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: RHEOLOGY OF' PRESTRESSED 'CIRCULARLY SYMMETRIC DISCS
J. BIALKIEWICZ (KRAKGW)
The paper presents the solution of the problem of creep of an annular disc presiressed by a sys-
tem of concentric cables. Assuming the distribution’ of cables to be uniform, the magnitudes of

individual prestressing forces are determined. The problem of interaction of the cables is solved
by the method of iterations. o _ _ _

1. INTRODUCTION

- Theoretical analysis of prestressed concrete discs involves the necessity of taking
into account the rheological effects. In the case of discs working in normal tempera-
tures, these effects are connected Wwith thé appearance of creep and shrinkage
of concrete [1]. Especially strains in concrete caused by creep both in a prestressing
stage and in exploitation time, can make a considerable loss of prestress [2]. In the
case of discs, a multi-parameter course of phenomenon accounts for the fact that
even total elimination of streiching stresses in an initial stage of prestressing does
not exclude the possibility of zones appearing where the siretching stresses will
exceed admissible magnitudes during the later phase of work of construction,

A solution of a problem of creep for a ring disc with prestressing cables lying
along concentric circles will be shown below. Magnitudes characterizing disc geom-
etry, function of extérnal load, a number and way of arrangement of cables,
physical properties of concrete and prestressing steel and initial stresses in the cables
are free parameters of the problem.,

The problem of an optimal choice of prestressing [3] for fixed disc geometry
and function of load remains unsolved. Assuming a uniform arrangement of the
cables, prestressing forces in numerical examples have been accepted according to
the criterion of restricted prestress; therefore, siretching stresses in concrete should
not be greater than admissible magnitudes during exploitation of the disc [4]. A prob-
lem of interaction of the cables has been solved by an iterative method.

2. FORMULATION OF THE PROBLEM

The problem of creep of a disc will be solved on the basis of a physical equation
of the Boltzman, infinitesimal theory [5, 6] ’
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where T (¢) is Cauchy’s stress tensor, E (r)-is the sirain tensor, E’ () is the strain
deviator and Eq (), G (#), Ro (6 ¢, R, (1, t') are scalar material functions of time £

and ¢'.

In the initially-boundary problem formulated further the tensors T (¢) and E (¢)
will be written in a polar coordinate system {r, g}, With respect to assumed axial
symmetry the radial r and circumferential § directions are simultaneously the main

directions and all the inquired magnitudes will be functions of the radius » and
time ¢. Introducing the dimensionless magnitodes.
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the governing set of equations in the Buler description contains:
the equilibrium equation

1
5o, p+ ;" (S.o__ Sn):—:{) :
and the constitutive law (2.1) which will be written in the reversed form
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where for concise notation the following integral opefatots :
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have been defined. The dimensionless material functions G (%),_Eo (1) and kernels
of nondilatational K, (r,7') and dilatational K, (1, 7') strains are given by, P
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where F (r)“=—s— E (7) — dimensionless Young’s modulus, () and v(7, 1) —
0

Poisson’s ratios, and K (z, 7)==t K (7, v} is the dimensionless general kernel of the
constitutive equation (2.1). The analytical form of this kernel will be referred to
commonly applied theories of concrete creep in a section treating of displacement
function. The function o, o, and &, & denote the components: radial and cir-
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camferential of stress ' (¢} and strain F (¢) tensors. The constants 5p and R, have
been introduced for dimensional purposes.

The solution of the initially-boundary problem reduces to thc solutlon of a system
of three differentially-integral equations (2.3)~(2.5) with respect to the components
of stress s,, s, and to the dimensionless radial dlsplacement i (p, 7} by. which the
components of the strain fensor are expressed

(2.10) . e,,=ﬁ,;,(ps r), ‘ _ea=;ﬁ(p, 7,
where | . |
(2.11) (p, )-—ﬂp T)

1

3. STATE OF STRESS © -

In the considered problem of statical equilibrium the components of the strain
tensor ¢, and e, satisfy the compatibility condition

. N 1 :
3.1 ' ' 89,,,‘1"; (55__39)=0'

which, after substitution of Egs. (2.3)-(2.5), takes the form

(3'2) L, (ﬂ Sp, 00 + 3311, p) +'~3— Lg (p‘s'p. pe + 3'5‘.0, p)=0 .

