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ON DISTRIBUTED PARAMETER SYSTEM IDENTIFICATION WITH
A PRIORI INFORMATION AS CONSTRAINTS

E. RAFAJLOWICZ (WROCLAW)

The identification procedure presented in the paper makes it possible to determine the
unloaded estimator of parameters of a system with distributed. parameters, They are derived
by mintmization of the quality functional in the quadratic form with the constrains being
taken into account. Various properties of the procedure proposed are discussed, and a numerical
example is presented.

1. INTRODUCTION

In empirical studies we are frequently faced with the problem of extension
of an existing theory. More preciscly, we- have a mathematical model of
a physical process in which certain parameters or variables are not taken
into account and our aim is to mcorporate them into the model. From
‘the methodological point of view it is desirable to find a compatible
extension of the existing model. This means that if the variables incorporated
into the extended model are fixed, then it behaves like the existing model.
The above idea is expressed in general terms of the dimensional analysis
as the correspondence principle, (see e.g. [2, 3]). In these papers a gencral
approach called the multistage identification is proposed as a tool for model
extension, retaining the correspondence principle. This approach, however,
is difficult to apply when the existing model is expressed in terms of partial
differential equations (PDE). We remark that an algorithm for solving this
problem was proposed in [4]. This algorithm is based on the perturbation
theory, what restricts its applications. Our aim is to propose an algorithm
for the same problem but applicable to a wider class of linear PDE. It is
~ based on the Ritz — Galerkin method and for this reason the correspondence
principle holds in a limit sense only. :
~ In order to fix ideas, we start from the following simple- example which
is further used as a testing one. Suppose that our aim is to identify an
impact of a uniform tension T in the X, direction on the deflection of
a simple supported rectangular plate subject to uniform lateral load (see Fig. 1).
As it is known (see eg [7]), the theory in this case is well developed,
but here it will be used in Sect. 5 for simulation purpose only.
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FiG. 1. A rectangular plate under uniform tension T and lateral loading.

As the existing theory, available before identification, let us take the
equation for the deflection of a plate under uniform lateral load only,
ie. with T= 0. This equation is of the form (see [71):

PF #*F  OF Q16 & w g
1y 2 Al . .
@ X% - dX%t 0X3 + ox3y = D'’ m51§,5...k51,23,5... mk
' ‘ , esin (knX /L) sin (mnX /L),

with ‘the Bbﬁhdary conditions
F=o0, F@X?=0 for X;=0 and X,=L,
F=0, &@F@X3=0 for X,=0" and X,=L."
In Egs. (1.1) and‘(ll.Z), F deﬁéfes the deflection of the plate' at the point

(12)

‘X, X, Q means intensity of the uniformly distributed load, while D denotes

. the floxural rigidity of the plate, which is defined as follows:
3 "D = EH*/12 (1—?).

where E is the Young modulus, v is the. Poisson coefficient and H denoted
thickness of .the plate. _ ‘ _ S _

- .. Our aim is to identify the dimensionally homegeneous and invariant
function A L
(14) I F=¢‘(X1',X2,D,L,Q,T)

7 basing on measurements of F for different values of X, X, D,LO, T
.According to the correspondence principle, we require the function @ to be
the solution (or an approximate solution) of Eq. (1.1) as T— 0. In dimensionless
variables the above example can be rewritten as follows: define ¢q = F/L,
x0 = X, /L, x® = X,/L, x* = QI3/D, y = TE/D. Then Eq. (1.1) has the form

-‘.34(] “a4q . 5461 . 7
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16X3 o & i . )
= ) Y ——sin (knx') sin (max®)
n =135, k=1.3,5.., WK -

and our aim is to identify the real-valued function

(6. 4=1(x7)
takmg into account the fact for y -0 the function (1.6) is the solution
of Eq. (1.5).

