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ON THE APPROXIMATE EVALUATION OF INTERACTION OF
CRACKS IN ELASTIC MEDIA

M. SOKOLOWSKI and E. TURSKA-KLEREK (WARSZAWA}

A method of approximate analysis is presented concerning the state of stress, and
the stress intensity factors in particular, in elastic media subject to a plane state of strain
and containing arbitrary arrays of cracks. In the case when the crack distribution is not too
dense, the method proposed makes possible the determination of the required siress parameters
in a manner resembling that used in solving the statically indeterminate systems of structural
mechanics,

1. INTRODUCTION

In a recent paper [1] the problem of interaction of cracks in elastic
bodies was outlined and discussed, the consideration being based. on the
approach due to which the cracks were considered as special case of material
defects. Following the paper by H. Zorskl [2] and several earlier papers
by J. D. EsHELBY [3, 4], the forces of interaction between individual cracks
were cxpressed in terms of the corresponding stress intensity factors.
Effective analysis of the phenomenon was demonstrated in the simplest
~case of bodies subject to the antiplane state of strain leading to the so-called
Mode III crack deformation, Approximate results of the analysis were
obtained by means of the procedure in which the cracks were replaced
with suitably selected, concentrated force couples. '

This procedure is now further developed and generalized to the cases
of elastic media containing several, arbitrarily distributed cracks and subject to
the plane state of strain. The cracks deform then according te Modes
I and TI, the opening and sliding modes. Analysis of fracture of bodies
containing cracks is based on the knowledge of stress intensity factors at the
crack tips. The usval mathematical approach leading to the determination
of the intensity factors consists in constructing and solving rather complicated
sets of integral equations; in most cases they must be solved numerically,
and the problem has been extensively discussed in an unpublished dissertation
by T.A. Putix [5]. In the present paper, another approximate but
relatively simple approach to the problem is proposed, resembling the
well-known procedure- of apalyzing the statically indeterminate systems of
structural mechanics. '
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2. SINGLE CRACK ANALYSIS

Let us consider a crack in the form of a strip |x} <a, ¥y = 0 extending
in the direction of the z-axis from plus to minus infinity (Fig. 1) in an
infinite elastic medium. The medium is loaded by forces T; acting outside the
crack and deforms according to the plane state of strain within the plane
x,y. As a result, the crack itself is deformed according to the opening
and sliding modes (Mode 1 and T, respectively), Figs. la and 1b.
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It was shown [6] that in such cases the states of stress and deformation
outside the crack may be determined by. analyzing the same solid body
loaded by external forces T in which the crack is replaced with a suitably
selected force dipole or force couple distributions depending on T and the
crack size 2a. Let us introduce the following notations. The densities of
horizontal and vertical forces distributed along the segment —a <X <4
of a solid body are denoted by o' and ¢?, respectively.

A force couple is now constructed in-the usual manner: for instance, two
horizontal forces +P, are applied at points ©, 8), (0, —6);. the limiting

_procedure in which & tends to zero and the product 2P, & = Py, remains
constant yields - the horizontal force couple (Fig. 2c); the: density of its
distribution is denoted by p'?. In an analogous manner the other force
couple (Fig. 2d) is introduced, and the two force. dipoles . (Figs. 2e, f); '
higher order couples and multipoles may also be constructed, and notations
of the corresponding densities - are shown in Fig. 2. The same indices
may also be used in denoting the stresses produced in an infinite body
by a single concentrated force, couple or dipole acting at the origin
(0, 0) of the coordinate system X,y Denote, for instance, by gy (x, )
the stress distribution due to a concentrated horizontal force Py = 1 (Fig.-2a)
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acting in the plane x,j;. Then the stress due to the force couple (Fig. 2c)
of unit intensity applied at the same point is equal to

12 d _
Uiﬁ'z (x,y) = “a C‘iﬁ' (x, »).
Similarly,
052 962 o' \
=22 _ =21 _ =11 _
(2.1 T Pl G F o i etc.

are then the stresses produced by other higher order couples and dipoles.

In the case considered in [6], second order force distributions were
sufficient to replace the action of cracks. It was shown there that the
single and double forces distributed on the plane ¥ =0 lead to the following
stress discontinuities across the plane: :

v
{[Uiy:u = kgi’ [[O-iyl = (Qli)’3 ;[O.J%J%]] = _"E (sz)la

Lopd= =0, [opT= —@'%. ' [o3']=(e*)).
Here the symbol [ f] denotes the jump of function f{x, y) across the plane
y=20, '

23 L/ e, 901 = Bim [ (x, 8)—1 (x, )],

and the primes denote the derivatives with respect to x.

It was proved that the stresses produced in an infinite plane x,y by
external loads and containing a crack according to Fig. 1 are the same as
the stresses produced in a solid, uncracked plane by the same external
loads, and the forces and double forces distributed along the segment.
—a<x<a,y=0, _ o

(2.2)
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In the case of Mode I crack deformation the necessary forces to.be
applied along the segment are 0** and g'* (or ¢** and 0'); in the case
of Mode II crack deformation, the forces are 0'% and o?! (or ¢** and 0% Tt
is easily proved that both force systems are strictly equivalent. The double
force intensities are calculated as follows [6].

Consider ‘the elastic medium loaded by external forces according to
Figs.. 1a and 1b. The two-dimensional problem of an infinite medium
loaded by external forces T may easily be solved (the plane does not
contain any crack as yet) and 'yields. the stress distribution ¢} (x, y). The
distribution of ‘stresses o} (x,y) along the segment —a<x<a, y=0 is
denoted by pj (x), while the ‘stresses o9 (x, y) along the same segment are
denoted by™ pd (x), ie. ' '

af, (x, 0) = p3 (x), -Model;
6%, (x,0)=p (x), ModeTL

The double force intensities are now calculated from the integral formulae

(24)

&

22 _ 4 (1‘1’)2 Pg (6) dé 11 _ v 22
(25) - Q (x)_ 1—2V J m’ Q - 1'—V Q L]
where -

: S PR
ﬂ@ﬁgflggwwm,

the last integral being considered in the sense of the Cauchy principal
value. :

The set of two double force distributions (2.5 solves the Mode 1
crack deformation problem. The other case of Mode II necessitates the
application of two other double force distributions:

- F P () de
9. 12 = 21 — - i ,
(26) o' (%) a@)zuwi po

where

PLE) =

_

L S 8w dr,
g t—¢

the last integral being also considered in the CPV sense. ‘
For instance, in the simplest case of an elastic medium loaded at
y=+oo by uniformly distributed  tension Ty = 0y, {x, £ ) and shear

(1 Functions p? (x), p} (x) are assumed to satisty the Hdlder condition.
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Ty = 6y (x, £ o0), the integrals (2.5) and (2.6) are easily calculated to yield
the “elliptical” force distributions

4 (1—v)? TV e~

C22 (e _
Q (x)_ 1‘““"21’ 2 X7,
4v (1—v)
1y VU=V T2
2.7 | o x)= ™ T Ja"—x=,

2 () = ¢! (1) = 2 (1—v) Ty /@ =%,

The final stress distribution in an infinite elastic medium containing the
crack and loaded by external forces is now obtained by summing up the
stresses a7} (x, y) and the stresses produced by the double force d1stnbutfon§,
Egs. (2.5) and (2.6) :

2.8 0y (6 Y) = a0 N+ Y [ @™ (€) T (x—&) de.

