNYCH

Rozwinigte zostalo zagadnienie dynamicznego wyboczenia powlok cylindrycznych poddanych
dzialaniu promieniowego rownomiernie rozloZonego impulsu ciSnienia, Zbadano wplyw prze-
mieszezet stycznych na wielkod¢ przemieszezenia radialnego, postaé wyboczenia i impuls krytyczay,
Rozpatrzona zostata niesymetryczna i osiowosymetiyczna postaé wyboczenia. Wykazano wyste-
powanie niesymetrycznej postaci wyboczenia. Jest to zgodne z podanyrm w literaturze obserwacjami
dodwiadczalnymi. )

PezwwMme

BINIAHUE KACATEJIBHBIX IIEPEMEMERVH HA {MHAMHYECKOE
BEINTYYHBAHUE BASKOIUIACTHUECKUX HUIMHIPUYECKHX OBOJIOUEK

B pabore 0peicTaBICHE! HPOO/IEMBl AHRAMHYECKOTO BEITYTHBAH Y URIHAIPHYECKEX 000IOIEK,
HAXOMAMAXCS O Aeli"TBHECM PA/MANBHOrO MMnYELCa AapicHnd, MCCae0BaH0 BHUAHAS KACATEHb-
HEIX HepeMeieAnil Ha BeIIYMIY PAAHATBHOTO IEPEMELLECHUA, BAZ BRINYUHBAHEI, 8 TAKKE BEIHHHEY
L KPUTHYECKOTO HMIyHbCa.,

: Hecsrenonansl peCHMMETPHYERIM H OCECHMMETPHYIELTL BUAR BLILYYHBANATN, Hoxasaso cymie-
; TBOBaHHe HECAMMETPRIAOTO Buya Aedopmaiii, ClegapHEIC BRIBOEL COTJRACHEL C pe3ysbTaTaMu
: alccneplmeHTOB OTMEYCHHBIMH B THIEPATYDE,
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