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COMPLETE SOLUTIONS OF NONHOMOGENEOUS PLASTIC PLATES
RESTING ON NONRIGID BEAMS

D. RYTWINSKA and M. KWIECINSKI (WARSZAWA)

A semi-inverse method is developed to obtain exact solutions to thin, rigid-ideaily plastic plates
resting on beams that are capable of deflecting together with. the edges of the plates. The struciural
mémbers of the plate-beam systems are assumed to obey the Huber-Mises yield condition, The
structure is subjected to a transverse, uniformly distribiited load and is _point supported at the
corners. New complete solutions are arrived at for isotropic plates in the shape of a square, a rec-
tangle, a thombus and a paallelogram. Orthotropic plates are also dealt with in the orthogonal
situations. The obtained results make it possible to preseribe such a type of nonhomogeneity that
the whole structure becomes plastic at the same intensity of load.

1. INTRODUCTION

In the case of such structures as thin plates with complex shapes and beam-plate
structures, i.e. plates resting on a system of edge beams, the usual procedure is to
assess the load-carrying capacity via either the lower bound approach or, more
frequently, the upper bound approach. It is, at the same time, usually assumed
that the beams remain rigid until the plastic motion begins, i.e. the edges of plates
are not capa.ble of deflecting during the loading process {7, 8, 9, 16, 21].

The purpose of this paper is to develop a semi-inverse method leading to exact
solutions for rigid-perfectly plastic thin plates resting on nonrigid beams, Isotropic
and orthotropic nonhomogeneous plates dealt with are made of the Huber-Mises
material.. Transverse, -uniformly distributed load is applied. The structures are
point-supported. at the corpers. Nonhomogeneity can result either from variable
thickness of the plate or from its internal structure such as fibrous reinforcement.
Civil engineering applications will be mainly that of reinforced concrete slab-beam
systems.

All the basic assumptlons concerning limit analysis of ideally plastic plates will
be here accepted. Those are: the thicknesses of both plates and beams. are small
enough to apply the Love—Kirchhoff kinematical hypothesis, the strains remain
small and the deflections prior to collapse are such that the equilibrium equations
can be referred to the underformed configurations, the yield condition is taken
as a plastic potential so the associated flow law is employed and only those stresses
enter the yield criterion that generate the bending and the twisting moments.

To obtain a complete solution, an ultimate load must be found associated with
both the kinematically admissible mechanism of incipient plastic motion and the
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statically admissible distribution of generalized stresses throughout the structure
considered. A suitable system of the first-order partial differential equations has
to be solved. Its type clearly depends on the type of the yield condition assumed.
In the case of a yield condition linear with respect to the bending and the twisting
moments all three types of equations can be present — elliptic, parabolic and hyper-
bolic. For instance, the Tresca yield condition was dealt with in [6, 15, 2]. When
the rectangular, Johansen yield condition is employed, the elliptic equations are
excluded. Such plates have received much attention in the literature [1, 3, 11, 12,
13, 14, 17, 181

However, both the Tresca and the Huber—Mises yield conditions superimpose
rather stringent constraints on the curvature rates and the class of surfaces of de-
flection rates is mainly limited to the developable ones. Such surfaces can satisfy
neither the statical nor the kinematical boundary conditions accompanying the
the sagging edges of plates. Thus the nonlinear, Huber—Mises yield condition,
leading to the ellipticity of equations [8], will be used throughout, enabling exact
solutions to be arrived at for the considered structural systems. A suitable semi-in-
verse method has been worked out for this purpose.

2. ISOTROPIC PLATES

2.1. General relationships

A tensorial description of the theory of thin ideally plastic plates will now be
presented as a convenient and general tool to deal with non-orthogonal situations.
The cylindrical curvilinear coordinate system will be used

nt=n (x", x%),
en ni=n*(x1, x%),
7P=x7

where x7, (j=1, 2, 3) are the Cartesian coordinates of generic points. The family #>
constitutes straight lines paralled to x* and »', 2, represent two families of plane
curves as intersections of two families of cylindrical surfaces with the plane x%=
=const [22].

To consider an isotropic, rigid-perfectly plastic thin plate the postulated- Huber—
Mises yield condition must be expressed in the contravariant components of the
symmetric tensor of moments #*#, afi=1, 2referred to the middle surface x*=#>=0.
It assumes the form '

(2.2) F (m®y=m™ m®® (324, 8as - Gay Eps) —Mo="0,
where g,; stand for the components of the mietric tensor
ox'  ox¥

(2.3) . B8 ™ o onb ?
nr=n*(x%).
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It should be noted that for isotropic and homogeneous plates mo==const and for
isotropic nonhomogeneous plates mo=r1, (#t, 7).
The flow rule associated with (2.2) can be written as

aF

2.4 Kap==4 e

where

oF
e = m® (3gvﬁ gaﬁ—gaﬂ gv.’})"‘man (3gom Eep— Ben gaﬂ) .

