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PONDING INSTABILITY OF AIR-SUPPORTED ELASTIC SPHERICAL
MEMBRANES (*)

G. AHMADI (NEW YORK) and P.G. GLOCKNER (CALGARY)

The problem of collapse by ponding of air-supported spherical membranes subjected to a central
load is considered. Linearly elastic and two-way membrane action. is assumed. The equilibrium of
the spherical cap is analyzed and the equations for the determination of the critical central weight
for the onset of collapse are derived. Numerical solutions are obtained for a range of infernal pres-
sures, elastic moduli, height/span ratios and radii of curvature. Results from the present study for
large elastic moduli are compared with previously obtained experimental data and theoretical
predictions [8, 11].

1. INTRODUCTION

Pneumatic membrane structures have become quite common during the last
decade for providing low cost temporary enclosures for exhibitions and construction
sites as well as for permanent coverings for warchouses, greenhouses and athletic
facilities [1-7] (*). However, the design methods for these air-supported structures
are still in a state of development. One peculiar aspect of these membrane stryctures
is the possibility of collapse by accumulation of rain, ice or snow on their surfaces.
Failure in this mode has been reported in several cases and has also been observed
experimentally [8, 9]. _

Investigations of ponding collapse of cylindrical and spherical pneumatic mem-
brane structures were carried out recently [8-13]. More specifically, a theory for
ponding instability of spherical membranes was discussed in [8, 11] where it was
assumed that the membrane material is inextensional and the membrane acts only
in the meridional direction in the ponding region and in part of the rest of the mem-
brane,

In the present work the problem of ponding collapse of air-supported spherical
caps subjected to a central weight is considered with the assumptions that the mem-
brane is linearly elastic and acts in both directions throughout. Equilibrium in
the ponding region and in the rest of the membrane is considered in obtaining
a solution from which the critical central weight causing the onset of collapse is

(*) The results presented here were obtained in the course of research sponsored by the Natural
Sciences and Engineering Research Council of Canada, Grant No. A-2736.
(') Numbers in square brackets refer to publications listed under References.
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deduced by maximization of a two-variable function subjected to an integral equation
constraint. The extremization problem is solved by a numerical iteration scheme
and the magnitude of the critical central weight for a range of internal pressures,
clastic moduli and geometric parameters obtained and presented in graphical form.

2. MATHBEMATICAL. MODEL

Figure 1 shows a cross-section through a weightless spherical membrane sub-
jected to an internal pressure, p, a central concentrated load, W, and the weigh
of a ponding fluid of weight density, p, which is accumulating in the central de-
pression caused by the deflection. The undeformed shape of the membrane is a per-
fect spherical cap of radius, R. The inflated shape, in the absence of a central weight
and ponding fluid, is also a spherical cap as is shown in Figure 1. Tt is assumed
that the membrane is elastic and acts in both directions throughout.

InFlated shape

Undeformed shape
Deformed (nflated shape

Ponding Fluid densify,p |

S
W Central

Fia. 1. Cross-section of spherical membrane with central weight and ponding fluid.

In analyzing the equilibrium of the membrane, two regions are considered,
one in which the ponding finid is accumulating and a second one outside the ponding
region. If the pond and the deflections of the membrane are small, a linear membrane
theory for this region may be employed. As a result, the equation of equilibrium
normal to the membrane becomes (see for instance, [14])

(1 T d ( dﬂ) 0<r< d
) dr F dr '—(P~P'f’)?', \r\.z,
where r is the radial distance from the axis of symmetry, » denotes vertical displace-
ment, p is the internal pressure and T is the constant membrane tension per unit
length. In Eq. (1), d is the pond diameter which itself is an unknown.

The deflections must satisfy the following boundary conditions:
d

2 = =
@ v=0, at r=5
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. dv 0 _d
(3) dr ) at r= 9
. do .
{4) We= --27 Tr P r=+0, }

Bquation (3) states that the slope of the membrane at the edge of the pond must
be zero and Eq. (4) is the condition of equilibrium at the concentrated load, W.
The general solution to Eq. (1) is given by

) v=AJ, (kr}+BY, (kr)+plp,
where

2= _EJ
©) k=g

In Eq. (5), Jo and Y, are the zero order Bessel functions of first and second kinds,
and 4 and B are constant parameters.

