
ENGINEERING TRANSACTIONS • Engng. Trans. • 56, 4, 363–376, 2008
Polish Academy of Sciences • Institute of Fundamental Technological Research

CONSTITUTIVE MODELLING AND NUMERICAL SIMULATION
OF DYNAMIC BEHAVIOUR OF ASPHALT-CONCRETE PAVEMENT
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The main objective of the paper is to present a simple constitutive model suited for dy-
namic simulation of asphalt-concrete mixtures. ABAQUS/Explicit FE software is used for this
purpose. The model belongs to the class of overstress hypoelastic-viscoplastic materials, taking
into account the effect of pressure-dependence on yielding. The implementation of constitutive
relations formulated in the paper is done through user subroutine module VUMAT. The results
of numerical simulation of dynamic behaviour of multilayer pavement structure, illustrating
the applicability of the algorithm, is also discussed.
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1. Introduction

Rheological properties of engineering materials are characterized by elas-
tic, plastic and viscous phenomena. The plastic behaviour is always associated
with large deformations, whereas the viscosity is observed during fast loading.
The loads acting on asphalt-concrete pavement structure are dynamic in na-
ture. Thus, the crucial problem in analysis of such pavements is a formulation
of constitutive model of the material, taking into account the rate-dependence
phenomenon. Our objective is to present a simple class of constitutive equations
describing the behaviour of pressure-sensitive materials such as asphalt concrete,
suited for dynamic simulation. During our investigation we will not consider any
creep effects because the analysis is limited to fast loading processes [2, 19].

Within the framework of the theory of viscoplasticity [16] it is possible to
consider the influence of load intensity as well as its velocity on the process of
formation of permanent deformations. The theory states that there is a limit
state of stress defining the range of elastic behaviour. We assume that the limit
state may be defined by the yield function depending on two invariants – the
norm of deviatoric stress and the trace of the stress tensor. After reaching the
limit state, viscoplastic effects may be observed. In order to describe the vis-
cosity phenomenon, additional parameters should be taken into consideration.
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The model presented herein introduces only one viscous parameter related to
the total stress space. Thus, the relations to be obtained belongs to the class of
Duvaut-Lions overstress materials [6] in which the rate-independent plastic part
of the stress tensor may be calculated as a projection of the total stress on the
static yield surface.

We will start with large strain formulation. After some simplifying assump-
tions, a hypoelastic-viscoplastic model will be introduced. The form of consti-
tutive relationships to be obtained herein allows a user-defined implementation
within the Finite Element (FE) commercial codes. The numerical integration
algorithm was coded in ABAQUS software [1]. The implementation was done
through user subroutine module VUMAT in order to study the behaviour of
multilayer pavement structure.

2. Kinematics

Analysing large elasto-viscoplastic deformations we should start with an as-
sumption stating that the total deformation gradient F is decomposed multi-
plicatively into elastic and viscoplastic parts [11, 12]

(2.1) F = Fe Fvp, if dx = F dX,

where F maps a line element dX in the reference configuration to the dx in the
deformed configuration.

In Eq. (2.1), both tensors Fe as well as Fvp contain stretches and rigid body
rotations. For simplification we will assume that all rigid rotations are associ-
ated with viscoplastic deformation gradient. Thus, using the polar decomposition
theorem we obtain

(2.2) Fe = Ve and Fvp = VvpR,

where R describes total rotations. Moreover, Ve and Vvp are left stretch tensors
in elastic and viscoplastic part respectively.

Differentiating Eq. (2.1)2 and making use of Eq. (2.1)1, we obtain the follow-
ing expression defining velocity gradient L as well as its elastic and viscoplastic
parts given by Le and Lvp:

(2.3) L =
dv

dx
= Ḟ F−1 = Le + VeLvp (Ve)−1

if Le = V̇
e
(Ve)−1 and Lvp = Ḟ

vp
(Fvp)−1 .

The velocity gradient can be decomposed into a symmetric part denoted by
D and a skew-symmetric part denoted by W

(2.4) L = D + W where D =
1

2

(
L + LT

)
and W =

1

2

(
L − LT

)
.
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Of course, the same decomposition scheme holds for its elastic part Le =
De + We and viscoplastic part Lvp = Dvp + Wvp. Thus, based on Eq. (2.3)1 we
obtain

(2.5) L = De + We + VeDvp (Ve)−1 + VeWvp (Ve)−1 .

Eventually, taking the symmetric part in Eq. (2.5) we obtain

(2.6) D = sym (L) = De + sym
[
VeDvp (Ve)−1

]
+ sym

[
VeWvp (Ve)−1

]
.

