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THE BENDING VIBRATIONS OF AN ANISOTROPIC FREE CIRCULAR
PLATE OF REGULAR SYMMETRY '

A. KLIMASEK, A. OPILSKI and J. ZABAWA (GLIWICE)

The elasticity moduli determination method of the regular symmetry ingle crystals by
bending vibrations excitation in ‘circular plate samples with the middle planes perpendicular
to the crystallographic [100] and [110] directions is given in the work. The adaptation of
the method for any other pair of directions presents no difficulties. Resonance frequencies ol‘

- the- free edge circular anisotropic plate were determined, too. In erder to solve Egs. (3. 1}'
and (3.3), the consecutive approximation method was used. The method seemed to be the
most simple and proper in this case. It enabled to give evident dependence between the
resonance l'requency of the sample and the elasticity moduli and the Poisson constant.
Measurcments were taken for $i and Ge single crystals.

1. INTRODUCTION

" KircuroFF in his ‘work [1] has given an expression for the bending
- .vibrations frequency of thin circular plates with a free edge. A similar
expression for thick plates taking into account shear stresses and rotational
inertia” was given by MArTINCEK [3].. Both expressions mentioned above
are valid for isotropic solids only. The purpose of this work is to determine
‘the frequency of the first resonance of .a circular plate of a free edge and
- cubic anisotropy. This symmetry has three perpendicular clasticity symmetry
planes like the orthotroplc one, but clasticity moduh and P01sson s constants
are equal in thc main’ dlrectlons :

2 BENDING VIBRATIONS EQUATION OF A THIN ANISOTROPIC
CTRCULAR PLATE

The gencral bendmg vibrations equatlon of a thm mrcular amsotropxc
plate [4, 5] (Fig. 1) can be- expressed in the form ~of the following
partial differential equation: -

o atw W | 0w atw
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where W= W(x, y,t)— bending function of the plate. Coefficients of each
partial derivative can be obtained from the relation
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h3
(2.2) : D= By SiE
where _
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By = a (522566~ st) Bys = Iy (512816 —S11526)>
B — 1 2 B _ 1 2
255 (511566 — Sis)s 6= 4 (511522 —512), 841, 5125 516

2.3) 1 ' A =515 5225 826

By, = A (516526 —512566)> S10- 5261 S66

Byg = A (31.2526 —522516),

and s;; are the elasticity coefficients. It is to be note that D;; have the
meaning of the anisotropic plate rigidity. Respectively, Dy, D;, have the
meaning of the bending rigidity around the x and y axis (see Fig. 1}:Dgg
is the torsion rigidity, and D,s and D, are side rigidities and refer
to the snips of unit width. '
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If the plates edgé is free, then in order to solve Eq. (2.3) the following
boundary conditions are set

(2.4) M, =0,
) oH
N,+—2 =0,
Os

where M, — bending moment, H,, — torsional moment, N, -—shear forces,
n— external normal to the plate’s edge surface and J/ds — plate’s edge
arc derivative.

From Eq. (2.1) a following timeless equation is easﬂy obtained:

Dhw 84w 8 4w 9 4w

(25) Dll A ry +4D16 a a +2(D12+2D66) xz ayz +4D26 ox ayS +
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The elasticity coefficients, which appear in D;; where the main directions
overlap the coordinates axes, are functions of the angles between the axes and
main directions.

3. 'THE EQUATIONS OF THE PROBLEM AND THEIR SOLUTIONS

Two cases are considered. In the first one -the middle plane of the
plate is parallel to the crystallographic plane (100); x,p,z axes of the
coordinates are identical with the main elasticity directions (see Fig. 2). Then
Eq. (2.5) modifies to

FiG. 2. -

. g4 D, 34w d%w  phw?
(3.1) 2D mae T
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and E—the main direction’s Young modulus, G —the main direction’s
rigidity modutus and ‘v --the main direction’s Poisson constant.

Here advantage was taken of the fact that in the regular system all
rigidity moduli in main directions are identical,

In the second case the middle planc of the plate. is parallel to the
ciystallographic (110) plane (Fig. 3); the x"-axis direction is a main direction,
but y, z are not. Thus the coelfficients D;; of Eq. (2.5) are to be reduced to
the respective coefficients related to the main axes [6]. The following is
obtained:
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because D}4 = D3 =0. There Df“ =D}, Dy, =D) and D\,;+2Dg = Dj.
The equation (3.2) can be written in the form [8]

Y 4w

where _

Dy - D,
=—1-1 =—1,

A
p . EPH2EG (1-v) #
'TUER2G (1—v=2v%) 127
4EG h3

Dy =

T ES2G (I —v—=2v) 12°
Dg=h3[G 1 Ezv+2EGv(1—u)].

