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PLANE VISCOUS FLOW THROUGH THE SYSTEM OF MOVING RODS

A, ZACHARA (WARSZAWA)

The subject of this paper Is a steady flow of an incompressible fluid aboui the system of two
parallel rows of cylindrical rods, moving along their axes. The row of cylinders has been considered
as a continnous surface, which allowed for the nonzero not mezl as weli as the tangent velocity com-
ponent. Both surfaces have been treated as moving walls of a paralle]l channel. The inner and outer
flows have been caloulaied with the aid of pertarbation methods applied to suitable exact solutions
- of the Navier-Stokes cquations. Both soliutions have been matched with the use of proper con-
ditions at the wall to obtain a continuous flow description in the whole region. Pressure, velocity
and streamlines distributions have been calculated. The error of the adopted approximation has
been estimated and discussed.

1. INTRODUCTION

The subject of this paper is a steady laminar flow of a viscous incompressiblé
fluid through a system of parallel identical cylindrical rods. Axes of the rods are
wniformly distributed in two parallel halfiplanes being perpendicular to an imper-
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Jeable wall. The rods come out in a continuous way from the wall and move along
ieir axes. The scheme of the system considered is shown in Fig. 1. We use the
artesian coordinate system in which the z-axis coincides with the axis of symmetry
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and the x-axis is posed at the lateral wall. The velocity components in the x- and

z-directions are denoted by # and w. The distance between the half-planes is equal

to 2a. All the rods move with the same velocity W (z). The motion of the rods in-
duces flow of the fluid surroundings. This is the subject of theoretical investigation
in this paper. .

The problem formulated here originates from the field of man-made fibres
manufacturing. Moving cylindrical rods correspond to the spun fibres, extruded
from the spinneret fixed at z=0, through a large number of orifices. However,
the present work can be considered merely as the first approximation of real pro-
cesses of fibre formation since it takes into account only hydrodynamic effects,
neglecting effects of rheological and thermal nature.

The flow past a row of cylinders has been considered in [L,2,3]). According
to the results of these papers, a row of discrete cylindrical rods may be treated as
a continuous surface which allows for the nonzero normal as well as the tangent -
velocity component of the fluid at the surface itself, Details of this approximation
will be given in the next section. It was first applied to the description of man-made
tibre formation in [4]; however, the system considered there differed in geometrical
and kinematical properties from that of onrs so we could not make use of those
results here, .

The rows of cylinders treated as continuous surfaces may be thought of as
walls of a parallel channel of a width 2a. In this respect a flow between the
haif-planes may be considered as a flow in a channel. At the external sides of the
walls we expect a flow of a boundary layer type. On the wall itself, which is an
interface between the two types of flow, the suitable matching conditions [3} will
allow to obtain a continuous flow description at both sides of the wall.

The problem is then very complex since it involves three types of flow:
i}  channel flow,

ii)  boundary layer flow,

i) flow over rows of cylindrical rods.

All the three flows mutually interact on each other, what must be taken into
account to obtain a realistic description of the problem.

In the present work we did not search for the solution by the direct integration
of the Navier-Stokes equations what would involve much numerical computation.
Instead we tried to obtain solutions in a relatively simple analytical form by making
use of the existing solutions for the component flows: the Poiseuille solution for the
inner flow [5, 6], the Schlichting solution for the outer flow [7] and the solutions
for the flow over a row of cylinders in the Stokes approximation {2, 3]. The adoption
of these solutions to our problem, not exactly corresponding to the corditions for
which the solutions have been found, generates errors estimated and discussed in
Sect. 8.
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2. FLOW PAST A ROW OF CYLINDERS

The starting point of our analysis is a flow past a row of cylinders since in a sys-
tem given in Fig. 1 it is the clement which drives fiows in both the inner and outer
region. The laminar flow past a row consisting of cylindrical rods, which from now
we shall call for brevity a screen, was the subject of very few papers, In the literature
we ecould find only the works of TamMapA and FUNKAWA [11 and Mivact [2] de-
voied to the flow normal to the screen, that is in the x-direction, and a paper of
GzANIAWSKT [3], who considered a flow parallel to the screen in two directions:
perpendicular and longitudinal to the cylinders axes, that is in the y- and z-direc-
tions (Fig. 2). In the present paper we shall make use of the results given in the
above papers so the brief summary of their results will now be given.