Assuming that elastic stretches are small, i.e. Ve = (Ve)−1 = I, we obtain
from (2.6) the well-known decomposition rule for the rate of deformation tensor

(2.7) D = De + Dvp.

The decomposition scheme expressed by Eq. (2.7), along with assumption
stating that Wvp = 0, is widely used in FEM programmes [3, 18].

3. Constitutive relationships

We assume that the elastic part is described by hypoelastic law relating any
objective rate of Kirchhoff stress τ

▽ to the elastic rate of deformation

(3.1) τ
▽ = C · De,

where the C denotes the 4th rank tensor of elastic coefficients.
Combining Eq. (2.7) with Eq. (3.1) we obtain

(3.2) τ
▽ = C · (D − Dvp) .

In the case of isotropy, the above equation is replaced by

(3.3) τ
▽ = K tr (D − Dvp) I + 2 G dev (D − Dvp) ,

where the elastic constants K and G denote the bulk modulus and shear modulus
respectively.

The operators tr (·) and dev (·) := (·)− 1

3
tr (·) I used in Eq. (3.3) denote the

trace and deviator.
The objective rate of the tensor τ in the above expressions is given by

(3.4) τ
▽ = τ̇ + τΩ − Ωτ,

where τ̇ is the material rate with respect to the basis of τ. The Ω is a skew-
symmetric spin tensor. Various forms of Ω can be taken into account. For exam-
ple setting Ω = W in Eq. (3.4), gives the Jaumann rate. Another objective stress
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rate, the Green–Naghdi rate, is obtained by taking Ω = ṘRT . For numerical
simulations, the Green–Naghdi rate will be used because of needs of the user
material subroutine implemented in FE code.

The additive decomposition of the rate of deformation tensor introduced in
Eq. (2.7), may be interpreted via rheological model to be shown in Fig. 1. Such
a model, firstly defined by Bingham in the case of 1D stress-strain state, repre-
sents a family of elasto-viscoplastic materials called over-stress type models [12].
For such materials, before reaching a plastic limit state, the material behaves
like a perfectly elastic one. After that, a rate-dependent yielding is observed.

Fig. 1. Rheological model of the material.

Based on the Fig. 1, it can be proved that the total stress τ is equal to elastic
stress τ

e and may be decomposed into the stress acting in plastic network τ
p

and viscous network τ
v. Thus, we have the relation

(3.5) τ = τ
e = τ

p + η Dvp,

in which scalar η denotes the viscosity parameter. This is the only rate-dependent
material coefficient to be taken into consideration. In general case, one should
consider a tensor of viscous parameters being similar to the elastic operator C

or assume two coefficients related to volumetric and deviatoric subspaces like in
Eq. (3.3). Because of the complexity of laboratory tests for asphalt, we assume
only the single-rate-parameter model.

Now we need to describe the plastic properties of our model. The system
of constitutive relations of a perfectly plastic material is defined by the set of
admissible stresses Θ as well as by the maximum dissipation rule [15]:

τ
p ∈ Θ,(3.6)

Dvp ∈ K (τp, Θ) := {τp : Dvp · (τp − τ̃) ≥ 0 ∀ τ̃ ∈ Θ} .(3.7)
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It should be assumed that the Θ-set is convex, closed, limited and contains
zero. The mapping K used in Eq. (3.7), determines the set of viscoelastic rates
assigned to τ

p. This set has the form of an external normal cone to the Θ-set
at τ

p.
Alternatively, the system of Eqs. (3.5), (3.6) and (3.7), may be replaced by

the following minimization problem:

(3.8) Dvp = arg mineD [
1

2
η
∥∥∥D̃
∥∥∥

2
+ ΠΘ

(
D̃
)
− τ · D̃

]

if ΠΘ

(
D̃
)

:= sup
τ

p∈Θ
D̃ · τp,

where ΠΘ denotes the support functional of the Θ-set [15].
The system of constitutive relations given by Eqs. (3.3), (3.5), (3.6) and (3.7)

or by Eqs. (3.3) and (3.8) is valid for any isotropic elasto-viscoplastic material
in which the plasticity constraints are described by appropriate definition of the
Θ-set. Let us assume that this set is described by smooth yield function Φ as
follows:

(3.9) Θ := {τp : Φ (τp) ≤ 0} .