Employing boundary conditions (2) and (3), the values of the constants 4 and B
are determined. The equilibrium condition (4) then yields '

) . nped d
™ w="ph\kz),

where J, is the Bessel function of the first kind of order one. Equation (7) relates
the magnitude of the central weight to the internal pressure, the pond diameter,
the fluid density and the membrane tension. The maximum of the right-hand side
of Eq. (7) provides an upper limit for the central weight which is the threshold of
instability. However, for a given internal pressure and fluid density, the pond di-
ameter and the membrane tension are related through equilibrium of the rest of the
membrane.

Noting that at the edge of the pond the membrane is horizontal, the equation
of overall vertical equilibrium of the cap above radius r becomes

dz
@®) | 27 rTsin f=n (,,z _T) »,

where 0§ is the slopé with the horizontal (see Figure I) from which one obtains

9 wo=br-) (57)
(9 sin f=\r——- 155 |-
At the support, Bq. (9) becomes

: a2\ ip )
(10) 51n 00=(l'— Mi—) (-E s

where [ is the span of structure.




364 G. AHMADI and P. G. GLOCKNER

In the absence of a central weight and ponding fluid, d becomes zero in which
case it follows from Eqs. (9) and (10) that the inflated shape is a sphere and the
slope at the base is given by w, which is also shown in Figure 1. For negligible
extensibility of the membrane, (i.e. very small internal pressure or very high mo-
dutus of elasticity) the undeformed shape is recovered. The undeformed angle
at the base is given by ¢, as shown in Figure 1. Noting that /=2R sin ¢, Eq. (10)
reduces to the well-known relation

it =
For the inflated extensible membrane, in the absence of a central we; ght and ponding
fluid, the expression for tension becomes

() =5

where the radius R, must also be determined. In the presence of a central weight
and a ponding fluid, the magnitude of the membrane tension is not directly avail-
able; however, it is less than the limit given by Eq. (11) and is a function of the
magnitude of the central weight and the pond size. Furthermore, variation of the
membrane tension results in a change of arc length due to the extensibility of the
material which is assumed to be Hookean with Poisson ratio v==0. The change
in length, As, is assumed to be related to the membrane tension and the original
length, s, by the following expression '

(13) - T=E—,
5

where % is the elastic modulus in Newtons/m. Assuming the membrane tension
in the deformed state to be 7, the length of 2 meridional arc from the axis'of symme-
try to the base becomes

T
(14) S=Rp, (1.+ g).
On the other hand, within the imits of linsar theory
(15) | o= d+
=—ts,

where s is the length of the meridional arc outside the ponding region in the de-
formed state, i.e,

12 dr
16 U S U
(16) g cos &
aj2




PONDING INSTABILITY OF AIR-SUPPORTED ELASTIC SPHERICAL MEMBRANES 365
Using Egs. (9), (14) and (16) in Eq. (15), one obtains

12

(17 St [ HoRT) ¢—-d2jan)} 12 dr= m%@+§)
iz

Eg. (17) relates the membrane tension to the pond diameter.

The problem then is to find the maximum of Eq. (7) subject to the constraint
given by Eq. (17). Before attempting to solve this problem, it is advantageous to
introduce dimensionless quantities. Considering the radius, R, as a length scale,
the following dimensionless variables are introduced, which are designated by
a bar above the symbols,

d=djR, ~ I=I/R=2sin p,,

(18) p=plpR, T=TjpR?, To=To/pR*=j/2,

and _

(19) We=W/[npR?», E=FE/pR*.