According to the theorems for linear iﬁtegral operators, Eq. (3.2) can be written
in the following form: '

(3.3) S, et 35, ,=0.

Despite the lack of assumption that the material is quasi-elastic, it follows from Eg.
(3.3) that an elastic-viscous-elastic analogy holds in the ‘plane axially-symmetrical
problem [7]. Up to the present moment one has not had a displacement function,
and only a formal presentation of the boundary problem for the radial (3.3) and
circumferential (2.3) stresses is possible.
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.. An analysis of the process of creep will be connected with a concrete ring disc
subjected to the action of multiple circumferential presiressing. A diagrammatic
action of prestressing cables is shown in Fig. 1. A uniform distribution of a load
Po (1) along an edge of 2 hole (radius R,) will be treated as a pay load. A function
P denotes a pressure deriving from the i-th prestressing cable (i=1, 2, ..., 1) whose
route coincides with a circle of radius R, In the particular case for RV=R, it will
be considered as prestressing the external edge of the disc. _

The pressure p® (¢) is a compound function of time which depends on the dis-
placement #* (¢) of disc particles in a place of localization of the prestressing cable

(3.4 PO (O)=p? [ (1,
where ..
(3.5 w0 (1)=1u (RD, 1).

The assumption that the cables work at the linear elastic region leads to the
dependence '

(3.6) ' p® )=aP+aP u® ().

The coefficients &, ¢ will be calculated according to localization, cross-section
and Young’s modulus of the cable and to the initial prestress.
Equation (3.6) in dimensionless variables can be written as

3.7 AV (=aP+aP a® (2).

Dimensionless magnitudes are here expressed by
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A method of the solution will be based on the principle of superposition; there-
fore, it is sufficient to present the solution for the disc loaded only with one cable.
A static scheme of division of the disc along the i-th cable route is shown in Fig. 2.
Motions of external (a) and internal (b) edges of the disc. (r=R"):are described
by the same displacenient function %) (¢). This function can be written as a sum of

D a function ¥@. (¢) describing creep of the disc under the influence of one
cable whose route coincides with a circle of radius r=R® and

2y a dJsplacement functlon u(‘) (t) cansed by common acmon of  other cables,

uf%’(l‘)
I ) e 1
: | : ' . IR{O . __Jl —.—
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A diagrammatic sum of the displacement vector #” (¢) is presented in Fig. 3
1)@= @O+,
where dimensionless functions of displacement are taken as
G.11) B I i
. Ry - Ry

The load functions of the external edge (a) and hoIe (b} of the disc can be written
then in the form

(3.12) 24 6] —-aﬁi +af) [“g{): @+ad ()],
(3.13) 2@ -—am +a® 1ad, @ (D+ ad (0],

Compa.rmg Eqs (3 12), (3 13) and (3.7) and takmg mto account
3 | 5 @=5 @+ @),
the following two algebraic relations for the coefficients 4 can be written:
(3.14) afl+af)=aP, afj+afl=a.
Tvs.ro further equations for the cbeﬁiciehts a® follow from a coﬁtinuity condition
for the displacement function at the points p=p*}, If the values of these coefficients

are treated as known, the static boundary. conditions can be presented separately for
the disc (a)

(3.15) 5P (1,7)=0,, s (pW, 7)=—pD,
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and the disc (b) S
(3.16) 00, 9= 0, 6P (e D=0,

where p; is the dimensionless diameter of the disc
31 S -:'-Pz R1 :

The solution of the dliferentlal equation (3.3) w1t.h the boundary conditions’
(3.15) and (3.16) gives the radial and circumferentlal stresses at the region of
the disc (a)

s\ —a)—a ) )+ 9] [-1? 1 ]
Se] 1 \?
o L O]

pz
and the diso (b) | |
sp}_ —af}—a{) lif) @+if ()] [1’:;:( ﬂ;" )2]+a(:)

s PO \2 it
I_
P2
SR | - a} iy A+ @)

The stress function from the pay load is" shown separately (s,, (1, 1')— — po (o)

5, (P2, T)=0):

(3.18)

(3.19)

S| . Po (@) 1 E
(3.20) Sﬂ}*"—::‘(';——_l-),_ I:l:F";T] —fo (1),
where )

' i
(.21) Po (r)—_pu (r)

