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CHOICE OF COLLOCATION POINTS FOR AXISYMMETRIC NONLINEAR
TWO-POINT BOUNDARY VALUE PROBLEMS IN STATICS: OF SHALLOW
S SPHERICAL SHELLS " : o C

Y. NATH, P.C. DUMIR ‘and M.L. GAND HI (DELHI

The present work investigates the optimum choice of collocation points which gives for a
given éccuraiby the minimum number of collocation points. A covergence study has been
conducted for thé"akisymmetric nonlinear aualysis of a shallow spherical shell under a unif-
oumly distributed load with four different choices of collocation points, viz. equidistant collo-
cation points;.collocation at maxima of a Chebyshey polynomial; collocation at zeros of a Chebyshev
polynomial and zeros of a Legendre polynomial (Gaussian poiats) as collocation points, It has
been found that the Gaussian collocation method has the fastest rate of convergence and it yields
accurafe results even with smatl number of collocation points, The tesults for the nonlinear static
analysie of elastic circular plates and shallow spherical shells obtained by the Gaussiaii collocation
miethod have beén presented and are found to be in good agreemsnt with the results available,

- NoTations

a, b, K*, g base radius, thickness; corvatiite and uniformly distributed load,
. ¥, w¥  transverse defleciion and stress fanction, : D
: a:_"’“, a"f*, cr:;*- . membrane, bending and total radial stress, . ¢
E,v Young’s modulus and Poisson’s ratio,

_ (7 differentiation w.r.t. space variable p. - R _

Subscripts J, p, i load step, predicted value and value at ith collocation point,_
T AP Tload step increment, ™ o C L

Por,=2ER* K¥2[[3 (1-v3]H7 classical buckling pressure for complete spherical shell, -

| .
L]
O, /1=148 (1)1t ({ 5 pdpy

CE, SE‘—uclarﬁpé:d edge, simply sﬁp,:;)'or'té'd edge.

=1, INTRODUCTION

Nonlinear problems are encountered in modern engineering structures because
the materials are being utilised to their fullest potential and the economy in design
necessitates subjecting the structures to large deformations under extreme loads.
Plates and shells form essential structural elements in the aerospace indusiry where
light weight construction is of utmost importance. In this work. the problem of
static large deflection nonlinear analysis of circular plates and shallow spherical
shells has been investigated using collocation methods. ‘
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Several methods for the nonlinear analysis are well established such as: per-
turbation, finite difference, finite element, Rayleigh-—Ritz, Galerkin, Kontorovich,
collocation. There is a need to examine, evaluate and improve the existing methods,
as well as to develop new approaches for solving nonlinear problems. The present
study examines the interior point collocation method and evaluates the efficacy of
the different choices of location of collocation points, The orthogonal point collo-
cation method wnsing.the zeros of an orthogonal polynomial as the collocation
points has been extenswely employed for nonlinear problems in chemical engineer-
ing f1, 2] and has been mathematically investigated [3, 4]. Lanczos [S] introduced
this method using zeros of a Chebyshev polynomial as collocation points. VILLADSEN
et al. [2] employed zeros of other orthogonal polynomials, e.g. Legendre polynomials.

The interior global point collocation method with the following set of collocation
points, viz., (i) equidistant, (ii) maxima of a Chebyshev polynomial, (iii) zeros of
a Chebyshev polynomial (Chebyshev collocation method) and (iv) zeros of a Legendre
polynomial (Gaussian collocation method) have been employed for the axisym-
metric nonlinear static analysis of shallow. spherical shells. Donnell type nonlinear
coupled differential equations in terms of transverse displacement « and stress
function y have been employed. The functions @ and y have been expanded as
a polynomial in the space variable p. The coefficients are evaluated by using ap-
propriate boundary conditions and the collocation equations corresponding to the
differential equations. The load is incremented in steps 4P and an iterative scheme
is used to solve nonlinear equations. At each iteration one of the product terms
constituting the nonlinearity has been predicted as the mean of its values at the
two previous iterations. The predictions at the first itcration are taken as the quad-
ratically extrapolated values from the previous three steps. A convergence study