Employing these dimensionless quantities in Eqgs. (7) and (17), one finds
(20) W= JT” By (@271,

@2y 5+ }2 {1-[{@/2T) (r— dl/“?‘)]z} 112 e =po (1+T/E) ]

. : i

The dimensionless critical central weight is now given as the maximum of Eq. (20)
with respect to d, with T given implicitly in termas of d by Eq. (21). Numerical sol-
ution of this general extremization problem is discussed in the next section. Here,
a special limiting case of interest is briefly described. For small values of the pond
size, and almost inextensible membranes (i.e. £ large), the approximate value of
the dimensionless tension, as found from Eq. (21) becomes :

@ T=pf2,

which corresponds to the underformed state of the spherical membrane. When the
approximation given by Eq. (22) is employed, Eq. (20} provides W explicitly in
terms of d. The maximum of W may then be found by simple evaluation of its
first derivative with respect to d. The critical dimensionless pond diameter for this
appr ox1mat10u becomes

@3 d=2p, T *=p, (2p)*'*,
where .
(24) Bo=2.4048,

corresponds to the position of the first zero of the Bessel function of zero order,
(i.e. Jo (F5)=0). The corresponding critical value of the dimensionless critical central
weight becomes

@5 W=PoJ, (Bo) F=1.248 5.
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In dimensional form, this critical central weight is given by
(26) W=3.922p* R/p. '

It is of interest to note that the approximate critical central weight given by
Eqs. (25) or (26) is independent of the span { (or undeformed ground angle ¢,),
the elastic modulus of the membrane, E, and is solely determined by the radius,
the internal pressure and the fluid density. Therefore, Egs. (25) and (26) provide
a relatively simple rough estimate for the critical central weight for a large class
of membrane shapes and conditions. Furthermore, as shall be seen from the results
presented in the next section, the estimates given by Egs. (25) and (26) are remark-
ably accurate within a certain range of the parameters.

3. NUMERICAL SOLUTIONS AND RESULTS

For given internal pressure, j, elastic modulus, £, and undeformed membrane
shape, o, finding the maximum of W, as given by Eq. (20), with respect to d and T,
and subjected to the constraint given by Eq. (21), is clearly a well posed problem,
However, due to the complexity of the constraint, an analytical solution is intract-
able and the maximization is carried out by an iteration technique. A computer
programme was developed which iterates for various values of the dimensionless
pond diameter, d, in finding the maximum of . The value of T, corresponding
to each value of d, is found by satisfying Eq. (21) through another iteration scheme.

For various underformed shapes of the spherical cap, and several values of
dimensionless internal pressure and elastic moduli, the magnitudes of the dimension-
less critical central weight are obtained and the results given in Figures 2-4. Figure 2
shows the variation of W with dimensionless internal pressure, g, for several values
of undeformed ground angles, p,, for a large vatue of dimensionless elastic modulus.
It is observed that the dimensionless critical weight increases rapidly with an in-
crease in j and decreases slightly with a decrease of ¢,. The approximate estimate
of W, as provided by Eq. (25) is also shown in Figure 2 and is observed to give
an upper bound for the critical central weight. Furthermore, the estimate given
by Eq. (25) is remarkably accurate for ¢,3245° and for the range of internal pressures
considered. Another observation from Figure 2 is that for p,>30° W does not
vary appreciably with change of shape of the spherical cap for p lower than 0.003.

In Figure 3, the variation of W with p for several values of g, and for £=0.05
are shown. The prediction by means of Eq. (25) is also given by a dashed line. The
general form of the curves for critical central weights for the elastic membrane is
quite similar to the corresponding form for the inextensible membrane, given in
Figure 2. However, W for the elastic membranes are lower than those for the in-
extensible membranes of the same shape and subjected to the same internal pressure,
Furthermore, the variation in W with @, is much more substantial for the elastic
membrane (with £=(.05) than for the inextensible membrane. Eq. (25) still provides
very good estimates for W, for o3> 75° even for relatively small values of the elastic
modulus,
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Fic. 4. Variations of dimensionless critical central weight with dimensionless intecnal pressure
for several values of elastic moduli for po=15°.

The effect of variation of £ on W, for various values of 7, are given in Figure 4.
These results are purposely shown for a very shallow spherical membrane (po=15)
for which the effecis of extensibility on W are most severe. We note that as the
elastic modulus decreases (i.e. the membrane becomes miore extensible), W also
decreases rapidly for such a relatively shallow spherical membrane. Results for
other values of g, show that the effect of extensibility on W becomes smaller with
increasing ¢, and for po=>75° this effect Becomes negligible so that Eq. {25) can
be used to predict W with sufficient accuracy for values of £ of the order of 0.05.