- Further considerations will be expressed in dimensionless form since
‘cvery dimensionally homogeneous and invariant function and partial- dif-
ferential equations of mathematical physics can be converted into dimen-
sionless form (see e.g. [3] for a general procedure).‘ '

2. PROELEM FORMULATION

Suppose that our aim is to identify a physn:al process which can be
descnbcd by a real valued function '

(2.1) q="f(xy),

where xeR¥, yeR! are vectors of real parameters describing the process.
Two groups of parameters are distingushed since we assume that we have
a priori knowledge concerning the procéss behaviour. Namely, it is assumed
that for a certain y = y, the process is governed by the following equation:

(22 Af (x, yo) = u (x), "
where A is a differential operator with respect to x-variables. It is admitted
that only a part of x-variables is present in differential operations in 4,
while the second part of x-variables is interpreted as material constants,
u(x) is a given excitation -influencing the process. '

We assume that A is defined on a subspace V of the space 12 (Q)
of square integrable functions, where 2 c R* denotes an open spatial domain
of those x-variables which appear in A. Linearity of 4 is preassumed but
univocality of the solution of Eq. (2.2) is not required. It is only assumed .
that the range of A is in I?(Q), in which the scalar product of ¢, h is
denoted by <{g, k).

Identification of the process (2.1) is based on measurements of its output
q in the presence of noise. In typical sitvuations these mcasurcments are,
.of the form

(2 3) . Si —f(xH y1)+zu l“"'l 2

_where (x;, J’J, i=1,2,.,n denotes measurement pomts s(i=1,2,. n)__are



I3

566 E. RAFAJLOWICZ

the results of the measurements, while z;(i= 1, 2, ..., n) are the measurement
noises which are assumed to be independent zero mean random variables
with finite varfances. Without further assumptions a finite number of the
measurements s; (i=1,2,..,#) is not sufficient for exact recovery of the
function f. For this reason we assume that for a certain N > 0 the function
(2.1) can be sufficiently accurately represented by the series

(24) q=4di g (xs y)+a2 g2 (xa J’)'i' o Ay gn (x! y) = Ga (x: y)s

where a = [ay, .., ay]" are unknown constants to be estimated, while g, (x, y),
k=1,2,.., N are given linearly independent functions such that for every
y;gk(-;y)eVandAgk( nel(), k=1,2,.,N.

" On the other hand the class of functlons wh:ch can be generated by the
series (24) is, in general, too “small” to contain a solution of Eq. (2.2).
In order to avoid this difficulty, simultancously retaining a priori information
contained in Eq. (2.2), it is proposed to take Eq. (2.2) into account as
follows. Let Hy be a subspace of IZ(Q) spanned by the functions hy (x),
By (X), .., Iy (x) and let Eq. (2.2) be replaced by the requirement that the
orthogonal projection of AG, (-, yo) —u() onto HM be the zero element
of Hy, ie.

2.5 . K46, yo), hj) —<u, h;) 0, j=12,.

ThlS .means that the --vector aeRN is “estimated from the measurements
s;(i=1,2,..,n) under the containts (2.5) with M < N.

. 3. IDENTIFICATION ALGORITHM

Let us note that the estimation problem (2.3), (2.4) satisfies the require-
ments of the Gauss—Markov estimation model (see c¢.g. [5]) and thus the
least squares method with the constraints (2.5) can be used as a tool for
finding an estimate of a. This leads to the following optimization problem:

(3.1) . min ): (s, G, (x,,yg))

with the constramts
el N : o

(32) ) ak<Agk( yo) hy = <u, hj>, J=1,2,., M
e B=1

- Note that for given mcasurements the problem (3 1), (3.2) is a quadratic
optimization problem with linear equality constraints and hence it can be
solved by the standard Lagrange multipliers technique (see e.g. [1]). To
this end, denote by B the matrix with the elements by = {Ag, (-, yo), b,
k=1,2,.,N;j=1,2,..,Mand let s = {51, 52, ..., $,17, while g; = [g, (X, Vihs
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g2 (i, 1) or gy (i yOTT i = 1,2, ., mand u = [<u, By, Cu, B, (u hM>]T
Then the problem (3.1), (3 2} can be equivalently ‘rewritten as follows:

(3.1) min [55" —2a" Cs+4a" CcC'al,

(3.2) o Ba=u

and the Lagrange function L{a, ) is given by

(3.3) L(a,)=55"—2a" C5+a" CCT a+ 27 (Ba—n),

where' 1eRM is the vector of Lagrange mult1p11ers and C is N X1 the
matrix with the columns g; i=1,2, ..., n. Above and further on, T denotes
transposition. As it is known (eg {1]), the necessary condition for a* to
be a solution of the probiem (3.1), (3.2) is the existence of the vector
AeRM for which ' L B

(34) grad L{a* ¥ = —2C5+2CCT a*+B" 1* =0,

(3.5) ' ‘grad L{a* 2*)=Ba*—a=0.