Equilibrinm of an element is expressed by the equation
(2.5) m®y=—p*,

in which p* denotes the intensity of applied load acting downward.
" Kinematical relations between the curvature rates and the deflection rates of
the middle surface are as follows:

(26) ’érzﬂ= - W{aﬂ' .

The vertical bar in Eqs. (2.5) and (2.6) implies covariant differentiation,
Shear, forces can be expressed as

2.7 Q*=mf",,
and the Kirchhoff reactions along the edges are
(2.8 Ve=F+m™®,

where a#f# and no summation applies to {.

2.2. Relationships in the rectilinear skew coordinates
Let us assume a frame of reference #%, k=1, 2, 3 such that
7 gl=x1—x2 cig o,
1

sin o’

2.9 7 =x?

7=,

Both co ordinate systems x’ and #* are shown in Fig. 1.
Reme mbering (2.3), the components of the metric tensor g,, become:

(2.10) gu1=1, gua=gy =cosa, gy=1.
The yield condition (2.2) takes the form '
Q11 Fa=(m'")?+(m?*®)% + (34 cos? &) (ml?)? +
+(3cos? a—1} m'' m*?+4cos a« (mll+m??) m'? —my=0

Such a representation in the contravariant components of the moment tensor does.
not supply direct information on the distribution of “engineering” moments in
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the plate. Thus, let us rewrite (2.11) in the physical components M7, These can be
determined from [22]}

k2 .
. g
(2.12) M=y (ﬁ;’{l) 88,
where 82 denotes the Kronecker delta. -
2
X A 4 '?2
o
%%’ s
Fie. 1

- We obtain
2.13) MY=m'sina, M2=M>" =m?sine, M>? =m?’sina
and the final form of (2.11) is “
1
Sinz ;.. E(Ml 1)2 _|_ (MZZ)Z +(3 +COSZ. OC) (MIZ)Z +
+(3cos? a—1) MM M?? +dcos a« M2 (M1 + M*?)]—m2=0.

‘The moment tensor m* in the skew coordinates #* is related to the moment tensor
m* in the Cartesian frame of reference x* by the transformation rule [4]

ot oyt
Ixt axt

All Greek indices run over 1, 2. Detailed calculation supplies:

(2.14) F(M™)=

(2.15) ' m =m

mile=m! —2ctg em'? +cig? am??,

cOS o
(2.16) mit=m?l=m'?

— —m?? =,
sin « sin? «
m?2=m?? 1 sin® «, o _ o

On expressing ™ in terms of the physical components M see Eq. (2.13),
and denoting, for brevity, that m**=m,, m2=m*'=m,, m**=m, we obtain
the following form of Eq. (2.16):
Mii=m, sin oc—2m,, cos a--m1, cos o Ctg o, -
MPi=M'=m,,—m, ctg «,

i

sin o

@.17)

M2 e=m,
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The inverse formulae can be shown to be

my=m'!42m'? cos «+m?2cos? «,
218 My=m'? sin o+ m>? sin « cos «,
my=m*? gin? «,

or, expressed in M* in place of m*, become

=M1

——+2M"? ctg a+ M?? cos a oig «,
sin o 7

(2-19) mxy=M12 +M22 CQS o,
my=M??sin «.

The relationships (2.17) and (2.19) were derived in [10] by cumbersome equilibrivm
considerations.

Similarly, the shear forces Q% in the skew coordinates and Q“ in the Cartesian
coordinates obey the vectorial transformation rule
‘ o
dxk

2.20) ) Q*'=QF
We obtain thé following formulae:

Q'=Q" -Q*ctga,

2.21 1
@21 | e

sin o

Kinematical variables transform in a similar manner. Curvature rates Kup in the
rectilinear skew coordinates depend on those in the Cartesian coordinates as follows:

(2.22) T R o ma_’f.
. o oy’
It follows that: .
Rii=%iy, .
(2.23) Ry =FKy =%, COS a+%,, sin a,

a2 =%y 1 COS? ol 20, SIN ot COS &+, SiN2 .

Denoting, for brevity, that s, =gy, %,3=x,, 3,,=(1/2) #,, (since Rga+Tp 1=Ky,
and 3, is symmetric), Eq. (2.23) can be rewritien to be

]&'11=;éx7
(2.24) 21y 2= 28K, €08 o £y, 8in o,

K22=K, €08% ot} K5, 8in & co8 &%, sin? o,
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The inverse refations are as follows:

Ky=it1y,
. 0k 97 1
2.25) RS TR e

|

" ‘5, .
sine 2% gin?a

1&,,=I€11 Ctgz Oc—félz Ctg o

The associated flow law (2.4) takes, in the rectilinear skew frame of reference,
the form:

#yy=2 [2m"* +(3cos® a—1) m**+4cos a m'?],
(2.26) Faa=A [2m22 4+ (3cos® a—1) m'! +4cos o« m*?],

Ri1am=4 [2c08 o (m'! +m??)+(3 +cos® &) m'?].