mn —a

The sum has o be taken over all ecessary palrs of indices, 22 and 11
in the case of Mode I, and 12 and 21 in the case of Mode II. The

functions &3}" play here the role of the Green functions and follow from
dlfferentiatlon of the known solutions concerning the plane loaded by
horizontal or vertical unit forces according to the formulae (2.1). The
corresponding stress distributions are given below. :

Horizontal force (Fig. 2a)

L1 oox o 2xy*
GixI —m[(?’—?&') —Z—TJ, E .
- 1 x 2
29)  Th= m[u ) % }
_ 1 y(x*—y
Fhy= — y (1 3 [2(1— }—+T].
Vertical force (Fig. 2b)
52 _ zv_y_ (x .—yz)J
> 4n(l-v) (l_v) r? ’
_ y (=Y
(210 &2, =-— 471 (1 9 [2 (1—- — :,,

2xy2
_2 _
Ty = 7 4n(l-~v)|(1 2)r T }
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Horizontal force couplel (Fig. 2¢)

_ 1 oy L x|
e p————— 4 =——1,
o 47 (1 —v} [(3 K = ré
L 1 axy oxy(xF—yH
2.11 12 .~ li=2
‘( ) G (=) [( V) @ +4 % ;.
1 xz __yl x?. (xz__3y2)
Fl2= —— (1 12 ‘
Tor = 4p (1—v) \:( ) = P * r®
Vertical force couple (Fig. 2d)
_ 1 2xy xy (x*—y%)
21— 1 {12 —4 ,
T2 = 4n (1—v) [(1. KA r°
L 1 2xy xy (x2—y%)
(2.12 21 .~ |@3- 4 ,
V= may [0 =
“ 1 2—y?  yr(3x*—y%)
e depe—— S R 2 .
% T T A (1—v) [( Nt e
Horizental force dipole (Fig. 2e).
H xz_yz 3x2_y2
gl — — | —(3-~2 2yt =,
Gxx 4']'5 (1_v) [ ( v) r4 + y rﬁ
1 xz__yz 3x2_y2
213 Fil= - 1-2 Ay ],
@13 dg (1 —v} [( i r* Y r®
vy 1 Xy x2—y* |-
U ) =220 4 .
Txr = 4 {(1—v) L (= v) o XV
Vertical force dipole (Fig. 2f)
i x2__y2 x2_3y2
G2 = —— | {12 —axr S0,
_ O 4 (1--v) [( ) r* x e
. 1 x2—y? x?—-3y?
214) Fhto—_ . 1 {3— 2
Q1) gy = oy [(3 2) S b
1 - 2xy x2—y?
—22 — 1_ | _4 .
% = T (1) [( AT Y TS
It is known that the singular behaviour of stresses in the neighbourhood
of crack tips as also the crack propagation conditions, energy relase rates
etc. are easily expressed in terms of the stress intensity factors Kf,
K& K K%, upper indices R, L reffering to the right-hand and left-hand
crack tips, and _subscripts denoting the corresponding deformation mode.
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The stress intensity factors may be expressed by the functions P and P
introduced in Egs.-(2.5) and (2.6):

@1y Ki=-P@ [ Ki=PY(~a) &S
(2.16) Ki=-Pl@ [=. Ki=Pl(-0) ﬁ

Once the stress intensity factors are known, the stresses in the immediate
vicinity of crack tips are determined by means of the well-known approximate
formulae. Using the notations shown in Fig 3, ie. 2 =(x—a)*+y* and

y4

FiG, '3.

0 =sin~! [(x—a)/r], the stresses in the neighbourhood of the right-hand
crack tip are written in the forms (cf, eg [8])

K cos 0 1--5in o sin 30
= 08 — | 1—sin — —
e S 2 202
Kf 6 ] 30
217 o, = \/2'; _cos?[u_sin?sin T]
= Kf cosﬂsin 0 COSs 30
Ty = N/ 2ar 2 2 2
and ' ' '
—Kii sin b [2+cos 0 co 39J
Txx = Y & LO5 =T,
\/2;. 2 2 2
Ky . 6 0 3¢
218y o, = sin - cos —- cos

* o 2 2 27
R . 3
Oy = 1 cos 9 [1 —sin 9 sin -—ﬂ]
\/2nr 2 2 2

The approximate formulae to be derived in the following sections of
this paper will prove to be fairly accurate at 4 certain distance from
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the cracks. In order to ‘determine the aproximate values of stresses close
to the crack tips, the formulae 2.17) and (2.18) must be used, the
values of the stress intensity factors being determined by the approximate
analysis presented.

3. APPROXIMATE REPRESENTATION OF A SINGLE CRACK

In the case of an elastic medium containing several cracks, evaluation
of the stress distributions opy (%, 9), a9 (x, ) used in Eq. (24) may prove
to be not so simple and leads to the necessity of solving a set of integral
equations. This problem ‘was discussed in the qunpublished paper by
T. A. Pucik [5] who reduced it to numerical analysis. However, as it was
shown in [7], in certain cases another relatively simple and fairly accurate
and effective procedure is possible. The procedure s applicable to such
cases in which the crack distribution is not too dense, and namely the
distances between the cracks are larger than their lengths.

The procedure is based upon .2 certain generalization of the Saint
Venant principle. To illustrate the approach consider the simple case of
* the Mode I crack deformation under tension T, (x) applied at + <0, Fig. la.
Assuming the double force density to be known, the resulting stress distri-
bution is written according to Eq. (2.8): '

T R T N P L

+ [o! ) a5t (x—=&, ) dE.
Since ‘ _ ~a o )
ot (x) = ¢*2 (%),
1—v

Equation (3.1) may be.rew'ritten in a simplified form:
(32) Uij‘—‘U:pj (X:,V)"' j Q(g)'&i}' (x—&,»dd

with the notations

o o v
0 (&)= ¢ (), Gy=3ai+ 1= G

The kernel &5 (x—¢,¥) in Eq. (3.2)7is now expanded (under the usual
conditions) into the power series of &; : : '
i aaij(xay)_’_ial 6-ij(x1y)_ _
1! ox 21 ax*
& (= day (x, ¥)
_,,Z‘O n! . oxX" .

(3.3) _ 3ij (?C‘“(:: y) =G (%, ¥)—
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Substitution of Eq. (3.3) into Eq. (3.2) yields

L feeo dé] Faaloy)

ox"

B4 oy(x,y)=a] (x,y)*“i [

n=0

The above formula represents a particular case of a more general formula
describing the stress field produced in an infinite medium by arbitrarily
distributed forces p; (x), p,(x) applied along the segment —q<x<a,
y=0. 1If 6f;=0, then '

ay (e, )= [Py Q)G (x—E, y) de, + [ P @ afi(x—¢, p)de

and, using the expansion (3.3), the stress asumes the form

2o " 51
(3.5) a0y (x,y)= ZO Ij.(_mnlr_)_ f‘pi (&) & df] _%ch’_y)_i_
R | 52 (x,
+n;0 [Lni_)_ fpz e ng L@jﬁc_ﬂ

—a

However, according to Eq. (2.1),

—q —11

oy — Flt __“a_“i;__ _ =111

(36) ax Mo Ox Vo
: =2 =27

05 _ =21 da =211

- =0ij, - T

ox dx .