Since the minimized function is convex and the constraints are linear in a,
then these conditions are also sufficient for optimality of a* (see eg. [1]).
Furthermore, if det CCT > 0, then the minimized function is strictly convex,
what implies uniqueness of the optimal solution a*.

The above results lead to the following simple identification algonthm

Step 1. Form the matrix B and the vector # of a priori constraints. |

Step 2. Choose the points (x;,y;), i=1,2,..,n in such a way that det
CCT >0 and perform the experimeint in order to gain the measurements
(2.3) and form the vector 5.

Step 3. Solve, with respect io a, A, the following equations:

. ... N coiumns_M columns
N rows| 2CCt BT | a

M rows] B 0 1L 4]

and substitute the estimate g* into the series (2.4) in order to predict the
process behaviour for different x, y. 4
H not only CC" but also the matrix D= B(CC")"* B is nonsmgular then

(3.7) ) A* = 2D~ B3,

(38 ' a* = a—(CC")"* B" D~ [Ba—u],
where 4 is defined as

69 d = (CCT)y"1 Cs.



' . _568 ’ 7 E. RAFAJLOWICZ

Note that & can be interpreted as an estimate of the vector a, obtained
without a priori information or ignoring it (& minimizes the. problem (3.1)
without any constraints).

4, ADVANTAGES OF THE PROPOSED APPROACH

___ From the fact that the measurements (2.3) are observations of random

~ variables it follows that also the vector a* and @ are observations of random .

vectors and thus they should be compared in a statistical sense. It is casy -
to see that both a* and @ are the unbiased estimators for a, ie. Ea* =

=FEi=a, where E stands for the expectation. It can also be shown

(see e.g. [5] Chapter 3) that _ '

@.1) | cov[dl=a*(CCNY, |

@2) cov [a*) = 6? (CCT)* [Iy— BT D=1 B(CC)™1],

where -cov[ 7 means the covariance matrix of a random vector in brackets,

Iy denotes the N x N unit matrix and o2 = Ez? (i=1, 2, ..,n). Equations
{4.1), (4.2) imply that for variances of elements of a* and d we have

@.3) | var (af) < var (), k=1,2,.,N.

Roughly speaking, this means that a* is expected to b_é “closer” to a than a.
By the way, the values var (af), k=1,2,..,n, which are equal to diagonal
elements of the matrix (4.2) allow to evaluate estimation accuracy by con-

_'___s_trnc_:ting a confidence region for g, if the noises are Gaussian (see e.g. [53).

In order to demonsirate further properties of the proposed approach,
it is desirable to consider practically an important special case of the problem
stated in Sect. 2. To this end, let us suppose that the series (24) is of
the form '

M L -
@4 ' - q= Zl [Zl €t P (X) 11 (¥),

for certain unknown constants {e,} and given functions p,, (x), 'r, y; m=
=1,2,.,M,1=1,2,.., L Note that Eq. (44) agrees with the series (24) if

' N=M-L and we take g x, y})= p,{x)r;(y) and a,=e,, for certain uniguely

defined (m,D); k=1, 2, .., N. It is clear that ordering chosen. in the above -
equalities is immaterial. Let us assume that the functions p,cV are such
that Ap,el? (@) m=1,2,.., M and they are chosen in such a way that

A, A0 if m=j,

4.5) App, By =
( ) < Pms ]> { 0 if m=j, m,]=1,2,,M

The condition {4.5) is fulfilled if the operator A is symmetric and p, = h,,
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(m=1,2,.., M} are eigenfunctions of A, while i, (m=1,2,.., M) are the’
corresponding eigenvalues. If, furthermore, 4 is a positive definite operator
and for a certain C > 0, (Av u) 2 C ||v||? for every veV, then the equation

4.6 o _ Aw=1u

has the unique solution we ¥, which is of the form

@n W)= 5 b pn

provided that the elgenfunctlons Pmim=1,2,.) are complete in L2 (.Q)
(see [6] for definitions and derivation of Eq (4 7)) ,

Let us suppose that the functions r, (y) I=1,2,.., Lfulfill the following
conditions: '

@48) =1, n(e)=0, z=2,3,...,L

which hold if, for example these functions are polynomials and y, = 0.