Tw
FiG. 2.

The screen considered in [1, 2, 3] consists of an infinite number infinitely long,
parallel, identical, equidistant cylindrical rods of a diameter d. The distance between
the cylinders is equal to L It is assumed that the ratio d=d/l is small

.1 s=dll<l.

Considerations of the papers [2 and 3] made in the Stokes approximation of the
Navier-Stokes equations allowed to calculate the detailed structure of spatially
periodic flow around the cylinders. However, it appeared that a periodic character
of the flow is limited to the thin layer of the order 1. In this respect the row of cyl-
inders may be treated as a uniform surface of such properties that parameters
between both its sides may change in a discontinous way. These parameters are
interconnected by relations obtained from conservation laws. The structure of the
screen comes into these relations through suitable coefficients.

The relation for a flow normal to the screen reads as follows [1, 2, 3]:

Pe—P-
2.2 ' Ue=—lky ——m—,
22 | i
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where the permeability coefficient &, is determined by the relation

1 1 1
(2.3 ]C":?L; (ln Yy + ‘2—) ,
U is an asymptotic value of a velocity component normal to the screen up-and
doWnstre‘am, py and p_ are asymptlotic values of pressure, the subscripts ,, "
and ,,—* being in accordance with the direction of the x-axis, u is the viscosity
* coeflicient.

In the case of a flow parallel to the screen consisting of discrete cylinders, nonslip
conditions can be satisfied merely on the surfaces of rigid cylinders, However,
according to the approach given in [3] the screen may be considered as a uniform
surface on which a fluid moves with a mean uniform slip velocity whese magnitude
depends on the asymptotic values of flow parameters at both sides of the screen
and on its structure,

The slip velocity in the direction perpendicular to the cylinders’ axes is given
by the relation

. o do
2.3) . Av=lk, (—&T v _) ,
and the slip velocity in the direction parallel to the axes reads
dw | ow
(2.4) AW=1f, (E Maarwe _),

where the slip coefficients are related to the screen structure by ‘the formulae

2.5 ko= 1 .I' A1

2:9) yhfiﬂ:(nmﬁ 2

2 =L fi

(2.6) e ns g
4Ky ..
ky
Kz

0 -

Fig, 3,
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The graphs ks, k, (8) and &, (8) are plotted in Fig. 3. In this paper we deal with
a two-dimensional flow in the plane xz so in next sections we shall use merely Eqs.
(2.2) and (2.4). Equation (2.3) for a flow in the y-direction has been included here
after [3] for the sake of completeness.

3. INNER AND OUTER FLOW

In:this section we consider the inner flow which develops between parallel moving
screens (0<|x|<a) and the outer flow on the external sides of the screens (jx| = a).
For the sake of symmetry we take into account only the half-plane x=0. Both
solutions will be matched with the aid of relations given in Sect. 2.

As it has been mentioned in Sect. 1. the solution of the inner or channel flow
will be searched for in the form of a slightly disturbed Poiseuille flow [5, 6]. The
velocity components may be then presented as follows:

a.n wy=w,+W, up=i,
where
dpP , ,
(3.2, wy=wy— o @ (1-89, 0<i<1

is the basic Poiseuille solution, and #, # are its small perturbations. Quantities which
appeared in Eq. (3.2) have the following meaning:
_Pnho

(3.3) P o po==const,

" is a kinematic pressure function,
3.4 E=xla

is a nondimensional coordinate and w; is a fluid velocity at the wall of the channel.
The subscripts ,,i” and ,,0” refer to the inner and outer flows, respectively, while
the subscript ,,1”” refers to the wall. The velocity w, differs from the velocity of
cylindrical rods W by the component AW which is a slip velocity discussed in the
previous section

(3.5) wym W-HAW.