Equations (3.18) and (3. 19) mdlcate how the stresses depend on the dlsplacement
functions 742 (z) and @ (7) at the particles of the disc where the cables are placed.
These functions will be determined by means of the constitutive equation (2.1)
written for the fixed radial variable p=:p{". :

4, STATE OF STRAIN

© A narrow range of experimental studies on Poisson’s ratios, Eqs. (2.8) and (2.9),
as well as their negligible dependénce on:z and ¢’ for concrete, induce to accept
the following assumption:

4.1) - (D)=v (z, T')e= y==const.
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Not decreasing in this way a practical application of the solutions, the constitutive
equation (2.1) can be written in dimensionless shorter _form: _

“.2) - E@ey(e 0=ty (p,0)+ j By ) R vy de

Where acco1d1ng to the deﬁnltlon, 1t has been mtroduced

(4.3) R £y (p, 7)= (A+m) S+ -20) 5 63y

The magnitudes 5;, and &, dénote the d1me11s1on1ess StI‘LSS dewator and dlmen-
s;onless mean stress ‘ :

Equation (4.2) along with Cauchy’s relations (2.10) and the stress functiors (3.18)—
—(3.20) given earlier make a starting point to determine, the displacements i (g, 7).

The function K (r, t') is usually found to be nonlinear [8 9]. In this paper it
is taken as a degenerated function:

@5 | K(r,r)-fl @ &1 @)+ (0 82 (),

where R S

fi(@W=E(@), fz (T)=E De™,

(4.6) _ 1 dE@) dpy f( ) [dg?i('c’)
3 2 T)=

¥

8 ()=Fz (= &' dr’

+ i (r’)] .
The dimensionless ageing function @ (v') and: Young’s' modulus £ (1_,?) which appear

in the formulas (4.6) will be taken in calculations as follows:

4.7 99 (=)= Co PO E(y=E, (1 —pe).

The physmal propertles of concrete are 1dent1ﬁed by means of the matenal constants.
CO,A E;, w, fand y. . .

The mtegral physwa[ relatlon (4 2, in the case of the kernel determmed by the
formiila (4.5) after dlﬁ'erentlatmg twice, can be replaced by a dxﬁ'erentlal equatlon
whlch after substitutlon of Eq. (4 6) has the form '

@48 32 fu (Pa T)"'{ [1 +E (1) fP (] —m d: E(T)} &, 1 (P, "7)-—-
" C =E@) [3% &, (p, 1)+ y0; &5 (p, D]

where the following denotations have been introduced for the first and second time
derivatives: :

- 1_] azfi (ps )
R



532 L J. BIAEKIEWICZ

The initial conditions can be written in ‘the form. of two relatlons

(4.10) EQ ey (p, =053 (o 1), S

(411 E1) ¢ ey (p, D=0, By (0, D+es; (0, D) y3.(1) E2 (D).

The first one will be obtained putting fb;mally in Eq. (4.2) =1, where =1, time
determining the instant of the loading. The strains obtained here correspond to
the instant elastic reaction of the material. ‘The other relation (4.11) follows from:
Eq. (4.2) after tlme differentiating once and substitution 7=1.

" To detérmine the dlsplacement functions a®,. (1) at the particles belongmg
simultaneously to the external and internal edges of the discs (a) and (b) (Fig. 2),

the initial problem (4.8), (4.10) and (4 11) for thc circumferential direction can: be,
written as

(4-12) 32 S") (P, f) #32 S“’ (P f)+{? [t +E (’r) @ (r)I—

*ﬁ%a@‘@)} raz s’fP (0, )= 159 (, =

=£ (1) [—-—- % @ (p, 1:)+ﬂ~ a. a® (p, r)]
: I
(4-13)" Tk (1,) — ?7(") (P, 1)_30)(19 1) ﬂsm (p, 1),
@19 £ (1) i (P 1)—3 s (P 1) — 8, 5’ (P, D+

A +i @ (l)E2 (1) a®(p, 1.