Alternatively, (2.26) can be expressed in terms of physical moment components M*":

A
Ry = [2M +(3cos? a—1) M**+dcos a M12],

[2M?? +(3cos? a—1) M*' +4cos @ M*?],

(2'27) Ko™ sin o
K1 = [zcos o (MY 4+ M)+ (3+c0s? o) M*2],
The inverse form of (2.26) is:
m11=m4—a [241 +(1 +cos? &) £, —4c0s & Ky2],
(2.28) mei= Y [ﬁkzz +{1 +cos? &) &y ~4cos a &y,],
12=m [—2co0s oc(r%11+-ré22)7!-(1.+3cosz &) #4,] .

Similarly, inversion of Eq. (2.27) furnishes

M11=—_'§"‘;" [2}':‘.11 +(1 +COSZ OC) 1&22 —4cos o r2:1,2] ]

(2.29) M=

3), Silla [21&224‘(1 'I‘(.'f()s2 “) 1&11'—'4003 o F(:u] N

12

3 0 @ [=2cos o (%11 +#a2)+ (1 +3c08® @) K151,

The equilibrium equation (2.5) in the skew situation becomes
(2.30) Mty g+ 2m' %+ P =P,

where, as before, the vertical bar denotes covariant differentiation.
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. Equation (2.30) in terms of physical moment components éssumes the form
{2.31) MY +2MY2) o+ M2y =—p sin «.

The kinematical relations are

(2.32) , Kag== —Wyp.

To formulate the statical boundary conditions it is necessary to derive formulae
for the actual moments and forces acting on the edges of plates. By introducing
additional orthogonal coordinates u, » (Fig. 2), we can express, for instance, the
actual bending moment at the edge w=const (5! =const) in the form

(2.33) m,=m,, sin® «+m, cos® a—2m,, sin « cos «.
kx?=
I 75
My

m,
y=const,  \J
(n?= const,)

80-o

t=const,
{n’=const.)

FiG, 2.

Comparison of Eq. (2.33) with Eq. (2.16) shows that

(2.3 ' m,=m'* sin? g=M1 gjn «,

The actual twisting moment at the same edge has the magnitude
(2.35) m,w=5 (m,—mn1,) sin 20— my, cos 2o,

or, in terms of m** and M*,

{2.36) nyy=m'! cos a sin a+m'? sin a=M** cos x+M!2,
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At the edge y=const (7°=const) we obtain the following actual moments:
(2.37) m,=m?? sin® x=M** sin «,
(2.38) Py =12 sin «+m?? sin o cos a=M"?+M>? cos a.
The actual Kirchhoff reactions are, cf. [10]:
(2.39) V1=(m11|1+2m12i2j sin o :for n*:cqn’st,
V2 =(m??,+2m'?| ) sine for #*=const.
The concentrated reactions at corners are, cf. [20]
(2.40) R= [mx,,-i-m,,.,]mr

Equivalent forms are

Re=[2m'? sin ac-+-(m* +m?*2) cos & sint &]corners

(2.41) R=[2M2 + (MM + M?%) ¢08 &]coraor-
g
A
gy L \‘

=¥

Fie. 3

In the specific applications to follow the simplified notation will be used, viz:
the skew coordinates #* will be replaced by %, j, the moments m* by ms, my, mg,
Fig. 3, the curvature rates ,, will be denoted by £11=F3, a2 =Ry, 2612=Kg.

2.3. Complete solution of a nonhomageneous parallelogram plate

A parallelogram plate resting on two pairs of edge beams with the lengthq 24,
2b<2a, Fig, 4 will be conveniently described in the above introduced coordinates
as well as statical and kinematical quantities.

The semi-inverse method of solution consists in assuming a moment distribution
in the plate to within an accuracy of six constants. This distribution satisfies the
hinge support conditions in the statical sense only. Then the curvature rate field
is determined from the associated flow law and each of the curvature rates is suitably
integrated to yield a field of deflection rates. Three versions of the relations are thus
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obtained and in each the corresponding coefficients are miade equal. Simultaneous
satisfaction of the kinematical boundary conditions will enable all the functions,
all the integration constants and five, out of six, constants entering the assumed
moment ficld to be found., The remaining constant will be determined from the
plate equilibrium equation ensuring the unique bending and twisting moment dis-
tributions. A proper collapse mode will be found with deflections vanishing only
at the corner supports of the structure.