1t should be noted here that the case of F=oco, shown in Figures 2, 4 and in the
rest of the figures, is practically reached for E>5 for the range of shapes and pres-
sures considered. For relatively large values of g, (i.e. ¢,>45") the inextensibility
limit is reached for E>1.

In Figure 5, the dimensiomnless cr1t1ca1 pond diameter, 4, is plotted against p,
for several shapes of inextensible membranes by solid lines, and for varicus elastic
moduli for an angle of gg=15° by broken lines. The prediction from Eq. (23} is
also shown. It is observed that d is below 0.2 in the range of parameters considered,
which' justifies the use of the linearized Bq. (1) and Eq. (15). Furthermore, it is
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Fic. 5. Variations of dimensionless pond diameter with dimensionless internal pressure for sev-
eral values of undeformed ground angles for F=o0 and for several values of clasctic moduli for
pe=15°

seen that d increases with an increase in internal pressure and an increase in PBes
while it decreases with a decrease in £. The curves for various values of E, shown
in Figure 5, correspond to quite a shallow spherical cap of po=15°. For higher
values of gy, the effects of extensibility in reducing d is less significant. From Figure 5,
it is also observed that for p,>75°, the predicions from Eq. (23) are extremely
accurate in the range of the internal pressures considered.

Although, the values of the critical central wei ght and pond diameter for different
magntiudes of the internal pressure and clasticity of membrane material for various
underformed shapes of the spherical air supporied membranes could be found from
the nondimensionalized Figures 2-5, it is useful to consider a few examples of prac-
tical interest in dimensional forms, The eritical central weight for the onset of insta-
bility are evaluated for inextensible as well as elastic spherical membranes of various -
shapes and spans subjected to variable internal pressure and the results are plotied
in Figures 6-11. The ponding fluid is assumed to be rain water of a weight density
of 10* Newtons/m? throughout. In Figure 6, W is plotted versus p for an inextensible
spherical membrane of ¢,=30° for several values of radius from 10 to 50 meters.
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The corresponding predictions of Eq. (26) are also shown in this figure by dashed
lines. It is observed that W increases rapidly with an increase in 2 and also increases
with an increase in R. Eq. (26) provides an upper bound for W for each given radius
which is also independent of the shape of the spherical cap. Due to the fact that the
curves of W vs. p for ,>30° will fall between the corresponding solid and dashed
lines on Figure 6, it is concluded that Eq. (26) yields relatively accurate estimates
for W for an inextensible spherical membrane with R >30 m and o= 30° p< 600 Pa,
For larger ¢, the range of accuracy extends to lower values of R.

The effects of variations in shape and extensibility on the magnitude of the
critical central weight for a spherical membrane with R=20 meters are shown in
Figure 7. It is observed that W increases with an increase in @0 when R is kept fixed
and it decreases with a decrease in £. The effect of extensibility in reducing the
magnitude of the critical central weight is accentuated for small values of Po.

For the fixed values of internal pressures of 150 and 300 Pascals, the variations
of W for a spherical cap with p,=15° with its radius are shown in Figure 8. It is
observed that W increases almost linearly with membrane radius and the rate of
increase is much more rapid for p=300 Pascals as compared with p=150 Pascals.

1000

_____ Equation {26} /

feee  #=15° v

—_— =01 4y=15°

750

Critical centrol werght, W, (Newlans)
n
f=)
(=1

250

5 10 5 20 25 30
Radius, R, { Meters)

Fi1G. 8. Variations of the critical central weight with underformed radius for different values of
internal pressure and elastic moduli for a spherical cap of underformed angle of 15°.
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For a fixed span of /=40 meters, the variation of W with internal pressure for
several values of @, are shown in Figure 9. It is observed that W increases with
a decrease in ¢, and increases with an increase in p. This rate of increase is much
faster for the shallower spherical membrane spanning the same diameter. The
critical central weight of the elastic membrane is lower than that of the corresponding
inextensible one and the difference is more substantial for relatively flat membranes
as compared with.the steeper ones. -

8000

T : ] 7
=20, R=3863m, ¢,=15° o

. EQHQ@H(ZS)

oo |- E=1a8x10°Njm, F=10

E=143%10°N/m, E=01

E=746% 10°N/m, Ewoos\
£= MQMD"N/m E=001

4608

Critical central weight, W, (Newlons)

2000 —

T | |
5 .20 > 500 750
Infernal prescure, p, (Pascals)

250

Fii. 11, Variations of the critical central weight of a spherical cap of undeformed ground angle
of 15% spanning a diameter of 20 metors with internal pressure for several values of elastic moduli.