Let us use the first six terms of the expansion (3.5)

67 oyt =[ [ n @1+ { epy @ oti+
5 U O @l ol oL [ pa @1 o34 L | e @ )73+

o[ § & p@dg ot

MJH

In the right-hand expansion of Eq. (3.7), the first term of the upper
line and two terms of the lower line may also be written as

Py 55 (x, )
and

P, Eﬁ- (e, y)+.4#, 63 (x, y).
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It is easily seen that they represent the action of resultant forces &,
#, and couple .#, of the loads p; (x), p,(x) applied to the segment
2a. In a rigid body they are statically equivalent to the distributed ioads
and suffice for the determination of static equilibrium of the system. The
remaining terms of the expansion (3.7) are the necessary corrections which
must be taken into account in discussing the behaviour of a deformable
medium, ) ' '

let us return to Eg. (3.4) and write explicitly the first three terms
of the expansion '

(3.8) oy (x, p) & ol (x, Y)+Ro 6y (x, ¥)—
I 86, (x,y) | 1 864 (x, )
— R ke T

Here
69 Ro= [0@it, Ri= [Q@de, Rp= J&e@dl

In order to stimate the accuracy of the representations (3.8) and (3.9),
let us consider the well-known particular case of uniform tension T, = const
applied to an infinite elastic mediufn containing a single crack. The accu-
rate, closed form solution to the problem is known [9]. Since in such
a case o9, (x,0)=p° (x)= Tp (cf. Eq. (2.4)), from Eq. (2.5) it follows that

. ’ S22
P = :;—2 J'—:I:detz -5 &,
(3.10) e

x

4(1-v) Tzf gde 40— 3

= T, .Jja - —x“.
1-2v 2

\/?Tl? 1—2v

Consequently, -the corresponding values of Ry, Ry, R, of Eq. (39) are
calculated, . : :

0*? (x) = —

—a

Y
RO = Z'RTZ aZ (]1- ? ) R1‘=0,
(3.11) ' Y ] _
1 (1—v)
Rs = nT, a* -
D IR T

and_&u is determined by means of Eqs: (2.'13} and (2.14):

o v 1—2v  x*4-6x2y2 -3y
(312) Tyy = Gﬁf-l“ _1:' 6;1'1 ak a4 (1 _V)Z _ (xz +y2)3
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Differentiating Eq. (3.12) twice with respect to x, the approximate formula
(3.8} takes the form : ' '

2 A4 6x2 23t
(3.13) ayy(x,y)wz(uf‘_x TOX YTy

2 (x2+y2)3 -
3, xS415x*y? —45x% yt 4 5p0 0
——q .
8 (x2+y2)5

_ The formula (3.13) representing the truncated series (34) holds approxi-
mately true for points (x,y) lying outside the region of divergence of
that series, i.e. outside the circle x%+ y? = 4. The accuracy of the formula
(3.13) is also low in the vicinity of crack tips x = +a,y=0 where the
near-tip expansions (2.17) should be used. Let us, for instance, analyze
the points lying along the x-axis, i.e. the points x > a,y=0. The known
~accurate ormula yields the gy, stresses '

X

x?—a?

G4y o, (x,00=T,

while the two consecutive approximations following from Eq. (3.13) are

ey
(315) . (Tyyz Tz (1+3‘ _)CT)’
1 a* 3 a*\.
The near-tip solution (2.17) has for € = 0, r = x, the form
T,
(3.17) Oyy & — e

- 2{x—a)

The ranges of applicability  of vari\c{us approximations may be estimated
by - comparing - the values given in Table 1 under the assumption that
T, =1, ' . : ,
‘The near-tip expansion (3.17) is seen to yield satisfactory results in the
close vicinity of the crack tip 0 <x—a < 0.05a, while the asymptotic
expansions exhibit the accuracy of 99% (or better) for x—a > 1.5z and
x—a > 0.8a, respectively.

4. TWO PARALLEL CRACKS, MoDE I CRACK DEFORMATION

Consider now an infinite medium containing two parallel cracks of
lengths 2a,, 2a, located symmetrically with respect to the y-axis (Fig. 4)
at the distance of h from each other. Let us assume that the external
loads are such that both cracks are deformed according to Mode 1
(normal loads are symmetric, and shearing loads —— antisymmetric with
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Table 1. Various approximatiens of stress o,, along ihe x-axis (Fig. 1a)
in a plane suobject to uniform temsion T, =1 and containing a crack of

length 2a.

x/a Eq. (3.14) Eq. (3.17) Eq. (3.15) Eq. (3.16)

1.001 22377 22.361

1.01 7.124 7071

1.05 3.280 3162

1.10- 2.400 2236

1.20 1.809 1.581

130 1.565 ) :
. 140 1429 1.255 1.353

1.50 1.342 1.222 1.296

2.00 1.155 1.125 1.148

3.00 1061 _ 1.056 1061

5.00 1.021 1020, | 1021
10.00 1.005 1.005 1.003

FiG. 4.

respect to the axis). In order to calculate the double force intensities
0?2 (x), o' (x), Eq. (2.5), and the stress intensity factors, Eq. (2.16), for
the crack —ay <x<a;,y=0 (Fig. 4), let us first determine the function
P} (x). Due to the existence of the other crack, however, the function
p? (x) defined in Eq. (24) appearing in the integrand of Eq. (2.5) represents
the stresses measured along the segment —da, <X < ay,y =0 of the plane,
produced not only by the external tractions T (Fig. la) but also by the
other crack 2a,; the latter crack is now represented by suitably distributed
double forces 9?2, o'l along the segment —d; <X <dz, ¥ = h. The forces
are unknown as yet but let us make the assumption that the distance
between both cracks is large enough (as compared with the crack lengths
2a,, 2a,) to enable us to write the function p3 (x) in the form

(@4.1) p3 () = 23 (x)~1;~qg (x),

o x ' X2\
g5 (x) = qo+d1 —td2t 42 l——]
. a4 3
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Here p" (x) arc the stresses o,,(x,0) produced by the external tractions
T, and qo, gy, g, — unknown parameters of expansion of the stresses
produced by the other crack 2a, into a polynomial series. Tt is obvious
that (cf. Fig. 5)

_ -
ATH I
AT N
- LT
oy LLLH
8 K
0 x
a - a
Fia. 5.

B (—a=q—aq1, GO =qo+q, @G@=q+q.
Substituting the expression (4.1) into the formulae (2.5} and (2.15),
we obtain the values of P,(x), ¢**(x), K and K! produced by the
unknown double forces distributed along the second segment 2a, The
following results are obtained:

i

‘ x - 1 %%y
@42y  P(x)= —qoa “Z‘Hh a; (?— ;2")—

| . L 3i_2£
, : _' o ' : ai )’
4(1—v)2~' / T |
{4.3} 22( )— |:‘I0 ay 1——4‘2 A 1-—*
a3
. 3
B 3 6 -~ gy.0, (5 zm) 1~i‘—].
_ S ay al

‘The stress intensity factors are expressed in terms of a6 G1, q2 in the
following stmple form (Egs. (2.15) and (2. 16)): :

| 1 1 :
KiR = <QQ'+"2— Lh_‘f“? qz) A/ Tdy,
1 1
Kf= 5 '3’1+2 gz | /Ty,

(4.4)
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The complete values of PJ, ¢*2, should also contain the contributions
of exiernal loads T applied to the infinite medium (the first right-hand
term of Eq. (4.1);). Similar fomulaec must also be written for the second
crack. '

Let us now. return to the formulae (3.8) and (3.9). The stress field
produced in an infinite plane by the loads g3 (x) (4.1) distributed along
the segment —a; < x < ay,y =0 may be written in the approximate form
(3.8) resulting from the expansion (3.3). Normal stress o, (x, y) is found
to have the form (for simplicity the sign = is replaced with =)

€Gyy (x, )

@4.5) oy, (x, ) =0y, (x, »)+Re Gy (%, ¥)— Ry .