The moment field is assumed as fc;uows:
m.=C, (aﬁ—xz) ,
{2.42) m,=C, (b*—57),
- m5=D 4D, 5>+ D, 55 +D, ab.
Equations (2.26) supply the curvature rates:
(2.43) :&;__=i 1#2.(=2C +4cos a D)+ [2C, a*+(3c0s? a—1) C, B2+
| +4cos @ Dy ab]+j* [(1—3cos? &) Cy+4cos « D]+ %5 deos o D,},
(2.44) ;e;'-%i_{yz (—2C, +4005 o« D)+ [2C, b? +(3c0s? a1) C, @+ |
+4cos ocDa ab]+x [1-3cos? oc) Cl +4cos ocD1]+xy 4cos a:Dz}
(2.455 - :é,—;zi {Jc2 (3-i~cos,2 o) Dy e 2cos « C ]+ 7% [(3-+cos® &) Dy —
o —2003 o« C,J+ 55 Dz B+ 0032 @)+ [(3 + cos2 o) D3 ab +

+2c0s & C; a2+ 2c0s « Cy B%]}.

Rozprawy Inzynierskie — 6
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Kinematical relations (2.6) take the explicit form

(2.46)
(2.47)

(2.48)

3 82 w
K== T ox2 C
o w
=g

. ) at v
T A

On equating the right-hand sides of Eqs. (2.43)-(2.45) and Egs. (2.46)-(2.48)
and suitably integrating, we obtain three versions of w (x, y):

(2.49)

(2.50)

@.5D

s 52

s 1* X
W=—A {? (—C;+2c0s och).i_? [2Cy @*+(3c08* a—1) Co B+

52 52 £33

[(1+-3c0s? &) Cy-+4dcos D]+ ——% 2c08 « D;, +

+4cos o Dy ab] +
+f, ()48 () 5+ CEF +D} ,

54

’ 52
We=—4 {% (—C,+2cos ozD4)+12— [2C, b*+(3c0s? a—1) C, &+

=2 52 _
+4cos a D ab]+ 3 [(1~-3cos® &) C; +4cos « Di]+
":'Ejﬁ . - o
+ 3 208 a D, +f (B)+e () FHEXF+F(,
P . =

Y {(3+cos? ) Dy —m_'2cos o C]+

3

. [(3+c0s? &) Dy—

=2 52

1 D, (3-+cos? o)+ %7 [(3+c0s? &) D3 ab+

—2c0s o Cy]+

12008 & (Cy @+ Ca BI+A (@) +hy (f)’i#G} .

The following 11 functions and constants of integration enter the above ex-
pressions: fi (7), g1 (8), C, D, f(%), g (&), E, F, 1 (), h: (), G Since the fusction
of the deflection rate field must be unique, equating corresponding terms and using
one kinematica Iboundary conditions W (5@, £5)=0 supplies a set of equations
from which all the functions and constants can be found to within an accuracy of
one constant, for example C;. Omiiting tedious calculations and lengthy formulae,
we shall show the final form of the deflection rate field constituting a proper mech- i

anism of incipient plastic motion, Fig. 5.
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" FIG. §
ic, N
(2.52) WMT(QT (®*+ 74 (3—Tcos® o) — %2 52 -3 (1 -+ cos* ) (3+c0s2 o)) +
. [2 ) 5cos* o+ 38cos? a—27 Lp2 3cos® a—11cos* &-- 13cos? oc+27] '
Rl _ 3+cos? 3+cos? o +
) [sz 5cos* a4+ 38cos? o —27 o 3cos® x—1lcos* oc-l-l.'icos2 oc+27]
tr 3+cos? a a - 34cos? +

—[%® 7+ EP° — %7 (d* + b2)] - 8cos « (1 +-cos? )+
+ (a*+5*){(45—58cos® a—Jcos* o)+ a? b? (—27+19c0s? |- 43c0s* . — 3cos® tx)}
3+cos? & ’

The deflection rate ‘at the centre amounts to

o 53 ' (0. O)= ic, [ ‘g 45— 58cos? x—3cost o
2.53) WO, )_2(9~cosz &) (@ +5%) 3+cos?
—27+19¢c0s® x+43c08* x—3cos® &
+a% b*— 3 .
3+coso

From the condition that the deflection at the midspan of the longer edge should
not exceed that at the centre we obtain the equation 45— 58cos? «—3cos* >0,
Its solution imposes that 30° < a< 90°, Correspondmg curvature rates can be com-
puted from Egs. (2.43)-(2.45).

The moment field (2.42) now becomes

m,=C1 (a*— %),
. m};zcl (b2_y-2)’.