For a span of 50 meters and p,=45°, the variation of W with p for several values
of E are shown in Figure 10. The reducing effect of extensibility on the magmtude
of the critical central weight can be clearly observed from this figure.

Figure 11 shows the variation of W with mtemal preésure for several values
of E for spherical caps with po=15° spanning a diameter of 20 meters. The obser-
vations from this figure is similar to those of Figure 10, except that the effect of
_extensibility in reducmg the magnitude of the critical; central weight is now quite
profound due to the relat!vely flat shape of the membrane.
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4. COMPARISON WITH PREVIOUS WORKS

In [8, 11] the problem of collapse by ponding of inextensible spherical membranes
was treated where it was assumed that the membrane act only in the meridional
direction in the pond region and in part of the membrane outside that region. The
present work considers elasticity of the membrane and assumes two-way action
throughout. Even for large values of the elastic modulus, where the limit of inextensi-
bility is approached, the two-way action is still preserved. It is therefore of interest
to compare the predicions of the present study with the theoretical and experimental
results given in [8, 11]. _

The theoretical predictions of [8] for variations of the critical central weight
with internal pressure for spherical membranes of 10 and 20 meters radii are repro-
duced in Figure 12. As a consequence of the assumed one-way action, the critical
central weight becomes independent of the shape { or @o). The predictions of the
present two-way membrane action model for the limit of a large elastic modulus
for the underformed grou nd angles of 60° and 15° together with the results of Eq. (26)

2000 T BN B S
4
;
e Ore-way action (8] /
) J/
e Equation (26) /'/
— e $,=80° ' ; /
. ° y/ /
soo ) CTTTTTTTTTT 13 '/li fl”“
I’
f’f

=gl lri/ig o

Critical central weigit, W, Newlons)

o}

I.
a 100 200 300 490
Internal pressure, p, (Pascals)

500

Fig. 12, Comparison of the predicted critical central weight with the results of the partially one-way
actlon model of [8] .
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are also shown in Figure 12. It is observed that the present two-way membrane
action model predicts lower values for W and the difference increases with a de-
creaase in @y. ’

~ The experimental data for the critical central weight under varjous internal
pressure as reported in [8] are shown in Figures 13 and 14. The ponding medium
was a fine quality, Ottawa sand with a weight density of 14.300 N/m®. The results
shown in Figure 13 are for a sphericat cap of radius 1.43 meters and a span of 2.34
meters. The predicions of the one-way membrane action model of [8] are also shown
in this figure by the dashed curve. The results of the present two-way elastic mem-
brane action model for various values of elastic moduli are plotted in Figure 13
by the solid curves. It is observed that the present model predicts lower values for
the critical central weight as compared with the theoretical results of {8]. Although
the present predictions for W are closer to the experimental data, as is observed
from Figure 13, discrepancies ranging from 4 to 12 Newtons do: still exist.

In [8], it was suggested that the membrane used in the experiment was probably
imperfect and allowing a two percent increase in the length of a meridional arc
length, it was possi_bie to match the theory with the experimental data. Such adjust-
ment could also be carried out for the present theory with a much lower value for
the imperfection. Another factor which could be the reason for part of the observed
discrepancy is the effect of the self-weight of the membrane which according to [8]
was 8§ N/m? and near the apex reaches an average of 14 N/m?. Noting that the
surface area of the model was more than 4 m?, the weight of the membrane becormes
several times the discrepancies observed.