+

1 0% 6,,(x, y)
2R, LN
o ox?

Here o}, {x, ») is the stress ﬁrocluced in a solid body (without the cracks)
by external tractions &, (x,y) 1 given by Eq. (2.14), and Ry, Ry, R,
follow from the formulae (3.9) into which ¢**(x) (given by Eq.~ {4.3)

should be substituted for g (x). The necessary substitutions yield
(46) Gy (xa JJ)= G]?y (xa J’)+

/1 3 _
+('2—€10+’g— q;) E*+6E2 2 =3r*) o+

L
+g g1 (E3 41083 2 —158n*) 07+

3 1 ;
+(§ o+ ‘h) (E0+15¢% 9> —45> ' +51%) 0710,
In this formula &,4, ¢ are dimensionless coordinates,
£=xfay, n=ylay, @ =&+n".

The order of consecutive terms of the expansion (4.6) decreases and in
practical applications the first two terms of the series lead to satisfactory

results: under this assumption the formula (4.6) may be written in a simplified -

form. Together with the remaining two stresses, the following results are
obtained: Lo ‘

@7 . oy =0%+ (? dotg Q2)~(£4+6£2 3% e+
| _ B
g @ (E+ 108 158" 0",

l(4.8)

)

1 3 ; _
xx = ng'i'(? o +“§ QZ) (64_652 '12“1"?4) g 6+

1
+5 0 (£ 1483 > +9n% ™",

y
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1 3 : B
{4.9) axyzcrﬁ?ﬁ(?qﬁ?q;) Q& n—6&n%) 0%+

1 -
g a0 B 1822 P 1 3n%) @70,

These formulae may be used in determining the interaction of cracks
deforming according to. Mode T. _ _

In the case shown in Fig. 4 let us assume, for the sake of simplicity,
the external loads to fulfill the symmetry conditions

O-,scl}y (x) y)zagy (—x, J’), Ugy (X,Y)= _Ggy('—xz J/)

This assumption leads to the result g, = 0 as it is seen from the inspection
of Egs. (4.3) and (3.9). ‘

Let us now assume that the distribution of normal stresses o,y (x, 0)
along the segment —ag; < x < a; is written in the form of two terms of
order zero and two:

] xZ ..
(4.10) P2 (X} = go+4, (1—?)-
1
Then the combined action of external loads T and of the (unknown)
distribution of double forces along the crack 2a, produces the following
stress field: ‘

' /1 3.\, x*+6x? B2 —3p*
4.11) Oy {x, B) = J‘fy {x, h)+(? o +§— Ch) ai 2+ 2y

This formula holds approximately true at a certain distance from the
origin of the coordinate system, outside the circle x2 - y:=a%
At the center of the other crack, x =0, y=h, the stress (4.11) yields

‘ 1 3 3a?
(4]-2) Tyy (Oah) = GJ{J)JJ (0’ h)—-(? q0+_§ Q‘z) ".h—z'i—a

and at its ends, x = +a,,y=h,
(413) Tyy (iaz'a h) = Ggy (i as, h)_
1 n 3 3t —6h? af —ad

| 2 T )Ty
These values may be denoted by qo+4q5 and ¢, respectively, what is evident
from the inspection of Fig. 6. Equations (4.12) and (4.13) make it possible
to write the first set of wo equations with four unknowns G0, q2+G0, Ga:
| 0 3 2 9 ‘ 2 ’ I ‘
(4.14) Tyy (Oah)—“i‘% #1—g 92 % = o+ 43,

3 9 - - .
(4'15) UJ?}' (0! h)'——z— do F (052) OC%—? qz F (“2) OC% = QE;»
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iy d
_ =
L "g’r
3 a @ [
) Pt
= ¥
|
1 ; R -
. o
2o o
F1G. 6.
I{eré
~ 1—20% —a*/3
(416) ) oy = a,-/h, F (C&',) = W

The remaining two equations are obtained by expressing the values of
p3 (x) along the first crack —ay <X <4ay,¥= 0 in terms of T and the double
forces distributed along the second crack:

3 9
@1 a3y (0,0)— do B—o 405 = do+ s
o 3 | ' 2 9 = 2
(4.18) ayy (a1 0)“‘:2— do I _(“1)_“2——5 gy F (01) 03 = do-

This procedure may “easily be generalized to the case of an arbitrary
aumber of N cracks parallel to each other and symmetric with respect
to the y-axis (Fig..7). The lengths of the cracks are denoted by 2ay,
k=1,2,..,N,and their mutual distances -— by hy,. The set of 2N equations
is written in the form

N 3 9 .
(4.19) 6%, 0, hym— 2. (_—2“1’64”8—4’5.) o = 40+ 42
- kkzi_
0 S 3 LAY -
(4.20) Tyy (> Pymd— Z EN %'l‘—g‘ g5 | e F (otgm) = d00 -
k=1 .
kym .

Here &y, = /My - The solution of the system of Egs. (4.19) -and- (4.20)
yields the values of the parameters g5, ¢% which in tarn enable the deter-
mination of all stress intensity factors and of the approximate stress
fields outside the cracks.

In order to estimate the accuracy of the procedure leading to Eqs.

(4.19), (4.20), (4.14)—(4.18), let us consider the simple case of two equal and
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parallel cracks of lengths 24, located at the distance of 4 from ecach
other. Let the infinite plane be loaded by uniform tension T, = const
at infinity (Fig. 8). The set of Egs. (4.14) —(4.18) is then reduced to two
equations with two unknowns (g5 = ¢, q5 = ¢5):

3 [ 9 '
do [1-+70c2 F (a)]+-8— @ F ) =T,

3 : 9 ‘
o (1+7 az)+qz(1_.+§oc2) =T,

yh

_t_L_T__ 4t _T_;[ %
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The solutions 9 3
1+§ 052 [I—F (OC)] 70(,2 [1—F (a)]
do = - T, qz=— T3
9 3 9 3
1 2 2 1 2 2 F
+-——8 o -l-—g o’ F () | +#8 o o 0 (o)

are now used to determme the stress intensity factors (all the factors
are 1dent1cal due to full symmetry) from Eqgs. (4.4), ‘

1+ioc2 [1-F (o]

@2 K= 5‘3 T, \/na.
1+~8—oc—|-80tF(oc) '

The formulac derived may be compared with the results obtamed by
means of two other, slightly modified procedures a) and b), one of them
more accurate, and one based on certain additional simplifications.

a) Let us return to Egs. 3. 8) and (4 6) —(4.9). In the formula (4.7)
for ¢,, the last terms of expansions (3.8) and (4.6) were disregarded.
Takmg now the term multiplied by R, into account and using the complete
formula (4.6) (with g; =0), the modlfled set of Eqgs. (4.14) and (4.15}
assumes the form :

o, (3, 15 N
(maqwﬁ=$&Mw{7@"§@—; |
9 3 N
T‘h("goﬁ—fﬂﬂ‘{);
P 0 : 3 15 ' 7
424) qo = oy, (az, k) —dq _3"051 ¥ (Oﬂz)ﬁ?.alﬂ (og) | —

9 5
—‘12_ [48— Oﬁ% F (a3) Y of H (052):]-
' Here in addition to Eq (4 16), another notation is 1ntroduced -

1-94%+30* +o8/5
Tt

"~ In the case of two equal cracks ay —aziﬁawh Eqgs. (4.23) and (4.24)
yield the solutions for go = qp and g, = 43, @ o =T

- 1+—§— o2 (1 ;-F-)_ajf o (1--H)
g0 = e T,

- H ‘(oc)

(4.25) 4 s |
' o (1-F)——o* (1=H) |
) 8 S
.q2 = = - A T,
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with

F=F(@, H=H(@),
3 2 3HF 15 L, 24H 15

+‘0f6 (F—H) .