The basic solution used for the description of the outer flow is the solution
given by ScrLicHTING [7]. In application to our case this solution corresponds
“to a boundary layer flow over a continuous permeable flat wall moving at a con-
stant velocity wy, with a uniform suction velocity <0. We present this solution
in the form '

ity

(3.6) wwm@m[ (6—1)], &=,

¥
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Equations (3.2) and (3.6) are the exact solutions of the Navier-Stokes equations,
provided wy, u,, and dP/dz are constant. In this paper we allow that all the three
quantities may vary in the z-direction w,=w, (2), uy=u, (2), P'=F' (z) what makes
that Eqs. (3.2) and (3.6) may be merely the approximate solutions of our problem.
The error of this approximation will be examined in Sect. 6.

From the continuity equation

3.7 ou  ow 0

G R

we can calculate a normal velocity distribution for the inner and outer flow, with the
boundary conditions u (0)=0 and u (1}=wu,, respectively.

"f=f[ 6a (S—éz)mw'la], 0<é<l,

(3.8) ,
cuit (i m e[ ) -
1ffo—-tl1+htl W, — Wy | exp ;

Uy

Uy

Wi , a
_——u‘l‘aul(f—l)eXp[ (f*l)].

¥

where the primes () denote differentiation with respect to z.
The normal velocity u; (z) on the base of Eqs. (2.2) and (3.3) reads

(3.9 wuy =1k, P (2).

Having calculated velocity distribution on both sides of the wall we can obtain
the relation for the velocity at the wall itself wy (2) from Eq. (3.5). Differentiating
Eqgs. (3.6) and (3.2) with respect to x and inserting calculated derivatives at &=1
into Eqs. (2.4) and (3.5), we arrive at the relation

210 - _ W—ak, Pa®
(3.10) =,
1—ak,
- »
where
(3.11) = a=la.

Application of the model presented in the previous section to this problem is
justified if the distance I between the rods in the screen is small as compared to the
characteristic dimension of the system. Hence we have

(3.12) ‘ a<gl,

Assuming that k, and u, afv are at most of the order unity and making use of Eq.
(3.12), we obtain

wyea
1”&,

(3.13) ak,
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-.3 This condition allows to express wy (3.10) in a simplified form
(3.14) | Wyms Wk, P' 0.

The knowledge of the velocity field enables calculations of the streamlines =
const from the equation

(3.15) dQ=wdx—udz,

where Q denotes the volume flow rate. -
Integrating Bq. (3.15) and making use of the relations for the velocity compo-
nents in the inner and outer flow, we obtain the following streamlines equations:

0 Pa?

PR
0 v Uy a P a?
ﬁg=w1:1+ml1—exp(«—:——(é-—l))]}— 3 Ex>1.

4. CALCULATION OF THE PRESSURE FUNCTION

EGB-&YH, o0<é<l,
(3.16)

The pressure function P (z), unknown as yet, which appeared in all the expressions
for the velocity and streamlines distribution may be found from the continuity
condition for the transversal velocities (3.8),, (3.9) at the wall [5, 6}

4.1 u(l, z)=u; ().

Puiting ¢=1 into Eq. (3.8); and inserting it together with the relation (3.14)
into Eq. (4.1) we obtain, after some rearrangements, the second order differential
equation for the pressure function

(4.2) (143ak,) P & —3ak, Pa=3W'a,

This equation has some resemblance to the Reynolds equation in the hydrodynamic
theory of lubrication [8] for pressure in a bearing. It is also similar to the analogous
equations from the previous papers [5, 6] except from the factor in brackets at the
second derivative taking into account the velocity slip at the wall.