C ' ' :
(2.54) mx—y=ﬁjﬁiﬂz-? [(322 +7%) 10cos x+ %5 - 6 (1+cos® o) —
, 2cos {1 +cos? «) ]

2
—d
3+cos? o
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The plate equilibrium equation (2.30) enables the remaining constant C, to be
related to the applied load p. We obtain '

c 9—cos® «
(2.3%) ‘=g (B2cos? o) * '

The moment field eventually becomes

9—cos? «
ms

B — 2 __ 52
T G 2 g L@ )

9—cos” « .bz _2
e 8 (3 —2cos? ac)p( ~7)s

1
Mo 4 (3 —2co0s* o) P

(2.56) .
[(JEZ +7%) 5cos a+3%F (14cos? a)—
cos « (1+4cos® oc)]

34cos? w

—(+b?)

The edge reactions are

% PSNE L eos® a—3) a+20 1 f
B e ST YT I cos® a—3)a+20cos a ¥ or X=dada,
Q.57 4 (3—2cos? ) .
psin &
RE [£(7cos? «—3) b+20cos « ] for F=ib.

¥ 4(3—-2c0s? &)
The corner reactions can be calculated from the formula

(2.58) R=[2mg,+(m+m;) cos a] sin !x{_?_om,

F1G, 6,
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and have the values

_psina(l+cos® o) | deos o
) (3—2cos? ) [ 3+cos?a

(@*+ 8%+ 3ab]

for f=+4a, =45,
(2.59) 7 7

_; psina(l+cos? @) [ 4cos
T 2(322c08 @) | 34008’ @

(@®+b%)— 3gb]
© for E=da, F=b,

All active and reactive loads are shown in Fig. 6. As a check on all the above
shown results the global equilibrium of the system as well as the virtual work equa-
tion P,=D,,, were written down' and found to be satisfied in an exact manner.

Lastly, let us determine explicitly the plastic nonhomogeneity of the considered
isotropic plate. Substitution of Eq. (2.56) into the yield condition (2.11) gives the
ultimidte bending moment as a function of x p: : B

243—281¢05? -+ 89c0s* o+ 13c05° o
4{3+cos® )

2.60)  my (%, p)= I@%cos;;)_ [(a“ +5%)

2 o —243+86c0s? o+ 304c0s* x—22¢0s5 o+ 3cos® o N
+a 4(3Fcos? o)
3
+(X* 3% a (27— 26c0s? a+47cos* o) -
+%? ﬁ22(9+1_310032 a-+135c08* or+13c08° &) +-

+(#* 7+ £7%) 36¢0s « (1 +cos? oc)-[-_fy"" (az—i-bz) {—- 12co0s «) (1 + cos? )2 -

. ( , —486+489cos? & —306c0s* o« —90cos® « +
tx7a 3+cos? o

1243 —150c0s2 6 —432c0s* aw—42c0s® o — 3cos® o )
+&* +
34-cos?

_, ( p2 —486+489cos* & —306c0s* & — 90cos® « +
Yy 3-tcos® o _ '
1243 — 150c08? & —432c08* -~ 42¢05% or— 3c08® & \ 1
+a* 2 .
3+cos? o

This function leads to the exact plastic design of two practical types of plate-beam
systems: : ' : :

a) Reinforced plate with constant thickness. The function (2.60) ensuring the
simultaneous onset of yielding in the whole plate should be reproduced as closely
as possible by varying intensity of reinforcement.
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b) Plate of homogenenous material. The function (2.60) supplies the variation
of thickness according to the rule
@.61) 7 (5 H=2 1/ o &)

‘ Gy
where o, 18 fhe yield point of the material. Thickness at the centre will be
_ P PR —281cos? o+ 89cos* x4 13cos® «
{2.62) k{0, 0)—[m] [(ﬂ +5bY A4 cost @ +
— 2431 86c0s? a-+304cos* a—22c0s° o+ 3cos® « *
_?_:_i—l-cosz & ] ’

+a b*

Plastic bending moments in edge beams follow from Eq (2.60) aﬁd to ensure
yielding simultan_eously with the plate, have the following distributions:. .
_ P [3 Teos? o) b (@ — 20cos &, _ ;3]
mb(x)—8(3—2cos2 3 (3—Tcos* a) b (a —X)—— 3 (@2 223, -

20cos « ]

(2.63) »
Hip ()7)=": m [(3 —Teos? oc) «a (bz —sz) —T (b2 f—*fa)

The function (2.60) was programmed to supply a number of thickness distribu-
tions for various ratios of bfa<1 and various angles «. Figure 7 shows the vari-

ation of thickness for b/a=0.8, a=70°.
Specific systems encountered in engineering practice can be readily derived from

the above solution:
1) a rhombus system, a==b,
2) a rectangular system, o==90°,
3) a square system, a=b, a==90", ,
Tet us present the results for the rectangular system. The field of deflection

rates assumes the form (¥=x, =y} 7
@.64) (=4, It +yt—3 (a2 ~b) x7 =3 (2% —a®) y* +
_ —3x% y2 45 (a*+b%) —3a* b*].