using the four collocation schemes has been carried out for a clamped shallow -

spherical shell with K=3, The Gaussian - collocation method not only shows the
fastest rate of convergence but also yields quite accurate results with a smaller
number of collocation points. The equidistant coliocatlon method has the stowest
rate of convergence. The collocation methods based on maxima and zeros of
a Chebyshev polynomial are quite efficient but have somewhat a slower rate of con-
vergence as compared to the Gaussian collocation method. Keeping this in view,
another convergence study for a larger shell parameter (K=21) using Chebyshev
and Gaussian collocation methods is conducted, which also confirms that the Gaussian
method is marginally superior, The results for circular plate and shallow shells
with X=1, 2, 3 for clamped and simply supported edges have been obtained using
-the Gaussian collocation method and have been found to aglee quite well with the
results: ava.ﬂable

2. MATHEMATICAL FORMULATION

The nondimensionalized Donnell type equations in terms of the transverse dis-
placement @ and the stress function y for the axisymmetric nonlinear analysis of
uniform thin elastic shallow spherical shells [6] are:
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. LY : 1-v2]. h . :
@.1) Vz—p— (o )2/p+21<— ‘=0,
: 4 12(&)21 [ ) y ”+'Kh a} P
2.2) V‘w—_ wl o,y ette 7 ) i=2,
where ' 7 '
i oF i (1—v)p*
o j— —_ s K ———
p 2 m k) K 'K h r Eha 3
(2.3)
_-gad® .
P=—_-, D=B®l2(1-¥).

The boundary conditions are:

a) clamped edge (CE) p=1: py'—wy=0, o'=0, «o=0,
(2.4) b) simply supported edge (SE) p=1: py' —vr=0, 0=0, po' +ve'=0,
.¢) symmetry conditions at centre p=0: y=0, ©''=0, v'=0.

The load is incremented in steps AP and at each step e and y ar¢ expanded as

N+2 N4
2.3) v=D pta, o= 2 P by
n=1 W=
where & is the number of collocation points. For the four schemes the collocation
points p, (f=1, 2, ..., N) are chosen as:
. () equidistant: Pp=if(N+1), 11 i
(i} maxima §f a Che?zys#ef polynomial: p,=-5[1+cos Nt ]
S ' ORI & Z-Dzl
(iif) zeros of a Chebyshev polynomlal p,~§ 1+cosz—N- ) where the
* degree Chebyshev polynomlal Ty (p), 0<pg 1, is defined as
-T:'(p);cos n [cos™1 (2p~1)], ' ' B
(iv)  zeros of a Legendre polynomial [7],
The nonlinear equations (2.1) and (2.2) at step J have been solved iteratively
by linearizing the nonlinear product terms at edch iteération as

(2.6) w;* =y, (qu {y’ CU’)J=W.( w.i,,9 (W)= x; m.’.‘r,:

where the typical predicted term Js, is taken as the mean of its values at the two
previous iterations. For the first 1tera‘uon predicted value f; is extrapolated quad-
ratically from the values of f at three previous steps:

@7  S=C() B (o) A(frms),
where A4, B, Care given by:

J=1 A4=0, B=0, C=1,
J=2 A=0, B=-1, (=2,
J=23  A=1, B=-3, C=3



334 SO ¥. NATH, P. ¢. DUMIR and M, L. GANDHI

Substituting Egs. (2.5) and (2.6) into Egs. (2.1) and (2.2), the 2N co]locatlon
equations for an iteration at the J-th load step can be expressed as

N+2 l_l_vz h - N+4
(2.8) 2 n(n-2)pi* a,.+T[pi(wJp)f+2K; p?] [Z (M~1)p2’"2b,,,]=0,
m=1

(2.9) E[I’ﬁwl)z(m 3" p1 1 b~ 12(])

[2 {(a)r,,)t (n— I)P +(‘”J,,);P,+ }a,,] 12 ——[Z npn+1 ] P.