A:
A=143 i T3 T3 ta

The correspohdi_ng value of the stress intensity factor Ki=Kf=K, is

L3 2 7 5 4

(4.26) . Ki=T</na:

4

b) A certain simplification of the procedures outlined above may be
achieved by assuming the function g9(x) in Eq. (41} to be constant,
g3 (x) = §o, the other parameter q, being usually much smaller than qo-
Equation (4.11) yields, with ¢%, (x, y) = T, the formula

' | 3 -, 1—2xYh?—x*/30
e T
The mean value o*f,f, of o, (x, h} Ovef--the-segment —d, <x<a, is given
by the integral formula R

az

(4.28) o, (x, h) dx.

»y _‘20‘2
—ay

By substituting the expression (4.27) for the integrand in Eq. (4.28) and
. taking into account that ’ ,

1 J‘ 1—2x2/h? —x*/34* L4ad/3

2a, A T e

—az

the required mean value is obtained:

@429 ‘U;;?-Tzﬁj%miw-‘

_Since, on the other -hénd, ‘this value may be denoted by g5, and a similar
reasoning may be repeated with respect ‘to the other crack, a simple set
of two equations is obtained: o -

. I _ I+a3
: Go="T~—q, % )
, : ) [
@30) | | (1 +_°'2)
_ 1, , 3+at
o = L3 —— e

IR T



134 M. SOKOLOWSKI AND E. TURSKA-KLEBEK

enabling the determination of the corresponding approximate values of the
stress intensity factors.

In the case of equal cracks a;=a; =a, go is found from a single
equation: ‘ :

431 o = T2
. ) do = 1+_3—— ) 1+G2/3 s
7% A+

and the stress intensity factors K= Ki = Kj are

432) Km— 2N
1-|——3— o s iEs
2 (L+o?)?

Numerical values of the approximate formulae (4.32), (422) and (4.20)
for 0.05 < & < 0.30 are given in-Table 2. The results confirm the applicability
of the simplified approach b), Eq. {(4.32).

Table 2. Varions approximations of the stress intensity factors

Ky/T; «/na for twe equal cracks (Fig. %) in a plane subject to
pniform tension 3.

a @.32) 4.22) {4.26)
0.05 0.9963 0.9963 0.9963
0.10 0.9855 0.9856 0.9857
0.15 0.9685 ' 0.9691 09697
0.20 ©0.9469 0.9484 0.9506
0.25 : 0.9219 09255 0.9300
0.30 0.8952 0.9019 0.9098

5 TwO COLLINEAR CRACKS, MODE 1

Let us now consider the case of an infinite elastic body containing
two collinear cracks |x| <4y, jx—1| < a; shown in Fig. 9. The resulting
stress field cannot be symmetric- with respeci to the centers of the cracks,
and hence the load ¢3(x) in Eq. (4.1) must be assumed in the form -
containing the parameter ¢;. In order to limit the number of equations,
let us assume that g, =0 and write the function p2(x) in the linear
form:

, . | .
(5.1 . p3 (x)=p3" (x)+610+¢i'1a—1~

The stress a,, (4.7) is* written in the form
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Fic. 9.
1 14683 91—t
(52) Oyy (él’ '11)= ng (él‘s "1)+§‘ 4o c 1@(1; +
1 41083 p2--15 4
+?q1 E14+ 1083 '?; 1 ’11.
Here ' e1

$1=xX/ay, ni=yla,, gi= 5%"‘71%

Equation (5.2) represents the stress field produced by external loads T
and a central crack 2a; for sufficiently large distances from the center
of the crack, ¢, > 1. The parameters do, 41 depend ‘on the external load
T and upon the other crack at which their counterparts are gj and q%,
Fig. 9. It is seen that the stress (5.2) at the center of the other crack,
ie. at x =1,y =0, should be denoted by go; with the notation A, = //a,,

the first equation has the form . :
63 (0 =0h 0 ol g

- while the other parameter q’z' is defined as. he mean slope of stresses
{52} along the segment |x—{] < Ay,

-, 1 . .
- q1 : _2— [ny (l+a2)_ayy ([_aZ)]
what yields the second equation

(54)

)

.1
175 Loy (i +0a1) —0, (A —oy4)] —

! [ 1 1 ] ES [ 1 1 ]
4% (g —az1)? (A Fogy)? 16 7 (A1 —oq)? (21"‘9521)3 ‘

Here VOC21 = az/ai.
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Repeating the same procedure with respect to the other crack, another
set of two equations is obtained. The complete set of four equations with
four unknown parameters do, 41, go, g1 may be put in the form '

~ qof24% - 1/823 + 4o = Gy, (41, 0),

ot _Jﬁ]+ﬂ[rfﬁp_;]+
OGO T Gaton | 16 | (Ga—may)®  (Ritoad)
1 : )

+q'1*""?[O'gy(3-1'1"12"1,0)_‘7?;,(A«x—“zb{))]a

(55) ’ :
%‘%/2}54‘41/83% = gy, (0, 0),

B P
V| (g (A +o2) 16 (%‘“12)3

1 i
- (71;)43} =5 [69, (012, 0)—ayy (=12, )]
; 2 T 12

In the case of equal cracks, a; = dz, %12 =1, A, = A, and the load symmetric
with respect to the vertical lmne x= 1/2, the set of Egs. (5.5) is reduced
to two equations for g = ¢o and g4y =4q1:

1\ i
(1_‘5‘?) qO_W g1 = ng (09 0):

1 1 1 1 | i
59 5| er- — "°+{1_?[W”W]} "=

i
= 2 To%, (1,0)=a3, (~1,0)]

with the solutions
_ L 1 1 1 LS 1
T4 8| (A—-1° A+ A 8A%”

T 1 1 +_s£_(1# 1 )
D= G G 4 222

do
(5.7

Here

Ty 62,0,0),  So= [0 (1,0)—0% (— 1,012,

1 { 1 1 1 } 1 1 ]
A= 1—%1$m_ ’—H’%~ —I
( 242 8 [(ﬁ.—l)S G+ [f 22 LGa-1)* @A+
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For sufficiently large values of 1 (say, 4> 4), the formulae (5.7) may be
|

simplified: _
3\ 1
& (I_W)”" 7
do = :
1—-1/24%—3/42*
(58) 1 / / 1
TO—F"_SO (I—W) :
gy =

1= 17217 _3/44*

The corresponding stress intensity factors are, according to Eqg. (4.4),

(i b3\ g (L 1 1
. o\ T )Tl
KR = Vma,

1-1/22% Z3/45%

nio=t _ 3 ) g (1 1 1Y
Ko N\ 204 TR0\ g T gy Ja
= 1= 1222 _3/a)% -

Under uniform tension T, = const applied at infinity, when T, = T,
and §,=0, it is seen from Eq. (59) that the existence of the other
crack increases both stress intensity factors (%) at the first crack, the increment
being greater at the “inside” crack tip, x = a, and smaller at the “outside”

tip, x= —a. Table 3 presents the values of KT, \/na and KYT, /na
calculated from Eq. (59), and the corresponding values as given in [97].
At larger values of 1 the accuracy of approximate results is seen (o be good.