6 T 12 Er26 (1—0-20)

To calculate the first resonance of the bending vibrations the subsequent
approximations method was used with Egs. (3.2) and (3.3), introducing
to Eq. (3.2) a parameter ¢ = D,/D—1 [7] and to Eq.. (3.3) & = max (|al,.|b])
[8]. The following results were obtained: for a platé with the (100) plane

2%w, 3 *w '
: ij ————dxdy : 2_”;4) dxdy
(34)  ohwley =D (16x‘{ Wo 52 ay? )+D3 0 3x2ay? 2

R* [jwldxdy {iwi dxdy

for a plate with the (110) plane
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xy is a coefficient dependent on the resonance number and Poisson’s

constant v, given in the work [2]). w, — in Egs. (3.4} and (3.5) is the bending
function for free vibrations of an isotropic circular plate [9]. For vibrations
the n-th component of this function is in the following form:

(3.6) Wo (r, @) = [A, J, (kr)+ B, I, (r)] [sin np +cos nep],

where A,, B, — constants, k* = phw?/D and Jus I, — the Bessel function of

the first order and the modified first-order Bessel function, respectively.

For a free edge circular plate we have two boundary conditions:
3wy v dwy v 22w,

P T p? =0 r=R

2

(3.7

aSWO 1 62W0 _L 3w0 | 2—v 53W0
o T3 ar P Grog?
3—v 32w,
—Tw——o, F=R.

The first resonance frequencies are to be determined; this means
frequencies of the plate with two nodal diameters. In this case the order
of the Bessel function is the same as the number of nodal diameters
present. This leads to the solution for w, in the form

(3.8) Wo (r, @) = [AJ, (kr}+ BI, (kr)] [sin 29 +cos 2¢]. -

In further considerations we use the Bessel functions J, (kr) and I, (kr)
in series expansion; hence

k2 ’,2 k4 r4 kﬁ r6 k2 r2 k4 r,4- kﬁ r.ﬁ
. —|4 - , B(E1 K
G wo [ ( 8 9% +3072)+ ( § 7% Jr307'2)]><
[sin 2+ cos 2¢].

The 4 and B constants arc determined from the boundary conditions
{3.7). We then obtain ‘ :

384 (1)~ 1923 4 (154 ) 22
384 (1—v)+19224-(15+v) 22 °

. B
.(3'10) o=

where z = kR.
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Calculating the integrals in the expressions (3.4) and (3 5), we obtain

8 , :
J:[WO a—zg—z—dxdy drnA (1+ ) 128R2[ ( )+
_ ' LB
768 30720 Al
: 1 B\? B\
2p2
J [ (1+A) ol (HA)
S B N, 1 By 1 B
Z_ Z
| X(A 1)+ 61440 (1+A) 46080 (A ) +
(3.11 + ! 3 G T —
1 884736 66060288
_— 2
J]wo e O dxdy = nA (1+ ) STOR? |: ( )
1 .. B
+—1~6-z (4—1) P z (1+71m):|

Above 1ntegrals one to be calculated in limits (0, R).
The integrals above are to be calculated in the limits (0, R) and (0, 273)
The parameter z is a function of the Poisson constant and it is determined
from equating to zero of the determinant created by substituting the
expression (3.9) with several Poisson onstants to the boundary conditions
(3.7).

The values of the integrals of Eq. {3.11) calculated numerically for several —
Poisson contants are shown in Table 1.

Table 1. The values of integrals of Eq. (3.11).

‘ | r? #*w L | Rr? wy
v z - ﬂ'woﬁ;ﬁ— dx dy | R wf dx dy Y JIWU —axTom dx dy.
0.0 | 5435 0549 | 0.116 . 1.648
0.1 | 5283 0.522 0.119 R 1566 -
02} 5102 0.486 N 0122 - | | 1.457
0.3 | 4.88 0.440 ' 0.123 T 1.320
04 | 4637 0.385 - 0.122 C 0.155
05 | 4336 0.321 0.119 : 0.963

4. DETERMINATION OF THE ELASTICITY MODULI OF THE REGULAR
SYMMETRY ANISOTROPIC PLATES

A

Equations (3.4) and (3.5) give evident dependence of the free edge cncu]dr
plate’s vibration frequencies on the bending and torsion rigidities. Since the
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Poisson constant can be determined from the first resonance to the second
resonance frequency ratio in a way similar to that shown in MARTINCEK and -
Kircurorrs works [1, 3], substituting to Eqgs. (3.4)and (3.5) its value for
the (100} middle planes orientations and using Table 1, we obtain an equations
system allowing to calculate E and G by measuring the respective resonance
frequencies. The elasticity moduli and the Poisson constant of Si and Ge
were determined by means of the presented method. '

The measurement method and the equipment used were described in’
the work [10]). The resuits obtained are collected in Table 2. Units:

. N : . mz
_ 1010 , . ~12 .
a) — b) 30 N

Table 2. Results.

| Elo | Foo | vieo | st | B —sh | ¢h | s
n-type Si 12981 | 7830 | 027 | 7704 | 12771 | 2.080 | 16226 | 6001 | 7.830
15—302cm | © | ' ' _ ) |
Tntrinsic 110412 | 6569 | 028 | 9600 | 15220 2690 113316 | 5178 | 6.569
Ge 50 Q cm ‘ )

5. CONCLUSIONS

The - results obtained fit in sufficiently well with the data given by
other authors [11, 12], where different methods were applied to determine
the rigidity constants. The considerations presented above show that in
order to determine the complete set of elastic constants of the regular
symmetry anisotropic solid -it is enough to measure two lowest resonance
frequencies of the circular plate sample with  two orientations, e.g. [100]
and [110]. When the main elastic moduli and the Poisson constant are
known, it is casy to calculate all elastic constants and moduli in any
direction.