Equation (3.18) contains one additional function W (z) not specified as yet,
which ought to describe kinematics of the wall. We assume that W (z) increases
from 0 to W,, according to the exponential relation [6]

(4.3) W(=W, (1—e "),

where f is a nondimensional parameter. We also assume that the coefficients k (5)
and k&, (8) remain constant. ‘

Inserting Eq. (4.3) after differentiating into Eq. (4.2) and introducing the non-~
dimensional quantities

W, V3
? P = H
a  y aky(1+3ak;)

il

4.4) | @)=
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45 z | _ I/Sakx_
4.5 {=uw por w= l/mo;kz’

*.6) =,
we transform Eq. (4.2) into a nondimensional form

@n 17 —M=ye~%,

which contains only one nondimensional parameter » and is identical with
that obtained in [6] although the variablés here have not exactly the same
meaning, ‘ '

The boundary conditions are as follows:
4.8) I (0y=0, lim I7({)=0.

=00

The first of them provides that w==0 at z=0 (see Egs. (3.2), (3.14) and (4.3)) what
results from the assumption that the lateral wall (z=0) is impermeable. The second
condition tesulis from the requirement that the pressure function be finite at
Infinity.

The solution of Eq. (4.7) with the boundary conditions (4.8) has the following
form [6]:

¥
y2—1

(yef—e"¥) for yp#1,
(4.9) HE)=
—_2*(1+C) et for y=l1.
This function has been plotted in Fig. 4. It is seen that the pressure at the inner

side of the wall is always less than the ambient pressure except the asymptotic value
in infinity where both pressure equalize.
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The greatest sucking effect, which occurs at the initial cross-section of the channel
=0, will be the subject of more detailed examination. By means of Egs. (4.9) and
(4.3} the pressure drop at z==0 may be presentec} in the form
' | - 3B

) |
(4.10) PO, = Vadk, (0) BV T43ak, (0) + V3ak, (3)

which allows to examine the influence of the wall structure (o and §) and the wall
extensibility (5.

w B

- 100

=000

pia) =
i Weo Tia, 5.

The relation (4.10) has been plotted in Fig. 5, for a wide range of the three par-
ameters a, §, 6. We can see that a higher hydrodynamic resistance connected with
a more close packing of the rods in the row (small e, high &) results in a higher

_pressure drop between the outer and inner side of the wall. The growth of the ex-
tensibility factor £ also increases the pressure drop, what is more proncurnced for
" walls of lower hydrodynamic resistance.

Rozprawy Intynierskie — 7
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5. STREAMLINES DISTRIBUTION

The streamlines equations (3.16) can be transformed with the aid of Egs. (4.4)-
(4.6) into the nondimensional form

O & (36 —&%)
= = wE— Jid
. 9= WE 3 ,
(}' ) QD ’ ( 3(0____“1) .,) 1_T_emHRc(<ff1)
do=gp ¥ I —\V" 3,0 ol Re
where
(5.2) o=1-2ak, (8),
(5:3) YOl =™ ’
. ——-s WOO H
W, a

(5.4) Re==—-v——.

Rquation (5.1) for the inner flow depends on two parameters: y Eq. (4.6) and the
slip factor defined by Eq. (5.2). Equation (5.1), depends on three parameters since
besides the two mentioned above it contains a product wRe which we shall treat
as the third parameter.

The slip factor o may be estimated from Eq. (5.2) assuming that realistic values
which can be taken for « and 6 are about 0.1 and 1074, respectively. We thus get
oa1.25 and take it as a limiting value. :

The streamline g=0 has been chosen to coincide with the axes of the coordinate
system xz; however, the analysis of Bq. (5.1); displays the possibility of a supple-
mentary line g=0 which extends from the axis & to the axis { thus bypassing the
origin of the coordinate system. The form of this streamline is obtained from Eq. (5.1),
putting ¢=0

L A AP
(5.5) £2=3a T 0O (3e—1).
The points in which the line g=0 intersects the coordinate axes, (&, 0) and (0, &),
have been found from Eg. (5.5) and the results are plotied in Fig. 6. The supple-
mentary streamline appears if the following condition is satisfied:

(5.6) y>30—1,

which results from Eq. (5.5) for £%>0. We can see from Fig. 6 and Eq. (5.6) that
the slip effect has a significant influence on the generation of the suplementary
streamline and all the same on the inner flow. '
The influence of the slip effect on the outer flow can be detected in Fig. 7, where
the difference ¢,,—¢, muitiplied by wRe is plotted against ¢ for several values of
v, q,=lim g; (& {) is the flow rate outside the boundary layer and ¢;=¢(1,0)

&—r00
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is the flow rate at the wall. Tt can be seen that the slip effect has a negligible influence
on the flow rate distribution on the outer side of the wall.