Table 3. Stress [intensity factors at two equal collinear cracks under uniform
: tension {Fig, 9).

Formulze (5.9} According to [9]
Ya=2 K% Jra  KiTo/ra KTy fma  K¥T, Jra
30 1.0396 1.0792 1.0517 1.1124
3.5 1.0306 ' 1.0550 1.0373 1.0688
4.0 1.0243 1.0404 10280 1.0480
45 1.0197 1.0310 1.0220 1.0353
50 1.0163 10245 . L0179 . 10272
60 10117 1.0164 10125 10176
70 1.0088 10118 1.0091 1.0125
80 1.0069 ' 1.0089 1.0071 1.0092
90 1.0055 1.0069 ' 1.0057 * 1.0071
100 1.0045 1.0055 1.0046 1.0057

@ Contrary to the remark made in [9], for small values of a/l €1, the ratios
Kf/T, \/x‘z K, \/Ez E-+a?/21%, and not 1—aji,

7]
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6. OTHER CRACK ARRAYS

Let us consider infinite rows of equal cracks of lengths 2a, either
parallel like in Fig. 10a, or collinear fike in Fig. 10b. Equal distances
between the cracks are denoted by h and |, respectively.

Starting with the case of parallel cracks let us assume the external
load to be symmetric in X, Oy (x,y)= 0y (—x,y) periodic in y so that
o3 (x, y) = Gy (x, y+h). The latter property means that the deformation and -
stresses at all cracks are identical, and the same applies to the function
pd (x), Eq. (2.4), which is the same for all cracks |x| < a,y=kh, k=0, +1,
+2, +3, ... With two unknown  parameters do, 42 the entire problem is -
reduced to a simple set of two equations. The stress 72 (x) produced at
the segment [x| < a by all the remaining cracks must be written in the form.
of a series {cf. Bq. (4.11): ' '

6.1) o6,x0= oy (x,0)+ ‘
f1 3 .0 54+6k2 xz é2_3k4 X4
3. = — S T A

(2 QO.+ 3 ‘12) kzll . (62—]—.’(2 x2)3
with the notaﬁon y = hja = 1fa. :
Equations (4.14) and (4.15) assume the form

3 1= 1
do+dz = Oy (0,0)—3(40"'? q2)n— Y e
(62) X k=1
' L oo k4 4_2k2 2_1/37

| 3
= 0 0, —3 4 — N
o Tyy ( a) (QO 4 ‘h) k;1 (kl x2+ 1)3 . >

which may easily be solved to yield the necessary parameters. The accuracy
of approximation (6.2) is demonstrated on the example of uniform tension
T, = const applied ‘at y = £ 0. Then o9, (x, y) = Tz, and since [10].

© 2 w  j4 12 2 __ 43 2 4
vl S KU AP T
Tk 6 (k2 -+ o%) 6 18

1
the solution
| +n* ot/ a6
Go=To "2 37 _4 %24 =1 T2 gt 4
j+rtet2—7 ot 24 1472 /2 ot otf24

yields the approximate value of the stress intensity factors

1+t atf24
L gR_ A B
©3 Ki=Ki =T /19 {7 o '

Another approach to the same problem may be based on the assumption -
that the stress o, (x,0) produced by all the remaining cracks x| < a, -
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y=tkh, k=1,2,3, .., is almost constant along the segment |x| < a, y =0.
This leaves us with the approximate formula (cf. Eq. (6.1))
2 (x/h)t + 6k (x/h)? ~3k*

0 (x,0)=T+qp k§1 A

The mean value of ¢,, (x,0) in the interval —a < x < a equals

a

I
(6.4) aﬁf,z—z-;faw(x,O)dxth—qo ot

—-a

& a3k
= (KA

Equating this expression to go and taking into account that [10]

© g2 43k 1 = 1
. = — —ctghmyg—— — |
63 le (o2 -+ k*)? 202 + o CENTE 2 sinh? no
the solution is written in the form
- 5
AR

where S («} denotes the sum (6.5). The corresponding stress intensity factor
is- then :

(6-6) K{J= K{{ = E\/;ﬁ;_m—@t—)

Table 4 presents the values of Ky \/ﬁ calculated according to the appro-
ximate formulae (6.3) and (6.6) and compared with the values taken from
the literature [11].

Let us now pass to the case of collinear cracks shown in Fig. 10b.
Also here, in view of the symmetry with respect to the vertical axes
bisecting the cracks, all pd(x)— functions are the same for all cracks
provided the load is periodic in x, and o (X, V) =0, (x+1Ly). It also
follows that the parameter g, in the expansion {4.7) must be zero, and
hence the formula

{1 3 x4 6x7 y2 -3yt
(67) Tyy (x, y} = G'J?y (x > }})+(E‘ qo +—8— qZ) (xz +y2)3 a*

Table 4, Stress intensity factors in a plane containing an infivite -
namber of parallel cracks (Fig. 10a) under uniform tension.

afh Bq.{63). | FEa66) | 111,
010 | 09537 09535 '
0.20 0.8452 0.8409

0.25 07859 | 07759 * £ 0.7896
0.30 0.7319 0.7118 0.7344
035 0.6873 0.6516 0.6868
040 0.6549 0.5969 :
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is used to calculate the stresses produced by a single crack 2a located
at the origin of the coordinate system. Formula (6.7) is now applied,
after obvious modifications, to evaluate the stresses in the interval —a < x <4,
y = 0 produced by a crack x =kita,y= 0:

oo (1 3 - a
crw(x,O):o',,,,(X,O)f‘l' ?q°+§qz k=X

Summing up the contributions of all cracks k= +1, ¥2,.., ‘the strésscs
at x=0 and x = }a are written in the form of infinite series; it is seen
from Fig. 10b that : '

. - ‘ Tyy (X,‘O)quo“l'“qz, o'yy(x, ia)-;qo_
The set of equations for the two Vunkn'own parameters has the form

3 . oo 1
qo+qz#o$y(0,0)+(f10+—c1z &y T
o _ 4 ok

' N NS S S S K
go = 6o, (+a,0 _—}—(v—— i o? [»——’——i- —— |
07 .‘IF}'( a ) 2 q() 8‘12) .,2;1 (k_[x)?_ (k+m)2 (
In the particular case of uniform tension T applied at y= % ool
al, (x,y) = T, = const, and- the solution of the system of Eqs. (6.8) is’

(69)

".1"5"-1“0!52‘41-.

go = Tr— s
: 1—a? LA
) i 6 4
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: i
2 ‘ , !
T . Z —L |
41 = — 1 » = o
S{m 4\ A G
R LA
6 4

The corresponding stress intensity factors (4.4), the same for all crack tips,
are expressed by the formuia

| 140 A4
69 Ki=K;=T, \/na T
1—o ( c 4)