The above assumptions allow to solve the constraints (2.5). Indeed,
substitution of Eq. (4.4} into Eq. (2.5) with the subsequent use of Egs. (4.5),
(4.8) yields

(4.9) - et = s hp3hs M= 1,2, ., M.

Thus the function

(4-10) q=ri(y) Z <u P Don () Ao+ Zz Z €mt Py (X) 71 (V)
fuIﬁlls the constramts 2. 5) for every e,, ({=2,3,..,L, m= 1, 2, .., M). This
implies that minimization of the sum of squares with respect to these
parameters can be carried out using standard library subroutines for the
regression function fitting.

It is to be noted that for y = y, we have from the function (4.10)

@.11) g= DRCH Prs? P () A

Comparison of Eq. (4.11) with Eq. (4.7) shows that for M — oo the function.
(4.10) fulfils Eq. (2.2). This means that for large M a priori information
contained in Eq. (2.2) is fylly incorporated into the proposed 1dent1flcat10n
algorithm,

If all the above assumptions hold and it is known that the function (4.4)
with L = 2 describes the process sufficiently accurate in a domain of interest,
then a striking effect of using a priori knowledge can be demonstrated.
To this end, et us note that in this case we have from the function (4.10)
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M . o M
(412) '- qg=rg (y) 21 <u> pm> P (x)/im+r2 (y) zi:l €m2 Pm (x)

and only the parameters e,, (m= 1, 2;.., M) are to be identified. Suppose
that x, (i =1, 2, ..., n) are chosen in such a way that the M x#n matrix with
the elements p, (x;), (i=1,2,...,n, m=1,2, ., M) is of the rank M. If for
a certain y, r, (y) #£0, then e,, (m=1, 2, .., M) are estimable by the least
squares method using the measurements (2.3) with y,=y (i=1,2,..,#n)
(see [5] for definition of estimability). That is, @ priori information allows
to identify an influence of the y-variable on the process by taking measur-
~ments at one y point only. It is clear that approximation with L =2 can
be valid in a limited domain of y-variables. However, possible reduction
of a number of measurements, demonstrated above for L =2, takes place
also for L > 2.

5. SIMULATION EXAMPLE-RECTANGULAR PLATE WITH SIMPLE SUPPORTED EDGES

In order to verify the theory presented above we continue the example
of Sect. 1. To identify the function (1.6) with a priori information given by
Eq. (1.5) we need measurements of ¢ for different values x, y. These measure-
ments will be simulated by using the equation for the deflection of the
plate under uniform tension T in the X, direction subjected to wuniform
lateral load (see [7]).

In the dimensionless variables introduced in Sect. 1 this equatlon has
the form

o f o*f &/ oy
3 (xDy +2 8 (x0)2 3 (xD)? + a(x(z)f' 6 O =

(5.1

16x¥H 2 @, 1 . )
- Y Y —— sin (knx‘) sin (max®)
s m=1,3,5k=1,3,5

with the boundary conditions
(52) f=0, fo(x"N?=0 for xYP=0 and xP=1,
(53) f=0, PfAEDP=0 for xP=0 and xD=1.
In [7] §91 it was shown that the solution of Eqgs. (5.13+5.3) is of the form

| 16x(3) © @ . )
54 fx, = - 3 Y. sin (knx?) sin (mrx®/ -
< .