As an example of a flow through the system considered we present the stream-
lines distribution calculated for the case of y=35, to have a flow pattern with the

b
L

(o=} wRe
20 -

0

Fie, 7.

supplementary streamline g=0 (Fig. 8). For the inmer flow we take into account
the parameter o while for the outer flow we retained only the parameter wRe having
neglected ¢ as less important in this region. It is seen that below the streamline
g=0 the secondary current circulates with a negative rate flow forming a kind of
a separation bubble. In the outer flow we can observe the significant influence of
the Reynolds number on the boundary layer thickness.
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The displacement thickness §* is the case of a moving wall can be expressed in
the form

1 oo
(5.7 6*=~Eaf wdx .

Inserting Eq. (3.6) into Eq. (5.7) we obtain

sq &* 1

G @  oRel (D)’

what means that in the case considered the displacement thickness is simply pro-
portional to the reciprocal of the nondimensional pressure function (4.9).

6, THE VALIDITY OF THE MODEL

)
The application of the Poiseuille soluiion to the channel flow needs the velocity
perturbations # and W to be small as compared with the Poiseuille velocity profile

~ e

. i W
(6.1) —l, —<l.

» Wp
The first conditions is generally satisfied except for the neighbourhood of the lateral
wall (z=0) where it locally fails, what may be seen in Fig. 8. The second condition
needs more detailed examination. The axial velocity perturbation, so far neglected,
may b2 calculated from the linearized Navier-Stokes equations in a similar way
as it was carried out in [5, 6]. In this respect we give here the final formula for w,
without repeating the whole precedure

7 2

: W a
(6.2) w=w_f— (WW, (&) =3P W, (5] +

[WW:;(@“—‘I‘P 2WalOls
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where
(1-&

4(30—1)"
(1 _62)2.
" =0 Ge—1)

2

W=

[1504+7—{(150—T7) £2--2¢£4,

W& %m_l)

2

[60.' - (l —}" 62)} )

W, (5)=m(450’2+1+€2-}—64)-

The condition (6.1), is always satisfied at infinity ({—o0) and at the wall (&=1),
what resulted from the adopted boundary conditions 6]; however, in the interior
of the channel, including the initial cross-section, z==0, the fulfillment of this con-
dition is not obvicus and needs examination. Since the strongest deviation from the
Poisenille flow occurs at the plane z=0, we shall confine ourselves to the analysis
of the condition {6.1), in the origin of the coordinate system (0, 0).

Let us introduce the ratio

w0, 0)

(63) Siﬁm .

It is not exactly the condition (6.1), since as a reference velocity, for the sake of
simplicity, W instead w, has been introduced. Inserting Egs. (6.2) and (5.3) into
Eq. (6.3) we obtain

{6.4) g=f Re|F(y, 0)] <1,
where

| . 1
P, 0)= Wy O =AW, )=~ W3 O = AT, O),

The ratio &/(f Re) has been plotted against y for a wide range of the slip factor
o=1 and Eq. (1.25) (Fig. %)

For the outer flow we shall estimate the error of approximation inserting the
velocity components (3.6) and (3.8), and their derivatives into the boundary layer
equation

aw dw 2?2 w
(6.5) w~é—z_+u§=?—§'
Having carried ont the calculations and limiting ourselves to the plane {=1 we
notice that all the terms balance each other except one

(66) A=WW",
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which remains as the nonzero remainder, Taking the viscous term of Eq. (6.5) as’
a reference quantity we define the error of the approximation as

: A Wy
@7 0TG-
Y ox?
Ft3.00]
1

{

lik)

o
oo | 4t | S I i
[ 025 a5 a5 i o875 - 05 .25 o
L v — ) ~ r
¥ "
Fiz. 9.