Another approximation of the same solution may be obtained in a simplef
manner by assuming the stress pd(x) to be constant in the interval
—a<x<a In the formula

e L
610 0y 0 =0 (05— ¥ [ Wi—xp (kz+x)2]’

the expression in brackets is replaced with its mean value

a

IR [RRUTR P
20 || ki—x?  W+xPF | TR P—d

—a

‘and, since [10] _
g 1 1 7 _
L T a2 B

‘ g is found from the'single alg'ebraic equation
" o 1 na
do = Oy (x, 0}+qq ?—]——z—fctg e

The stress intensity factors in the case of uniform tensi_o_n T=1, o (x,0)=T5,
is’ ' - ' ‘

Tzf

— (1 + e ctg noc}

1y Kf=;c§—

.'jIn Table 5 are presented the values of KI/Té \/EE calculated according to
he formulae (6.9} and (6.11).and compared with those given in the literature
8] Accuracy of the simplified formula (6.11) is seen to be very good.
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Table 5. Stress intensity factors in a plane containing an infinite
number of equal and collinear cracks, Fig. 10b, under uniform

tension.

ajfl 1  Eq.(69) Eq. (6.11) Rice [8]
1/10 1.0167 10168 1.0170
19 1.0207 1.0209 L0214
1/8 1.0264 10267 1.0270
1/7 1.0347 1.0352 1.0359
1/6 - 1.0478 1.0488 1.0501
1/5 ' 1.0703 10725 1.0753
/4 1.1141 1.1202 1.1284

7. MopE 11 crack DFFORMATION. COMBINED MODES. INTERACTION FORCES

Lét us consider an infinite medium containing a single crack x| < a,
y=0 and loaded in such a manner by external forces T that the crack
deforms according to Mode 11 (Fig. 11). This means that in absence of
the crack o}, (x,0) = p3 (x) =0, and a2, (x,0) = p} (x} # 0, cf. formulae {2.4).
Hence the action of the crack may be considered as equivalent to the
action to a set of horizontal and vertical force couples distributed along .
the segment |x] < a according to Egs. (2.6)¢Since both intensities o'? = 0%,
Eq. (2.8), stresses

Oij (x’ y)':Ji(‘)i (x’ y)+ I
+ _I [0'2 (&)@} (x—&, p+e* @ T3 (x—&, n]dé

may be written in a compact form

.0 0y (6 9) = 0§ G0+ 0@y =89 dE.

I DA

N

| S

l = |

I S

5 b [ x

‘ _a a__ !I

l——‘.—_:":.:;'.‘_—.-'f;::l

h T
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i

Here

e ©)=¢""O=0"0©,
and
(7.2) - Gy= Tl +a2".

The stresses 3,-}2, .Ef,-l are given by Egs. (2.12) and (2.13). Expénsion of

6;;(x—¢&,y) into the power series of &, Eq. (3.3), and the procedure
-analogous to that applied in Egs. (3.4) —(3.9) leads to the following formula
for stresses in which, for take sake of simplicity, only the terms containing
the parameters R,, R, arc preserved:

86-:'1? (xa y)

(73) =

oy (x,y) = crf} 0, Y1+ Rg 655 (x, Y)%R1

: . .
Here, as before, R; = | & e (&) d¢, and the suitable force couple distribution

must be substituted for e (€) _
Let us assume that the stress Oy (x,0) produced along the segment

[x{ < a is written in the simple, linear form (cf. (4.1)):
o4 Y= p{" ()+43 (),
' g1 = qo+4¢, x/a.

On substitituting Eq. (74), into the formulae (2.6), the following results
~ are obtained: :

. 1“ - FEEN
PO = —atrgaa(1-25)

.xz

75 @)= 'g“(x)=2(1_1»)'a(q(,+%q1 x)\'/i——z,

a a

1
Ro=ma*qo(1-v), Ry= ‘8"7’593 g1 (1-v).

The formulae (2.14) and (2.15) lead to the stress &,,, Eq. (7.2),
' _ | x*—6x% y? 4yt
7 2p (1—v) (2R

Finally, substitution of Egs. (7.5) and (7.6) into Eq. (7.3) vyields the
approximate expression for the shearing stress:

(7.6) &

, x*—6x% y?+y*
(x*+)%)?

1
(1 Oy = 52y+-i— go &
1 5 X°—14x* y2 4+ 9xy*

+? q, 4 R -
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Equation (7.7) represents the Mode II counterpart of Eq. (3.13) derived
in Sect. 3: it is now used to analyze the problems of several cracks
subject to Mode II deformation. _

Let us consider two simple examples of two equal cracks of lengths 2a
in two positions: parallel (Fig. 12a) and collinear (Fig. 12b). The exter
load is assumed to be represented by pure constant shear g1, ) =T =
= ¢const applied at y = Fco.

a b i

_yn n | y T
1 . {"——_M——_-m_—'—#mj
| e | n & |
| aldl], | | o FFerTT- |
1 7S R CH R M X
| X [ !
e ! - |
i::_-_-m_ 4'_——:—'7! T T e e i

T : T
" Flo. 12

In the first case shear stresses ¢J(x) along the segments |x| <a,y =0
and y = h are assumed to be constant, the second order term ¢, in Eq. (7.4)
being disregarded. The stress oy, (x,0) produced by the external load T; .
and the force couples replacing the other crack is, according to Eq. (7.1),
equal to

1 x*—6x2 h2+h*
(7.8) Oy (x,0) = T1+—2— go @° TR
Let us assume that, with a/h <1, the stress oy, (x,0) in the interval
|x| <a is equal to its value at the center, ie 0y, (x,0) = gy, 0,0); on
substituting x = 0 into Eq. (7.8) one obtains (in the case of equal cracks)
the simple equation

1
(7.9) Qo = T1+"i“ go &

with a = a/h. Tt follows that
q 4L
o= 4
1=ty
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and, since (cf. Egs. (2.5), (2.6) and (4.4))
AN 1\ —
(710) ' K;} = (qo +? ql) VAN Kfi = (QO_? ‘ZI) T,
the stress intensity factors are '
1
. 1 *

1“--2— 052

A more accurate result may again be derived if the mean value of
0.y (x,0) over the interval —a < x < a is substituted into Eq. (7.9) instead
of its value at the center of the crack. Since

(7.11) . Kh=KE=T . /na

qo a* h*-—-a?
2 Wi

1
arx,0 =5 fﬂxy (o, M) dx =T, +

Eq. {(7.9) must be replaced with

1' 1%0{2
qo = TI,+_2_% o? m»
50 that
T
%o = i ] —o?
- 272
2 (1+a?)
and
i
(7.12) K{‘I =KE= Ty\/ma i —

2

2% Uty

Several values of the ratio K,/T, ./na calculated according to the formulae
(7.11) and (7.12) are given in Table 6. Tt is seen from the table that, in contrast to
the Mode I deformation case of two parallel cracks subject to tension,

Table 6. Stress ‘intensity factors in a plane containing
two equal parallel cracks, Fig. 12a, under constant

shear.
o= afh Eq. (7.11) . Eq.(7.12)
0.05 1.0013 1.0012
0.10 1.0050 1.0049
0.15 1.0114 1.0106
(.20 1.0204 : 1.0181
025 1.0323 1.0266
0.30 . 10471 1.0357.
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Table 2, the stress intensity factors at two parallel cracks under shear are
greater than those appearing at a single crack. _ '