The stress functions 52 and s{” occurring in Egs. (4.12)—(4.14) have been written
separately for region (a) Hq. (3.18) and (b) Eq. (3.19) of the disc. These stresses,

similarly like the equatlons of the above given system for the fixed radlal vana.blé
F=R®, contam the same unknown function, namely, the dlsplacement functlon;
4{. (7). For this function two mdependent initial problems are formulated by sub-
stituting to the systern (4.12)-(4.14) (for p-——p(‘)) the stresses expressed separately
by the formulas (3.18) and (3 19). As a result of the substitution of Eq. (3.18), the-:
initial problcm from ‘the region of the disc (a) can be written in the form

w19 o=t [ s a0 o)

) 4D —

o)
— ) AP [92 7948, u“)f (T)]}s'
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. L I 1) 49 +a® 70 (1)] A®
@16) 2,2 ()= g [ (‘;”“ W47 4 |
o N R —(i) A(i) p(t)[ _a(r) A(’)} o .
o Y L
a4 0aP ()],
A(t) '
@1 ufi%ﬂ)* E(1) - [a(” ay u“)(l)]
' s d -A“_).z.
i Iyy AW,
where - _
H(l )2
o PO
(4.18) B _4_”?“#-—-_——‘—1‘—‘5—,
1= p®
l. i 7 P . . o e;‘“ .
419 - flo=y [1"+Eb (Co )(1 ﬁe““')]_ "1Tﬁ§e’-??,_ .
(4.20) . . g(1:)—yE2 (Co )(l—ﬁe““).

In turn the substitution of Eq. (3.19) leads to the initial problem from the region
of the disc (b)

R EE@
@21 & u}‘z()_‘.— E() {at RC{ PO (}B(‘)f(-r)]

a—gl% B(i) —

P
-0 2 945,49 @),

g (1) [a(i) (i) ﬁg) (1)] B®

@2) ol ()=

EqQ (1)
G-anso | 0| 5 -agso
+d B 9, i (1)],
B
{4.23) ii(') (I)“ O [a(‘)—l-a(' a® 1,
‘ A ()] B(i) .
p(l) 12 .
where B

2
p(f) )2
(=P2 SRR
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The same displacement function #4, (7), for the particles belonging simultaneously-

to the external edge of the disc (a) and hole edge of the disc (b) (consequence of the
fictitious division, Fig. 2), should result from both initial problems. It involves
the necessity of the identical equality of the right hand sides of Eqgs. (4.15) and
(4.21) and the initial conditions (4.16) and (4.22), and Eqs. (4.17) and (4.23). Then
such relations are valid:

(4.25) ) AD=g® BO, ) 40=a{) B®

constituting with Eqs". '(3..14) an algébraic system of four equations for the unknown
coefficients 4l (k, I=1, 2). The solution of this system takes the form '

) o A®

= ___._{1 IO O IS ()

A(”+B(') L iz 44 gay 722
(4.26) , S .
B(i) S B(I)

= . g B = aw

217 qmypm Y1 T22 A(‘>+B(‘> 2

Integration of the differential equation of second order (4.21) (or Eq. (4. 15)) will -
be replaced by integration of the adjoint system of t]1e dlffercntlal equatlons of
first order with separated initial conditions:-

i 1 vE@) | o
@27 892 @)= 0 {v{ FOmR B“’f(r)]
. _‘_i.(liz)'B(i)H_p(;l}; _ G S

—a B(') [02 u}{’-«l—c’? 1&” f (1')]}

428 5 ()= L (M 150

' " E-(l) _dd(i) B (1)[ ( ) -"a(') B(i)]

o® | 12 P PO
+a} BY 2.4 (1)

and
@29 : 3, i =52,

: B®
(4.30) g, (1)- 0 [ +4) af) (1)]

_a‘-(li% B(t)

p(l)

The solution of the initial problem (4.27)-(4.30) for the function @} (z) will be
possible after determining the function #3) () which describes the action of other
cables of the disc prestressed many times, For this purpose we intend to determine.
the function #* (p, 7) caused by the action of one arbitrarily located prestressed
cable in the whole region of the disc. The system (4.12)-(4.14) is the starting point
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in this case. The solution for the displacement function @ (p, 7) is again sought
separately in the regions (a) and (b) of the disc. As a result of independent sub-
stitution of formulas (3.18) and (3.19) to the system (4.12)-(4.14), the initial prob-
lems in both regions will be obtamed Usmg the relations (4.27)-(4.30) these prob-
lems can be written as:

in region () (1<p<p)