The associated curvature rates are

_ = —64, (2x% 247 -y +b%),
(2‘.65) ' ' Ry=— 6A1 (242 —2b%—x%-a%),

_  Rmy=244A, xy.

1t is worth emphasizing that the field (2.64) resﬁlting formally from (2.52) can be
directly _inter_preted as the following sum: _
(2.66) W (%, Y)=Ws (x)+w5 (N+f1 =,

where the first two terms represent the deflection rates of edges and the function
f(x,y) must vanish there as well as remain doubly symmetrical and satisfy the
statical boundary conditions. It turns out that the deflection rates at the edges can -
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be taken as proportional to the elastic deflections of simple beams under uniformly

distributed load, that s, for instance, w, (x)=4, (x*—6a> x>+ 5a*). Then the

third term in Eq. (2.66) assumes the form f; (x, p)=—34 i(a*- x*) (b* —»?).
The moment field is described by :

3 '
me=sp(@=5),

o ‘ 3 .
T ]
1
ﬂlxyﬂ‘szy,

the edge reactions are uniform,

" .
Vx=3}:?pa for x=:[:._:_:,

(2.68) .
V=" pb for  y=db
and the corner reactions a_reR:pab/Z each.

y
bla=08  «=90° Gl =180z
; a mint

by

LA AR

FiG, 8.
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The variation of thickness should obey the function

3p \? '
(2.69)  A{x, = ( p) [x*-+y* +at+b*—a® B>+ (b* —2a%) x* + |
+(a* -26%) y*+(1/3) 5 I

and the thickness at the centre is
3p %
(2.70) h (O, 0) 20, (a +bt—a? b2)*
Variations of thickness for 5/a=0,8 and 1 are shown in Flgs. 8 and 9.

L e v My
b/q_ 1=t gy, T2

M 7]

it T

FiG. 9.

3. ORTHOTROPIC PLATES

In many situations a special type of anisotropy, viz. orthotropy, is of technical
importance. Here belong plates reinforced in two perpendicular directions, densely
ribbed plates and so on. It is therefore of interest to derive all the necessary relation-

ships for orthotropic plastic plates.
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3.1. General ielationships

Let us confine ourselves to structures consisting of rectangular plates and iwo
pairs of orthogonal edge beams. The modified Huber-Mises yield condition will
be expressed in the Cartesian coordinate system [19}

G0 Fe=m}—2dm; my+e* mi—m}; (x =0,

where m,, m, denote the prmmpal bending moments, ni, (x, ¥) stands for the ulti-
mate bending moment in the section x=const of a nonhomogeneous plate and
d, e are constants which should ideally be determined from experiments on a plate
in question. Equation (3.1) represents a family of closed curves. When ¢*>d?; the
curves constitute a family of real ellipses as shown in Fig. 10 for various combina-
tions of ¢ and d. '

lmz

Fie. 1Q.

The condition (3.1) will now be expressed in terms of moments m,, m,, m,,.
Having the standard transformation formulae

1
N my=— (mx—i-m,,) +— [(r.ﬂa‘t,,—m_.,,)2 +4m2 1t
G2 1 1
m=— (e +my) — 5 [(m,—m,)* +dm JY,
we obtain, after rearranging, the following form of the yield condition for non-
homogeneous orthotropic plates:
. 1 1 : .
@.3)  F=(L+e?) g +mp)+— (1—€%) (mytmy) [(mg— ) +4m7 }F ~ ,
—2dmy, my+ (14 2d+e*) m% —mj; (x, p)=0.
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It can readily be seen that for d=0.5, e=1 we obtain the well known Huber-Mises
yield condition for isotropic plates. .
Bearing in mind the explicit form of the associated flow law .

o= r

om,’

_ . COF
(34 o L k=

om, °
ar
omy,’

fy=A

performing on Eq. (3.3) the necessary differentiation and rearranging, we get the
relationships between the curvature rates and moments:

. ny, 1, -+ 2ms

k,=1 {(1 +e?) m,—2dm, +4-(1 — [( x—m,)zi!-4m,,,]*}

) m2 —my, Wy + 212,
(3.5 =1 {(1 +e?) m,— 2dm,,+(1 —e?) i m 4%]%},

me+m, } )
. [(rg— )% - 4m2 IF v
Inserting (3.5), we arrive at the required formulae

Ry ™ A {(1_4'251'1' e?)+(1—e?)