In the case of collinear cracks, Fig. 12b. the 4% (x) — distribution along both
segments may be assumed according to Eq. (7.4) with ¢o, 41 for the left-hand
crack, and qo, —g, for the right-hand crack, provided the cracks are of
equal lengths and the load is symmetric: o5 (x, ¥) = Gy (—X, y) €tC. If the
load T is represented by constant shear Ty, Eq. (7.7) assumes the simple
form '

‘ 1 a*> 1 a®
Oy (x,0) = T1+7_40 Zrtgh s

In the first approximation, the parameters go, 41 are calculated from the

simplified conditions B ‘ 5

1 g ' :
0y (1, 0) = o, —Z—[O'xy(l-’ra,O)—o‘xy(l———a,O)]: —gy4.
The resulting set of equations

1 1
T+ do oc2+~8~ g1 0 = go,
(7.13) ‘

1

Jotoot aa[rl_.ﬂ_g_ _
74“10“[(1-05)2 (4P | 16 TSt 1+ = 4

yields the approximate solutions

- T, 'T o’
(7.14) Go= — 75 D= o
: - 1— — 1

2 R 2

The stress intensity factors for the first crack |x| < a are

- 1—o3/2
Kb =T, /na @/

' 1—a2/2’
(7.15) e
o

Like in the case of Mode I collinear crack deformation, the existence of
the second crack increases the stress intensity factors at both crack tips
x = +a, the increments at the inside crack tips being greater.

Repeating the procedure in ‘which the value ¢, ({,0) in Eq. (7.13)
is replaced with its mean value over the interval (I—a,l+a), the slightly
modified results (7.14) follow,

T, T, o*
S NI N W

{o o
. 2 1—o® 2 i—a?
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and the stress intensity factors at x = —a,X =a are

1—o3/2
Kh=T ./
=T /ma =22 (1—a2)

1+a?/2
Ki=T, Jrg—0 T%12
N Y (1=

(7.16)
The corresponding values of Ki/T, ./ra and KT, \/na following from the
approximate formulae (7.15) and (7.16) are listed in Table 7.

Table 7. Stress intensity factors in a plane containing two equal
collinear cracks, Fig. 11b, under comstant shear.

" Eg. (7.15) £q. (7.16)
p Kii Kfi Kf Kt

xH=4a — - p—ry — —

T \/ T T, \/ na T \/na 1 \/ na

0.05 1.0012 1.0013 1.0012 1.0013

0.10 1.0045 1.0055 10046 | 10056

0.15 1.0097 1.0131 1.0099 10134

0.20 1.0163 1.0245 10172 1.0254

025 1.0242 1.0403 1.0264 1.0426
0.30 1.0330 1.0613 1.0378 10662 -

In the cases of regular crack arrays like those shown in Fig. 10,
the problem of determining the stress intensity factors and stress distributions .
may be treated in the same manner as those considered in sect. 6. The
procedures outlined in the preceding sections may also be applied to the
cases of arbitrary crack distributions provided the distances between individual
cracks are large enough; the load may also consist of combined action
of tension and shear. For instance, in the case of two inclined cracks
shown in Fig. 13 in an arbitrarily loaded infinite plane, the entire problem
may be reduced to the system of eight algebraic equations with cight
unknown parameters: 9o, 41, 4o, g1 referring to the distributions of normal
stresses along he corresponding cracks 2a, 2d', and, gy, Gy, 3y, @4 describing
the distribution of shearing stresses. -

Normal stresses o), at points D, E, F of the second (primed) crack are
now written in terms of the external loads Ty, T, and the unknown (unprimed)
parameters qo, gy, §o, 4, of the first cracks: the necessary formulae are
given in Eqgs. (4.7+—4.9). The two resulting equations have the form

" ’ 1 ? vl ’
G;ﬂy (E‘) = {op, 5_ [ayy {F)'—O-yy (D)] ={.

Similar equations are written for the first crack. The remaining four equations
follow from the consideration of shearing stresses. Accuracy of these resnie
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Fia. 13.

may be increased by introducing additional terms in expansions of the type
of Eq. (4.5). ' g - -

To conclude the considerations let us mention the problem of forces -
of interaction between the cracks treated more extensively in the paper
[7] in connection with Mode IIT crack deformations. These forces are calculated
formally from the energy considerations outlined in {2} and expressed in
tertns of the stress intensity factors. To this end let us write the formuia.
(2.3) derived in [1], giving the horizontal component of the force o

T R -

In the case of two equal and parallel cracks under constant tension: Ty,
the .horizontal components of these forces are zero ince the cracks exhibit
equal tendencies to propagate to the left and to the right. In the case of
collinear cracks, however; the inside crack’ tip stress intemsity ‘factors are
greater. than 'the outside ones. The formula (7.17) yields the following
expression for the horizontal force exerted by the right-hand crack on- the

jeft-hand one: : ‘

. y
(7.18) Fir= o (T) NIEERY
()
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A simple observation follows from the inspection of the approximate
formula (7.18). It follows that at sufficiently large ratios l/a, that is for
distant cracks, the force of interaction between them is proportional to
the square of the external load T, to the product of squares of the
crack lengths (here a* since the cracks are equal), and inversely proportional
- to the third power of the distance between them. Since the force exerted
by the first crack. on the other Fi, = -—F}, the formula (7.18) giving
the force of attraction of the cracks reflects the well-known tendency of
such cracks to approach each other under external tension.
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STRESZCZENIE

O PRZYBLIZONYM OKRESLENTU WSPOLDZIALANIA $§ZCZELIN W OSRODKACH
- SPREZYSTYCH '

Przedstawiono metode przyblizonej analizy stanu naprezenia, a w szczegdlnodci sposdb
wyznaczania wspdlczynnikéw intensywnosci naprezenia w oérodkach sprezystych poddanych
p!qskiemu stanowi odksztalcenia i zawierajacych dowplny ukiad szezetinn. W przypadku gdy
szozeliny nie sq rozmieszczone zbyt gesto, proponowana metoda pozwala wyznaczyé poszukiwane
paramelry stanu napreZeniz w sposéb zblizony do metody rozwigzania ulkdadéw statycznie
tiiewyznaczainych w mechanice budowli. ’ ’ '
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PE3rOME

O TPUBJIMXEUHOM OIIPEJIEIEHUYN B3IAUMOJIEACTBUA TPELUH
B VIIPYI'YUX CPEJAX ‘

Mpeactapien MeTol NPHOMMKEHHOTO AHANMIA HAIPHKCHHOTO COCTOAHAH, 3 B YaCTHOCTH
cnocob onpeacnenn kodhhUIMEHTOD HATEHCUBHOCTH HANPUKEHUR B YIPYHuX cpefiax, NoJBepr-
HYTHIX TNOCKOMY Ae(OpMAIMOHHOMY COCTONMINIO H COACPKABLIEX TpOU3BOITEHYIO CHCTEMY
Tpenmi. B cydae, KOz TPEiHHEL HE PACTIPEACHKCHBI CIUMINKOM rycro, TpeaJAraeMEIl’ MeTox
HO3BOJSET ONPEJETHTD HCKOMBIC MAPAMETPEL HANPAHESHHOTO COCTORHHS crocoBoM COMMKEHTBIM
K METOAY PEHICHAA CHCTEM CTATHYCCKM HCONPEIENCHHBIX B CTpouTEILHONH MeXaHHKE.
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