4.3 - o2 u(”(p 1:)‘-——3)3 u(‘)(p 7)— F(‘)(p 1:), _

(4.32) 2, a® (p, )= —

Eil) 1_( 1 )z {a(z‘% [0: uf:?;(£)+a uf'>(1)]+

. p(l)
+- fjg) [a) +4) (a2, (I)+1u(Ij (1))]}
L—p+ () —5 R

(433) @9 (p, )= —F T wﬁmw@gm+wmm,

L - (p“’ )
i and in reglon (b) (p“)<p<p2) e
4.34) % 4 (p, ‘c)-'~—y3 u(“ (v, 'c) G(‘)(p 'r)

(i) : () \2
y e )+afm(”2) ,
(4.35). 9,4 (p, 1)=_E(l)- ,_ > TTETTT T W
. - ?

o @ 42,80 )+ £ 1)+ (R 0+ W),

(i) : (i}
a+m(1 )+a—m(” )

P2

[+

@36) @ ()=~ @ (pm )2

: | +a8 (L W+ u(o ).
The following functions have been introduced for coricise notation of the differential
equations (4.31) and (4.34): .
s Y Ifu+ﬂ+m(;?)
@3 PO 9=d) [HER{IED 0| b
: 11— g0 40—

. R(i) |} 22 o
' —f (@82 4~ (x) 8, 5P},
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A+ (” ;) ) - ( ke )

55

(4.38) - G (p, )=4a} @ T PORE () {0, ) [y~
# T -]
Pz # :

F @2 B —£(2) 0, 7).

A numerical solution of the equations of second order (4.31) and (4.34) with the
possibility of using the Runge-Kutta method of integration can be obtained by
integrating the substitutional system of differential equations of first order. For
this purpose Eq. (4.31) can be replaced by the system :

{4.39) © 0] (p, ©)y=—y3W (p, ) —F " (p, 1),
(4 40). e 819 (p,1)y=0" (p, 7).
Szmllarly, i3 system of equations can be introduced,

(@441) a9 ()= (-G G, 9,
@) 8,0 (g, =09 (p,7),

instead of Eq. (4.34). The initial conditions (4.32), (4.33) and (4.35), (4.36) remain
unchanged and, according to the definition of 3 (p; ) (4.40), (4.42), it is assumed
that S ' - S

2, @® (p, 1)=5 (p, 1).

TFhe ‘displacement function from the pay load #” (p, 7) follows from the solution
of the initial problem (4.12)-(4.14) if the stresses s, and s, are expressed by the
relations (3.20). The closed form for 'the function #* (p, ) is obtained under the
assumption p,y=const

@4 @G =p | T [(1+M)p—2+1—ﬂ]—ﬁo d-o) fp@u-
o ",,—) -

o N ]

E@

The set of equations shown above, describing the problem of disc creep under the
influence of the action of one arbitrarily chosen i-th cable, contains the unknown
function 4 (7). To calculate the functions 4 (r) we invoke an iterative procedure.
As the starting point of the iterative process the solittion' is taken in which the
interaction of the cables is:disregarded (u“) (£)=0). Superposition of the displace-
ment' functions obtained separately for each cable glves the d1sp1acement functlon
of the n-times- prestressed disc - - b S

@ay (9= Z 2 G+ (5.
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" The second approximation for the displacement function will result from the
solution of the governing set of equations (4.27)~ (4 30), (4.31)~(4.33) and (4 34) {4.36)
if in place of @’ (7) it is substituted.:

(4.45) : g9 (D= (pP, 1)~ u(‘) (1:)

The successive iterative steps will consist in substltutlng the function 7 (7) calcu-
lated according to the displacement function i (p, v) which is taken from the former
iteration to the governing set. _

The numerical examples prove that the method is fast convergent. Differences be-
tween the third and fourth approximation are smaller than an error of numerical in-
tegration. The significant precision of calculations is due to the Runge-Kuita method
of higher order applied to the systems of the ordinary differential equations [10].

Neglecting an effect of ageing in the description of material properties, the ana-
Iytical solution for the displacement function will be Gbtained. Such an approach is
applied to the analysis of older concrete creep. For this case the kernel form (4.5) of
the integral equations (4.2) is obtainable by substituting to the formulas (4.6) bound-
ary magnitudes of the ageing function ¢ (z) and Young’s modulus £ (7) (4.7} at t~»co

(446) . : K (z, ?')=K(T—T')=f: (D gy =),
where
.47 Fr@=E,e~", gh(z)=C, ye*.