The complete set of 2N+ 6 discretized equations for  and b are obtained by appending
the appropriate six boundary conditions of Eq. (2.4) to Egs. (2.8) and (2.9). These
are solved using Gaussian elimination with ‘pivoting. The fterations are continued .
until w; (0), v, (0) and v (1) satisfy a relative convergence criterion of 0.1% accu-
racy. After getting the converged solution at step J, the procesure is repaeted for
the subsequent steps. '

3. RESULT AND DISCUSSION -

3 1. Convergence study

A convergence study conducted for the shell' parameter Ki=3 and cIamped edge
is presented in Table 1. It can be noticed from Table 1 that the Gaussian collocation
method has the fastest rate of convergence. Even for lower order approximations
this method gives quite accurate results. The equidistant collocation is the slowest
to. converge. The methods based on maxima and zeros of a.Chebyshev polynomial
are competitive with the Gaussian collocation method but their results for lower
order approximation are not' as accurate as the Gaussian method. All collocation
methods yield accurate and consistent results for higher order approximations.

Table 1. Convérgénce_étﬁdy, K %3, CE,v=03 'q%z4/Ehk=127 '

w” Ok - cr‘:* (1)“_a2]Eh2
L Cheby- ~ Cheby-  Gau- ... Cheby-  Cheby- L
N Equidi- o, " shev . ssian Bauidi- g0y  shev Gaussian
stant- - o oxima method method  SP™  maxima  method method
1 2.029 2029 2,029 2,029 8.917 8.917 8.917 8.917
2 — 2,705 "2.342  2.496 —_— 6.607 6.824 6,318
3 — 2.593 2.246 2.427 — 9.188 9097 . 9,168
4 2.532 - 2422 2.379 2,400 8.616 8.927 8.741 8.871
5 2.374 2.398 - 2411 2,405 9.025 8.924 - 8.9564 8.933
6 2.381 2.401 2.403 2,403 8.987 8.928 8.931 8,930
7. 2.404 2,403 2.403 2403 8.922 8,930 8.930 8.930
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With these comparative results in view, the convergence study for a larger shell
parameter K=2] has also been conducted using Chebyshev and Gaussian colio-
cation methods and the results are given in Table 2. A similar conclusion can also
be drawn from this table. The buckling pressure ¢ of 0.7 1pey, based on the conver-
gence failure in 100 jterations for the characteristic (average) deflection has been
obtained for the shell parameter K=21, using the Gaussian collocation method.
It agrees well with the values of 0.71pcs. obtained by BUDIANSKY [8].

Table 2. Convergence study for K=21, v=23 CE, ¢=0.5p¢s,

W_*- (0);_’7: B Wﬂm.’k :
: i Cﬁebyshev - Gaussian Chebyshev ’ Gaussian
N method method method method
5 0.3845 0.3779 1140 1171
6 0.2691 (.2906 1.205 ' 1.200
7 0.3061 0.2977 1.193 1.199
8 3,2895 _ _ (,2900 . cor .92 1192
0 0,2912 - 0.2908 1.192- 1.193
1} 0.2905 0.2905 : 1.192 1.192

3.2. Static resulis

In order to have a check on the accuracy of the Gaussian collocation method,
tyrical results obtained by this method using a lower order approximation with only 4
collocation points have been presented and compared with the results available
for k=0, 1, 2, 3 for both clamped and simply supported edges. There is a close
agreement among the present plate K'=0 results (Figs. 1 to 3) and those of Way [9],
FEDERHOFER [9] and ALWAR and NaTa [10] for load parameter up to 20, but there
is some deriviation from the results of Alwar and Nath [10] for higher loads.

The results for shallow spherical caps for K= 1,2, 3 are presented in Figs. 4 and
5 for CE and SE, respectively. The results compare very well with those of Nati

Table 3. Stati¢ results for shell.

Edze . Shell ¢ Presént Wil Nath et al. Kaﬁematsu

4 Lt .
condition ' parameter 2a /Eh.' Gaussian Kornishin 6] el al. [11}
1 s 0.862 0.86 0.856 0.938
CE 2 5 0.840- 084 . 0.837 0.925
3 5 0.402 040 0372 0.352
1 10 1.91 1.91 1.92 1.89
SE 2 1 0.160 0.160 0.150 0.142

3 3 0.241 0.240 0.224 0.206
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Fra. 5. Central deflection Vs external pressure.

and ALWAR [6]. As a further check on the accuracy of the resulis, the central de-
flection for typical load are compared with other available results in T able 3. The
results agree closely with these of Kornisam [11]. The iterative method employed
with quadratic extrapolation for the first iteration has been found to be very efficient
since mostly only two iterations are sufficient for convergence at each step.