Figure 14 shows the comparisons of the predicion of the present model with the
theoretical and experimental resulis of [8] for a semi-spherical membrane of radius
0.8 meters. The predicion of the present model shown in Figure 14 is for ¢,=80°
since for larger values of @, the deformed ground angle exceeds the value of 90°
which produces some difficulties in the convergence of the numerical extremization
scheme. The agreements between the present theory and the experimentzil data
of [8] is quite reasonable for the lower values of internal pfessure, however, no-
ticeable discrepancies between the theory and experiment still exist for the higher
values of p. As noted before, the differences between the theory and experiment
could be partially due to the self-weight or the imperfections in the shapes of the
experimental spherical caps. ’ : '

5. CONCLUSIONS

Based on the resulis obtained in the present study the following conclusions may
be drawn: '
i) The critical central weight, W, increases with increase in p, R and ¢,.
ii) The rate of increase of W with p increases with radius.
iii} For fixed values of span, the critical central foad decreases with an increase
" of @, In other words, flat spherical caps are more stable than steeper ones.
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iv) The critical central weight for an elastic membrane is less than that of the
corresponding inextensible one, and the value of W decreases with a decrease in E,
Furthermore; the reduction in W is more pronounced at.smaller vahies: of pq.

v) For a given pressure and radius, the approximation given by Eq. (26) pro-
vides an upper bound for the critical central weight for arbitrary values of span
{or p,) and E. This equation provides good estimates for the relatively inextensible
membranes with moderate to large values of ¢,. When E decreases, Eq. (26) gives
reasonzble estimates only for small to moderate values of- Po- :

vi} The critical pond diameter increases with increase of P, 9o and E.
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STRESZCZENIE

| NIESTATECZNOSC PNEUMATYCZNYCH, SFERYCZNYCH MEMBRA N
SPREZYSTYCH

* " Rozwazono problem zniszézenia centralnie obciazonych membran sferycznych podpartych na
- poduszce powietrznej, spowodowane przez powsianie lokalnych wybrzuszen (przeskok ow). Zalo-
Fomo, ze obustronnie pracujaca membrana jest-liniowo sprezysta. Przeanalizowano r Ownowage
sferycznej powtoki i wyprowadzono rownania - pozwalajace okre§hié kryiyczng warto$é centralnej
sity obciazajacej prowadzacej do zniszezenia. Otrzymano rozwigzania w postaci numerycznej
w pewnym zakresic ciénied wewnetrznych, modalow sprefystosci, wyniostosci powloki i jej pro-
mienia kezywizny. Wyniki analizy przy duzych wartosciach modutéw sprezystosci porownano z uzys-
kanymi wezesniej danymi dodwiadezalnymi i przewidywaniami teoretyczaymi 8, 11].

Peazwome

 HEVCTOMUYMBOCTE [THEBMATHYECKMAX CHEPMUECKIX VIIPYTHX MEMBPAH

) Paccvorpera TpobneMa palpyuiends MEATPATLHO HATPYXCHHELX, chepuyeckux MeMbpax,
HONNEPTEX HA BOSAYIUHCK TIOJYMIKe, BLI3BANHAS BOSNHKHOBCHAEM - JIOKANBHEX EEIyYHBanHi
(mepecxokon). [Ipemronoxeno, 970 06ycroporHe paboTarOmAL MemMOpaia SBIAeTCA NuHeiiHo yupy-
roit. TlpoaxaA3UPOBAHO PABROBECHE cepHIecKolt 0OOIOTKA H BSlsegeHst YUIPABHEHHS, MO3BO-
JHOIEE ONPEICIUTh KPUTAYECKOS BHAYCHUS IEHTPANBROE HArpymaromell CHIEL, NpEBOSAIIGH K
paspyeexmio, ITomysews! peliesrs B TACICHACM B B HEKOTOPOM HHISPBANE BHELHIK JaBeHHkH,
MOAYIIEl YIPYTOCTH CTENEHA IONOLOCTR 000M0UKE K ¢¢ PafiAyCca KPHBAIHEL PeaynbTaTH! aHATHR
upR GOTBINTX 3HAYCHHAX MOAYNEH YIPYTOCTH, CDABHOHS! ¢ NOJIYECHHBMHA paubBIIe HCHEPHEMEHTA b=

. HBIMA FAEEBIMY W TEOPETHYCCKHMM ipepcrassmammsma [8, 111
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