The integral constitutive equation (4.2) red_ilced after substitution of Eq. (4.46)
and single differentiating to the differential equation of the first order:

(448) d.f;(p, D+ (1 +Co B (1)) fi; (p, D=E (1) 2, &;; (p, D+E (1) ye;; (p, 7).
The displacement function #%) (r) needs to be determined according to the
algorithm of solution given earlier. The solution of Eq. (4.48) (written in the cir-
cumferential direction for pe=p®) takes the form
‘ ()

4.49)  af (=i (1) e-L(‘>(f-1>+y 14Co E (1)) &2 (L M-y
RC

2t L(’)
0 zom D e o
'!'M(i) a_7'2 u.l{i) (1) ﬁl({‘) (l) — e‘—L {r—1) +M(i) dg% .e— T {']" (1 +
+Co E(1))—-L} f 20 (o) £ i
1
where e
<) ® E
. as; (1+COE(1))A - pa
(e _ L
(4.50) L=y o)
ag) A0 ——
, P
AD
.51 M®= — TR
A0~

T
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Appearing in the relations (4.49)-(4.51), the magnitudes #{, (1) and A® should
be accepted in accordance with the dependences (4.17) and (4.18). The coeflicients
of prestressing distribution 4, retain the identical form as well, Egs. (4.26). -
~ The solution of the initial problem {4.48) and (4.10) with respect to the displace-
ment function #®(p,7) may be shown after transformations in the uniform,
analytical form in the total disc' domain: = A
- K9 o

@4.52)  a®(p, D=i® (p, 1) 7~ 1).;._,_}_1%3_ (B_L(i) CE s LR
g . Ca

e 5 (p) .(14—6""(“1))+K(3‘) (p) ﬂg’ (1) -[__#___i)( ) ....e—v(r—l)]_-j-
L _ . ‘ . dy’ (1) ‘
LR (- yKQ (N e [ 19 @ & de KD e [T

1
X [fa,@ () eL™M dr] .d‘E ,
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where the functions K@ (p) (j=1,2,...., 5) have been defined separately for the
regions: :

(a)
1
(4.53) K9 (p)=BY 50 i
o 1"*';@)_
. (i)-\2 . ZPU)- 2
g ealZ el
4sh KPO=-BPFw @ T W e
" P2

The c'oeﬂicieﬁts'BS,“ (for j=12,..75) accepted in the relations (4.53) and (4.54)
are given by the formulas

{' . _ M® o
BY=—_a) [a};}, - (1) 43 MO~ &y (1+Co E (1))] [L—

; . -ﬁ'y(I-[-CoE(l))]’

B®e=—a@) [M® a§) L9 —(1+Co E () @ +2MD )], :
BY=al) (M® d)+1),
BP=M® (@) [LD -y (1+ Co EWD)],

; . . M o
BOma) 114G B )| 140 a9 (14Co B )|

{4.55)
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The initial conditions for the displacement function #" (p, 1) are presented by the
relations given earlier: (4.33) in the region (a) and (4.36) in the region (b) of the disc.

The iterative method shown above, which makes it possible to take into account
the influence of interaction of prestressing cables, does not undergo changes. How-
ever, the present solution simplifies to a numerical test of the functions with an appli-
cation of numerical methods of calculation for the integrals appearmg in the for-
mulas (4.49) and (4.52).

Below, in the numerical analysis of creep process of the disc, the constants
describing the properties of concrete will be taken as follows:

Co=3.6-10"3, E;=6.25-102, A=6.89-10-*,

(4.56)
a=140, p=0.6, y=0.728..

These data correspond to a description of creep course for concretes out of Portland
cement. The constants s, and #, introdueed for dimensional purposes are taken
in calculations as the ultimate strength of the concrete s,=40 MPa and the load
instant #,=28 days.