4. CONCLUSION

Tt can be concluded from the present study that the method of interior global
point collocation, with zeros of a-Legendre polynomial as collocation points, is the
most efficient, accurate and*jéi'r'nple method for the nonlinear analysis of circular
plates and shallow _'spliéi:iqal shells. The number of collocation points depends on
the kind of problem investigated. Four collocation pbints are sufficient to have
quite accurate results for the nonlinear response analysis for the shell parameters
K=0, 1,2, and 3 while seven collocation poinis are required for the buckling analy-
sis for K=21. '
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STRESZCZENIE

WYBOR FUNKCJI KOLOKACIHT DLA OSIOWO-SYMETRYCZNEGO NIELINIOWEG (O
DWUPUNKTOWHEGO PROBLEMU BRZEGOWEGO W STATYCE MALOWYNIOSLEYCH
POWEOK KULISTYCH

W pracy rozwaza si¢ problem optymalnego doboru punktéw kolokacii, ktéry, przy zalozonej
doklacnosci, prowadzi do minimalnej liczby tych punktéw. Przeprowadzone analize zbieznodci
dla przypadku osiowo-symetrycznych, malowyniostych sferycznych powlok poddanych dzistaniu
réwnontiernego obciazenia przy czterech ukladach punktévw kolokacji: punkty réwnolegle, kolo-
kacja w maksimach wielomianéw Crebyszewa, kolokacja w punktach zerowych wielomiandw
Czebyszewa, i Legendre'a (punkty Gaussa). Stwierdzono, e gawssowska metoda kolokacii pro-
wadzi do najlepszej zbieznosei i daje dokladne wyniki nawet przy niewieikiej liczbie punktow kolo-
kacji. Przedstawiono wyniki dotyczace niefiniowe; analizy statycznej sprezysiych plyt kolowych
i powlok kulistych nzyskane metoda Gaussa i stwierdzono ich dobra zgodnosc ze znanymi wynikami.

Pezwme

TIOABOP @VHKIHE KOJUIOKALIMY JULS OCECUMMETPUYTION HEIMHEINHON
ABYXTOUEYHOM KPAEBOH TIPOBNEMB! B CTATMKE TIONOTHX COEPHUYECKITX
OBOJIOYEK

B pabore pacemarpusaeTcs OpofiieMs ONTEMANBLHOTO HoAGOPA TOUEK KOMFOKALMH, KOTOPETH
OPE 34A3HEOH TOTHOCTH, UPHBOAMT K MEHMMAJIGHOMY KOTECCTRY STHX ‘1odex, TTpoBeneH amaims

~ CXOIMMOCTH 17 CNYTad OCCCHMMETPUMHBIX, HOSOTHX Clepnaecinx oG0HOTeR, MONBEPIHYTLIX

Rozprawy Inzynierskie — 4
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DeHCTBHEC DABRHOMEDHON HATDYIKH, HPH JCTHIPEX CHCTeMAX TOYCK KONAOKATIAE: PABIOYNATEHHEE
TOYKH, KOITOKALMA MAKCHMYMOB MHOTOWIEHOB YeBpimessa, KOMATOKALHST B HYICREIX TOYKAX MHO -
rounenon Yebrimesa u Jlexamapa {Touxe I'aycca) KoHCTpaTHpOBaMO, UTQ TaYCCOBCKMH METO[
KOTTOKALMH UPHBOAMT K Hamnynreli CXOMHMOCTH B J3¢T TOURIS Pe3YIbTATEE TAKE HPH HeOOoNBIIoM
KOIMYECTRE TOUEK KOMIOKALMHA. -fIpencrapneHubl pesyNbTATH, KaCRIOMACCH HEMUHSHHOTO CTaTH-
HECKOTO RHANKIA YNPYIUX KPYTOBBIX IMHT U Cepricckinx 060M0Tex, MOy ICHHbE METOA0M Tay-
cca H KOACTPATHPOBAHHO MX XOpOINee COBNAMEHAC C HIBECTHEIMH PEIYILTATAMM.
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