1 2%, 16, + &2
_ 2 2 x Pep T gy
" S =) {2 (1€ ot Ay —(1 =€) {(wcx—rc,,)2+wcxy1*}
1 — 2R Ty + K2
[ 1. e2) K i, —(1—e* e
@6 m si(eZ—dZ){z(l"*.’.e)’“’“dK” (-9 (rc,,—rcy)’+rc ]*}
: {1 2d+e?)—(1— ot
M= gl \ 2 ) e ] B

The plate equilibrium equation can be written as -
(3.7 s, o+ 2y, ey + Py, = —D .
The kinematical relations are
Ry= W, g,
(3.8) S - o y= =W, 35
: Ry =20
Thus, we have the complete set of 8 equations (3.3), (3.6), (3.7) and (3.8) in 8 unknown

functions ny, 1, My, Ky, Ky, Keys W, i The formulae for edge reactions and corner
forces are

Ve=ty o +2 y,
(3.9 Vi, 2, 5,
R=2m,,.
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The Huber-Mises.yield condition for nonhomogeneous orthotropic plates and the
associated flow law have also been derived in the rectilinear skew coordinate system.
However, since no examples of parallelogram orthotropic plates have yet been
worked out, the relevant equations will not be shown in the paper.

3.2. Rectangular orthotropic plate

A rectangular plate with the sides 2ax2b, b<a, is considered resting on sinking
edge beams. The whole system is point-supported at the corners.

The field of deflection rates is assumed as a sum of deflection rates each pro-
portional to the elastic deflections of neighbouring edge beams,
(3.10) - P W= (x)+ W, (),
where o ':‘ R
: Wy (%) -——D (x*— 002 x2+ 5a%),
(3.11) .
W (=D (y*—6b> y* +5b%).

It should be emphasized that the common cocflicient D in both expressions (3.11).
imposes no constraints on the solution sought. The kinematically admissible field -
of deflection rates is shown in Fig. 11. Making use of Egs. (3.11) and (3.8) we get

f,=12D (a* — %%},
@12 #=12D (b2 —y?),

Kyy=0.
Vanishing &, results in the fact that the nonlinear relationships (3.6) now become-
linear. In fact, we obtain.

. o 1 . L
M ey © )

3.13) 1 A
m_v 2{1" (ez _d2) (e Ky”]' ":x) »

my,=0,

No torsional action is supported by the plate deforming according to Eq. (3.10)..
Inserting Eq. (3.12) into Eq. (3.13), we obtain the following distribution of bending
moments: ’

6D -

=gy [ @A),
(3.14) — 6D 2 2 2 2 2
=T —ay @*—y?)+d (@ —x7,

My, =0,
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The statical boundary conditions ~
My (j;a):(),
m, (4-b)y=0

can only be satisfied for d=0. This means that the ellipses in Fig. 9 must be sym-
metrical with respect to the m, (or m,)-axis. Making use of the plate equilibrium
equation (3.7) in the case of uniformly distributed load, we find that

(3.15)

2

D pe

(3.16) | —j.—=12—(1+—823_
fy
/ L#r// ]
!
S / -
5{a*s b?) /spp' X

Fra. 11.

The bending moment distribution attains the final form
. B 223 . 2

e @

(3.17) . ' r .

= dted) (&*—»%,

My =10,

_xz),

Edge reactions are”
_ TV (EQ=d-11 1+ez, )
(3.18)

V, (+b R
O e
whereas the corner force vanishes due to the absence of twisting moments. It can
easily be shown that both the global equilibrium and the virtual work equation
are satisfied in an exact manmer.
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The design of the plate should ensure the simultaneous yielding of the whole

structure at the ultimate load p. On inserting Eq. (3.17) into Eq. (3.1) and remember-

" ing that d=0, and m; =11y, M=, We finally obtain the ultimate bending moment
me as a function of x, y: '

e
(3.19y  ‘mip (x, y)=2_(1—p_’_-5 [e? x*+y*—2 (e a® x*+b? $2) -+ e? a*+b*) .

Introducing the so-called coefficient of orthotropy & (x, ¥) we have, on account

of (3.17),
(3.20) k=T OO
. e (x, V)= -y =g by
Orthotropy at the centre of the plate is characterized by
. aQ-
kc= e* 'bT s
(3.21) .
=___sz___ 2 4 hyE
mOc. 2(1+32) (e a +b) .
my[x’y)“ 77777
My (X:U}
ol
-0
il
Huw
—
mx(X,U)
mg {6, y)
Fic. 12.:'

The relevant yield condition for a generic point X, y is depicted in Fig. 12 in the
plane of dimensionless bending moments. The formula (3.20) gives the mechanical
meaning to the coefficient e introduced in Eg. (3.1).