m=1,3,5 k=1,3,5

Akem [(k*+m*)? +k? y/n*]).
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This solution, after truncation of both of the series at the 9-th element,
was used for measurements simulation according to the relations, with
random {Z;} uniformly distributed over the interval {9, 48] o
Three simulation runs were performed for x©® = 10/343.4 and the following
values of other variables were obtained: . '
' 2)'25 measurements for x), x® uniformly distributed over the plate
and"y changing from 5/343.3 to 25/343.3 with & = 0 ie. without the measure-
ment noise; - ) : . B -
b) as above but with the measurement noise; S
©¢) 100" easurements for xU, x@ uniformly distributed over the plate
and'y changing from 0 to 25/343.3 with the measurement noise, - L

kg 107 at the point (04;04) .
108 - . . -
3
é o (o) ;.; —g g
% +
x .
X
%
C 107 _ :
s aee real system . ‘ ‘%
o000 Cgse al -
XX XX case b) i
++++ ccr.sei ¢} | ’ X
- 1065 5 9 7 T R

Fic. 2. Simulation results.

The largest values of g, which will serve as a base for accuracy evalua-
tion, was obtained for x = x® = 0.5 and y =0 and equals Gmax = 0.00118.
In the cases b), ¢} the noises were uniformly distributed over the interval
[~0.005, 0.005], ie. the largest relative measurement error was +0.47%.

After simulation the data were stored and the model (5.1)45.3) was
“forgotten”, -

As an a priori information for identification of f the model (1.5) was
assumed. It was decided to look for the unknown dependence of ¢ on
X, y in the form. 4.10) with r; ())=1, r, () =y, ry (y) = y? and p, (x)=

- = 2/m sin (ax™ sin (ax®), p, x = 2/x sin (nxV) sin (37x?), p3 x = 2sin (3nxD).
+sin (7xP/n). - by '
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According to: the theory of Sects 3 and 4 it remains to 1dent1fy six
parameters ey for.m=1,2,3 and I =2,3. These values were estimated -
using the least squares method and then substltuted into - the function (4 10)
in. order to test the model accuracy In each case a), b) c) the 1dent1ﬁed
model was tested by comparing 20 values of the. model output ‘with the
“real” values calcuiated from the ‘solution. (5. 4). The iargest dlfferences related
{0 oy WETE the following: 0.06% in ‘the case a), 0.7% in the case b) and
. 0.1% in the case ¢) These results show that the - largest: relative model
errors are comparable with the relative measurement errors. Comparmg cases
b) and c) one can notice that, according to the theoretlcal results the model
error decreases the number of measurements increases.

The results of model testing are shown in Fig. 2 where the “real”
behaviour of g at the point (0.4; 0.4) versus y is compared with the
behaviour of the models obtained in cases a), b), c) As it can be seen
the behaviour of model c) follows closely the * ‘real” system,
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STRESZCZENIE

: IDENTIFIKACJA UKLADU O PARAMETRACH ROZLOZONYCH
' 7 OGRANICZENIEM INFORMACJA A PRIORI :

'

Przedstawmna W pracy pmcedura 1dcntyﬁkac_}1 pozwala na wyznaczame meobmazonego
estymatora parametrow ikladu. z parametrami rozlozonymi. Parametry - te . otrzymuje’ sr@
w wyniku minimalizacji funkcjonatu jakosci w postaci formy kwadratowe; z uwzglqdmemem
ograniczen. Przeanalizowano rozne wlagciwodci * zaproporowanej procedury Zamleszczono
przykiad liczbowy. ’
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PrawoME

UIFHTHOHKAITNA CACTEMEI C PACOPEOEAEHHBIMH TTAPAMETPAMU
OTPAHUYEHHBIMY MHPOPMALIMEN A4 PRIORI

B pabore npeacrapneny npongAypa MACHTHGHKAIME, DO3BOJIAIONIAS ONpENENMTE HEC-
MEMICHHYIO OOEHKY NapaMeTPOB CHCTEMS! ¢ PACIIPEACNCHHEIMH HAPaMETPaMH. ITH HapameTpst
HONYMAIOT B Pe3yAbTazc MANMMAanusaumn ¢ypPKUMOHANZ KadecTBa B KeaapaTwaHOi dopme
¢ y1eTom orpanuvenni. [Ipoarammsapopadsl pasimuabie CBOWCTEA OPSATORCHHON TpOLELyPLL

IIpuBe AR YHCNEHHEIE TPUMEDE.
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