With the aid of Egs. (5.3), (3.9) and (4.4)-(4.6) we transform Egq. (6.7) into the form

(},2 _ 1)2 e~

(6.8) fo= ARe (yet—e )’

1t is seen from Eq. (6.8) that &, tends to zero with £-»co provided y>2. In this
respect we shall confine here our analysis to the initial plane {=0 where the magni-
tude of e, is the highest. Hence the condition of the validity of the model reads

(r-+17?
B Re

6.9) g (0)= <.

Comparing the conditions (6.4) and (6.9) we may notice some contradiction since
the error in the inner flow increases with the factor § Re while in the outer flow the
error decreases. This contradiction resulted from the fact that the inner flow modelling
was related to the hydrodynamic theory of lubrication {8] based on the low Reynolds
number approximation whereas the outer flow calculations originated from the
boundary layer approach being the high Reynolds number approximation.
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Nervertheless we can find the common range where both approximations are
acceptable. From the combination of Egs. (6.4) and (6.9) we can eliminate f Re
and get the following relation: _

(6.10) g sg=(y-+1)" | (y, )1

Taking 10~2 for |F (y, 0)i (Fig. 9) and 10 for (y+1)* and assuming equal errors of
approximations for the inmer and outer flow we obtain that e==g=¢o i3 of the order
(0.1)*/2. This value, which is a compromise between contradict requirements,
seems to be rather high but we ought to have in mind that it is a local value which
decreases with the distance from the plane {=0. The factor B Re calculated from
Eq. (6.4) or Eq. (6.9) is, in this case, about 30. We ought to remember that in the
definition of Re (5.4) a half-width a is used as a characteristic length. However,'
the Reynolds number based on the streamwise characteristic length, generally vsed
in the boundary layer analysis, can be much higher than Re.

In this paper we tried to obtain a simple analytical solution of the problem by
means of approximate methods; in particular, of those based on the perturbation
of the Poiseuille flow, repeated after our previous papers [5, 6). Although we have
found the range where the apphication of the model may be estimated as justified,
the approximation is not quite satisactory. A more general model of a wider range
of applicability should include in the analysis of the inner flow, inertiaf terms of the
Navier-Stokes equations.

AprrENDIX, ROW OF CYLINDERS AS A LIMITING CASE OF A POROUS MEDIUM

It can be shown that a row of cylinders may be considered as a limiting case
of a porous medinm consisting of parallel cylindrical rods. Flow in the channel
with porous walls of such a structure has been considered in our previous paper
{6] and others, listed in [9].

A filtration velocity in this medium, which we shall call a volume bundle of
rods, is determined by the Darcy law. After [6] it may be written in the form

ALl ' U—'—EF _lag_
(a1 g AN 8

where §'is the cross-sectional area of the bundle pear one rod, and the nondimensional
coefficient F, (g) of the filtration normal to the rods is given, after [10] by the formula

1 1
A, =—|ln——
(A.2) F, R (In ’ 1.5), p<l,

? being a volume fraction of rods in the bundle. -

It may be shown thatin a limiting case of a one row bundle Fqs. (A.1) and (2.2}
are equivalent, Taking one row of cylindrical rods as a bundle of a thickness [ we
have

(A.3) S=/*.
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Approximating then a pressure gradient by a proper finite difference relation -

A4 R

and inserting Egs. (A.3) and (A.4) into Eq. (A.1) we obtain

PP~
FT .
It is easy to notice that Eqgs. (A.5) and (2.2) are identical, provided the coefficients

F, (A2) and k, (2.2) are equivalent. To compare Egs. (A.2) and (2.2) we express
a volume fraction ¢ in terms of one row geometry with the aid of Egs. (A.3) and (2.1)

(A.5) U=—IF,

A6) o= 7d? _ nd?
48 4
and insert (A.6) into (A.2). As a result, we obtain Eq. (A.7)
(A7) FL=—~1—(111“~1—+ 0.515),
4r 7o :

8/F,
1

Volume bundfe, Eq.(A.9)

1577 4073 Wt 1077

Fia, 10.
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which only slightly differs from Eq. (2.2) in the numerical value of the additive
constant. We can then take

(A8) F k.