The distribution of ultimate bending moments in the edge beams must be as

follows:
b
My (x)=m (> —x%),
(3.22) e : \
. . m( — pae : b?-._ a
by) 2(1+62)( y)'
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It shoutd be borne in mind that the above solution does not tend to the limiting
case of isotropy because two strong assumptions have been made: %,,=0, which
enabled the associated flow law to be linearized and d=0, whicli satisfied the stai-
ical boundary conditions but confined the class of plates to those obeying the
yield condition as shown in Fig. 12. It is therefore of little interest to show a spe-
cific case of a square orthogonal plate unless some external requirements are imposed
to insist on orthotropy.

No polynomial closed form solutions to the orthotropic plates supporting torsion,
i.e. for the nonlinear relat10n5h1ps between moments and curvature rates; have
been found. - :
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STRESZCZENIE

“ROZWIAZANIA ZUPEENE NIEJEDNORODNYCH PLYT PLASTYCZNYCH OPARTYCH
NA PODATNYCH ZEBRACH

W pracy przedstawiono metodg potodwrotng otrzymywania rozwigzaf zupelnych cienkich
niejednorodnych plyt plastyeznych opartych na zebrach, ktére uginaja si¢ razem z brzegami plyty.
Plyty i zebra uplastyczniaja sie zgodnie z warunkiem Hubera-Misesa i podlegaja stowarzyszonemu
prawu plynigcia. Ustroj jest obciazony poprzecziie obeigeniom rownomiernym i podparty w na-

" rozach. Uzyskano rozwigzania zupelne dla plyt izotropowych w ksztalcle kwadratu, prostokata,
rombu i réwnolegtoboku. Rozwazono rowaiez kwadratowe i prostokatne plyty ortotropowe,
Otrzymane rozwiazania umozliwiaja projektowanie plyt niejednorodnych, przy czym zaprojekto-
wana nicjednorodnodé gwarantuje pelne uplastycznienie cale konstrukeji w chwili wyczerpania
noénodci. Opracowany zosial opis. teorii cienkich plyt plastycznych, podlegajacych warunkowi
Hubera-Misesa w nieortogonalnym ukiadzie wspodlrzednych krzywoliniowych. Nastepnie wyspecy-
fikowano ten opis dla ukoénokatnego ukiadu wspotrzednych prostohmowych stwarzajac dogodne
narzedzie do rozwigzywania plyt rownoleglobocznych.

PeswoMe

TIO/IHBIE, PEIIEHAS HEOJHOPOIHBIX IUIACTMMECKUX TUTAT OMEPTHIX HA
TIOMAT/IMBBIX PEEPAX

B pa6oTe IpecTABICH MONyoBpaTHEIE MOTO THONYYEHAs IOMHbX PELIETAH TORITHX HEO(HOPO-
HHBIX MTACTIYECKEX IITHT OIepTHIX Ha pebpax, KoTopsie MporabaroTes COBMECTHO G RPASME XUIHTEL
Timarer @ peBpa Mepexosy B INEACTHIECKOS COCTOAHAS COTVIACHO YCIOBEIO I'yGepa——Musoca & -
HOIMISHAT ACCOTMAPOBAREOMY 3aKOHY TETeHvs, YCTPORCTBO HATPYIREHO IOMICPETHO PABHOMEPHOH
HATPY3KOA ¥ OHEpAeTcd B pebrax. TIomy eHEl MONHEC PelieHus NIt E30TPONALIX HMNET B fopme
KBAADAPA, MPAMOYIONbHAKa, poMba E DapaInIenorpaMma. PaccMOTPEHEL TOXE KBafpATHEIC H IS~
MOYTONEHETS opTOTpomre mmrer, TIOMyweAHRAe pemieRas NAl0T BOSMOMKHOCTR JIPOSKTHPOBATH
HEOAROPONNbIe IMTEL, YIpATeM HPOSKTHPOBANHAN HEOIROPOIHOCTE TAPAETEPYET Nepexor B NOJb-
HO® IUACTHYECKOE COCTOSHEE MeNoll KOHCTPYKIHE B MOMEHT HCYePIaEes Hacymel crocofaocTd.

- Paspaborane Omycasde TEOPHEN TOHKHX HIACTHYCCKRX IUIHT, moeranmmx yoropmo FyGepa—
Mu3seca, B HeOPTOTOHATERON XDHBOMHBEHHGH CACTEME KOODIHANAT. Barem coenuduIAPOBAEEG ITO
OMECAHTE [ KOCOYTOIMLHON CACTEMEL UNAMOTRHSHHEIX KOOPIRHAT, CO3aBas HPATOTHEI HHCTPY-
MERT m‘m PEIUEHKS MAPATIeNOTPAMMELIX TIHT.
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