As an example the solution for the disc prestressed four times with p,=3 will
be shown. The cables lie along with circles having radii: ptV=1.5, p'?=2, p*=2.5,
p¥=3. For the useful load p,=0.25 the accepted prestressing is characterized
by the following magnitudes: ' k

#AV=8.75-10"2, 4P=625-10"2, §P=5-10"2, aM=3.75-10"2,
V=40, - d@=30, =24,  a®=20,

The solution for the radial and circnmferential stress functions and displacement
functions is shown in Figs. 4, 5 and S. Solid lines illustrate the solution in which
interaction of cables is taken into account; on the conirary to dashed lines where
this effect is disregarded (7{’==0). At the same time light lines indicate the functions
at the instant load (z=1) while heavy lines show their shape at the instant 1=5
when the creep process finishes. Additionally, the circumferential stress function
is shown in Fig. 5 with a centre line (for 7==5). This function has been obtained
from the solution, neglecting the ageing effect of concrete (analytical solution).

a5 4 15 2 25 3.

P
1 7 T T EQ—-I =
-05 | iy
i
—10 |- —_——
s, |
-20 |- s
s
AE_S | .
SP .
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The assymptotic behaviour of the circumferential stress functions (Fig. 7) and
radial displacement functions (all of cables), Fig. 8, shows stoppage of the creep
process in t=>5 time. According to the criterion of restricted prestress stretching
stresses in concrete should not be greater than admissible magnitudes afier stoppage
of the creep process (Fig. 7 solid line). Not taking into account cable interaction,
Fig. 7 — dashed line, may be connected with eliminating disadvantageous stress
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redistribution in analysis. Neglecting the ageing effect (£ (r)=const, @ (z)=const)
and keeping the values of the material constants leads to greater loss of prestress
caused by greater displacements of prestressed cables [7].

The applied constitutive relation of linear visco-elasticity is valid for stresses
smaller than 50 per cent of the ultimate strength of the concrete. In the case of
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discs, constraint is related to a substitute stress calculated according to the Mises
“hypothesis

{4.57) F=(s2455—5, 5205,

The substitute stress functions for t=1 (light line) and r=>5 (heavy line) are shown
in Fig. 9.
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5. FINAL REMARKS

. The applicability of the analysis presented above is connected with frequent
cases of the work of presiressed discs as a construction element of high chimneys,
television and cooling towers, nuclear reactors. The practical realization of those '
constructions is connected with the adoption of a suitable prestress program de-
termined by technological conditions. The numerical example shows the solution
of the creep process of the disc with initial conditions formulated-for:simultaneous
application of both load ‘and. prestressing. The method of the solution presented
in this paper enables calculation for arbitrary initial conditions. In this case the
realization of the solutions is only connected with the drafting of the program on
the digital computer. . E

Assuming the work of the disc in norinal temperatures in formulating the initial-
-boundary problem, the stress relaxation in cables has been neglected. This behaviour
can be regarded if the prestress coefficients @i and a® are taken as functions of
time according to the relaxation law for steel. The coeflicients of prestress distri-
bution &% will also be the functions of time having influence on the form of equations
drafting the initial problem for the function of displacement. , .

The solution for nonageing concrete leads to greater loss of prestress. This
indicates that the nonageing model gives a safer design than the ageing model.
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e

STRESZCZENIE

RECLOGIA WSTEPNIE SPREZONYCH TARCZ KOLOWO-SYMETRYCZNYCH

Przedstawiono rozwigzanie zagadnienia pelzania tarczy pierScieniowe] sprezonej ukfadem kabli
koncentrycznych, Zakladajac réwnomierny rozklad kabli wyzmaczono numerycznie wielkodei sit
sprezajacych. Problem wzajemnego oddzialywania kebli rozwigzano sposobem iteracyjnym.

Pearmome

PEQJIOTHA HPEOBAPUTEILHO HAIIPSDKEHHBIX JHMCKOB C KPYY0OBOI
CUMMETFUIER

TIpencTapmene pemicHAe NMOM3YIECTH KONBLEBOTO JIMCKA DOABSPTEHHORO NpPEJBapHTEIbHOMY
HanpDieHAI0 IOCPEACTBOM KOHICHTPHYECKH DACHONOMEHHHX Iydkon. Ilpemmomaras paproMep-
HOE pacrpeacncHue apMaTyps! ORE THCIERHC ONpeHelessl Halparafolsx VOImmEH. 3amaia o
BI3AEMOMEHCTEA IyUkoB ObLIA PELICHA HHTOPATHBELIM METONOM.
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