Now we can examine the influence of the thickness of the channel wall on its
permeability. To this aim after [6] (Egs. (2.7) and (3.3)) we introduce the nondi-
mensional filtration coefficient of the volume bundle @, which with the aid of
Eg. (A.3) takes the form

|
A9) = P

- where x is the ratio of the outer / and inner a width of the channel, y=b/a.

‘The filtration coefficient of the row of cylinders on the base of Eqgs. (2.2) and
(A.8) reads

(A.10) b= =ak,

Equations (A.9) and (A.10) have been plotted against a in Fig. 10 for several
values of X. Tt is seen how permeability of the wall decreases with the growth of
the wall thickness. For the limiting case when a volume bundle reduces to a single
row cylinders, the lines corresponding to both systems intersect in the points a=y— L.
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STRESZCZENIE

PRZFPEYW CIECZY LEPKIE] PRZEZ UKLAD PORUSZAJACYCH SIE PRETOW

Przedmiotem pracy jest ustalony przeplyw cleczy lepkiej niefcisliwej przez uldad dwoch rowno-
leglych rzedow cylindrycznych pretdw, poruszajacych sig wzdhuz swoich osi. Rzad cylindrow po-
traktowany zostal jako ciagla powierzchnia, na ktore] zaréwno normalna jak styczoa skladowa
predkosct moga przyjmowaé wartodei rone od zera, Obie powierzchnie potraktowano jako ruchome
gcianki kanatu rownoleglego. Przeplyw wewnetrzny 1 zewnelrzny zostaly wyZnaczone za pomocy.
metody zaburzen zastosowanes do odpowiednich cislych rozwigzan réwnan MNaviera-Stokesa.
Oba, rozwiagzania zostaly skojarzone przy ugycin waruntkow zgodnosci na Sciance kanatu, rozdzie-
Jajace] oba przeplywy, dzigki ezemu uzyskano ciagly opis przeplywu w calym obszarze. Obliczono
rozklady ciéniet, predkosei i linil pradu. Oszacowano blad zastosowanej aproksymacji. i

PeswomMe

TEYEHUWE BSI3KO JKHUHKOCTHA YEPE3 CUCTEMY
IBARYIIMXCSA CTEPKHEN

B nacTosmedl pafoTe IpesCTARIGHC YCTAHOBHBIICSCH, JAMEHAPHOE NIOCKOS TEUCHHC HO-
CRAMAEMOE KIMKOCTH Yepes CECIEMY 7IBYX TAPARNENHHEIX INIOCKMX PeMCTOK MMIMANDHYECREAX
Crepicees, NBWKYDIEXCA BHOML CBOMX ocelf ¢ HAHHOM CKOpPOCTRIO. PemleTka CTEpAEHEH -paccMa-
TPHBACTCS KAK [IOCKAK, SIONBIDKHA, CIUOIMHAL NOBEPXHOCTE, Ha KOTOpOi BEMUMYMHAR! HOPMAaNLHOH
I KACATENBHOM COCTABISIONIX CKOPOCTE OTMIHLL oT Hyms. Teuerde BHYTDPH M EHE KaHaia, cdop-
MMPOBAHHOTO DTHMA TOBSPXHOCTHME, BBYHCICHO METOHOM BOIMYINCHES COOTBETCTBYIOMMX
ToUEBIX pewenuii ypapuenmit Mapbe-Crokca. VCHONB3YA YCHORMA COBMECTHOCTH W2 CTCHKAX '
KaHAAA, TIONYReHO HENPephiBHOE PeNICHAS B eIoil oONaCTH Te4YeHMA, BEMECICHS! PACHPDCACHCHIA
JTABIEAA, CKOPOCTEH M JEAHRH TOKA [ BHYTPCHHETO W BHGLIHOTO TCHCHH. O6CyxaeHEl ycnoapm
HOTYCTEMOCTM TPHHATON aurpOKCHMAIHY.
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