The method applied is limited to the first approximation only, because
the second one gives a very small contribution to the frequency. Taking only
the three-term Bessel function series was due to the condition that changes
of the third digit in the elastic constants are sufficient to obtain the
assumed error magnitude.

The method can be easily adapted to determine the complete set
of moduli with the bending vibrations frequencies of anj other pair of
normal orientations, eg. [110] and [111] or [100] and {1117.

The errors of determination of the Young moduius and rigidity modulus,
calculated for an example for Si, are 0.034. 1010 N/m? and 0.020- 10'° N/m2,
respectively.




84 A. KLIMASEK, A. OPILSKI AND J. ZABAWA

REFERENCES

1. G. Kwcuuorr, 1. fur die Reine und Angewandte Mathematik (Crelles Journ. of Math),
10, 51, 1850. ’ :

. J. RyLL-NarDzEwsK:, Arch. Akustyki, 10, 1, 1975

G. MarTinCeEK, J. Sound Vibr, 2, 116, 1963.

S. G. LECHNICKY, Anizotropnyje plastinki, GIT-TL, Moskwa 1957,

R. F. 8. HearMoN, Uvod do teorie pruZnosti anizotropnich latek, Praha 1965,

8. G. LECuNICKD, Teoria uprugosti anizotropnove tiela, GIT-TL, Moskwa-Leningrad 1950.

R. Courant, D. HiLBERT, Method of mathemasical physics, 1, New York 1955.

1. Baurr, B L. REiss, JASA, §3, 1360, 1973.

8. KALISK), Drgania i fole, PWN, Warszawa 1966.

A. OPILski, A. A, KLiMASEK, J. ZABAWA, J. RALUSZKIEWICZ, S. SZRATBER, H. BAGINSKI,

J. Techn. Phys., 18, 231, 177. :

11. S. P. Nikanorow, L A BURIENKOW, A. W.STIEPANOW, Fiz. Tverd. Tiela, 13, 3001, 1971,

12. W. A. BRanTLEY, J. Appl. Phys, 44, 534, 1973, :

—
RSP ST S P

STRESZCZENIE

DRGANIA GIETNE PEYTY ANIZOTROPOWE]J O BRZEGACH
SWOBODNYCH 1 SYMETRII REGULARNE]

W pracy podano metodg okredlania modualéw sprezystoéci monokrysztaléw droga wymu-
szania drgan gietnych w plytkach kolowych o powierzchniach érodkowych wycigtych pro-
stopadle do osi krystalograficznych [1007 i [110]. Zastosowanie metody do dowolnie dobra-
nej innej pary osi mie przedstawia trudnodci. Okreflono rdwniez czgstofel rezonansowe
plyt anizotropowych o brzegach swobodnych. Do rozwiazania rownan (3.1) i (3.3) zastoso-
wano metode koleinych przyblizen, ktéra uznaé mozna za najbardziej stosowang w rozwaZanym
przypadku. Metoda ta umozliwia wykazanie zaleznoéci miedzy czgstodcia rezonansowd probki
a modulami sprezystogci i staly Poissona. Wykonano pomiary na monokrysztatach i krzemu
i germanu.

PE3OME

M3TWBHLIE KOJEBAHKA AHM3IOTPOITHOW TJIUTEL CO ?BOEO,[[HHMI/I
KpASMU U C PEIVASPHON CUMMETPHEU

B paboTe NPOBEAGH METOX ONPEASNICHAL MOAYICH YOPYrOCTH MOHOKDPHCTAJUIOB HyTEM
BLIHYKEeHAA H3THOHBX KoneGaHmit 3 KPYIOBRX IUIHTKAX €O CpedHHHBIMH [OBEPXHOCTAMH,
BmpczaHHﬁIMu NEPTIEHARKYAAPHO K KPHCTAJITHNCCKAM 0CIM 100 u 110. TIpmmerenue MeETOAA
x mpousponbHo nopoBpanHol Apyroil nape OCeH HE IPEACTABIIAET TpynrocTH, OnpeneaeHsl
TOKe DPE3OHAHCHBIE UACTOTH AHM3OTPOTHLIX IUTHT CO cpobopubiME kpasMi, Jlnd pelneHud
ypasmeduii [7 u 9] npumencH METOR nocIe OoBaTEABHBIX mprbmDKeHki, KOTOPBIE MOXKHO
CUMTATL HanGoNee NOAXOXALMM B PACCMATPABASMOM CIIYHAE. DTOT METOA JlaeT BOIMONHOCTH
HOKA3ATH 30 BHCHMOCTE MEKKY Pe3OHAHCHON sacToToll obpasna H MOLYJLAME YOPYFOCTH, & FARNKE
koadumenTom Tlyaccoma, TIpoBe/ISHEE HEAMEPCHHS Ba MOHOKPHCTAMIAX KPeMUs H TepMaHHL
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