Thus, we can replace the Eqs. (3.6) and (3.7) by the following set [8]:

(3.10) Dvp = λ
∂Φ (τp)

∂τ
p

, Φ (τp) ≤ 0, λ ≥ 0, λΦ (τp) = 0,

where the scalar λ is called the Lagrange multiplier. Equation (3.10)1 is called
the associated flow rule while Eqs. (3.10)2, (3.10)3 and (3.10)4 are the load-
ing/unloading conditions or Kuhn–Tucker conditions.

Obtaining of the detailed form of Eqs. (3.10) needs the appropriate yield
condition to be taken into consideration. In the paper we will analyse a pressure-
sensitive Mises–Schleicher (MS) yield condition [5]. The yield function associated
with this condition has a form

(3.11) Φ (τp) = ‖dev τ
p‖n + αRn−1 trτ

p − Rn where R =
√

2 k.

Three additional material parameters were introduced via Eq. (3.11). Symbol
k denotes the yield limit stress based on pure shear test. Dimensionless parame-
ters α ≥ 0 and n ≥ 1 determine the shape of the yield function in the meridian
cross-section visualized in Fig. 2a.

Taking α = 0 and n = 2 in Eq. (3.11) we obtain the pressure-insensitive
Huber–Mises–Hencky (HMH) yield condition. If we substitute n = 1 in Eq. (3.11),
we will obtain the Drucker–Prager (DP) yield function. Let us note that the DP
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a) b)

Fig. 2. Meridian (a) and deviatoric (b) sections of the Mises-Schleicher yield surface.

function is non-differentiable for trτ
p = R/α. In this point the Eqs. (3.10) are

not valid. The analysis of non-smooth yield surfaces is still an open problem in
the theory of plasticity. This is not our objective to deal with this problem, so
our formulation will be limited to this specific point.

Deviatoric section of MS yield function is of circular shape as it is shown in
Fig. 2b (continuous line). In this figure we visualized also, by a dashed line, the
locus of Coulomb–Mohr (CM) yield function to be widely used in geomechan-
ics [5]. The CM yield condition may be defined by the following equation:

(3.12)
tr τ

p

3
sin φ +

1√
2
‖τp‖

[
sin
(
θ +

π

3

)
+

1√
3

cos
(
θ +

π

3

)
sin φ

]
− c cos φ = 0,

for θ ∈ 〈0, π/3〉 where θ =
1

3
arccos

√
6 tr (τp)3

‖τp‖3 .

The CM yield condition defines a yield function having the shape of a pyramid
with non-regular hexagonal base. The material parameters k and α describing
the MS function, can be evaluated based on the CM coefficients: φ – friction
angle and c – cohesion parameter. Assuming that the CM surface is inscribed in
the DP surface and that their apexes coincide, the following relations between
the material coefficients of both conditions are valid:

(3.13) k =
6 cos φ√

3 (3 − sinφ)
c, α =

2
√

2 sin φ√
3 (3 − sinφ)

.

Having assumed the MS yield condition, we can specify the relation (3.10)1

(3.14) Dvp = λn ‖dev τ
p‖n−2 dev τ

p + λαRn−1I.

The system of relationships defining our material model is composed of
Eqs. (3.3), (3.5), (3.11) and (3.14) completed by conditions (3.10)2, (3.10)3
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and (3.10)4. Using these relations we need to have the λ multiplier calculated.
After this we can calculate the rate of viscoplastic deformation from Eq. (3.14)
and substitute it into Eq. (3.3) in order to obtain the objective stress rate τ

▽.
Finally, using Eq. (3.4) the material stress rate τ̇ may be calculated.

Numerical simulations of the pavement structure will be carried out using the
explicit integration algorithm implemented in ABAQUS software (the equations
of motion will be solved explicitly). The incremental steps needed for dynamic
explicit codes are very small. Thus, we can use the following simple explicit
integration scheme in order to update the stress tensor:

(3.15) τt+∆t = τt + τ̇∆t.

In order to obtain the Lagrange multiplier, we have to analyse two cases. If
Φ (τ) ≤ 0, then λ = 0 and Dvp = 0 and τ

p = τ
e = τ (elastic case). If Φ (τ) > 0,

then Φ (τp) = 0 and λ > 0. In this case the value of λ can be obtained based on
Eqs. (3.5), (3.11) and (3.14). We may rewrite these equations eliminating Dvp,
what gives the following two relations:

(3.16) τ = τ
p + ληn ‖dev τ

p‖n−2 dev τ
p + ληαRn−1I,

(3.17) ‖dev τ
p‖n + αRn−1 trτ

p − Rn = 0.

After some algebra, these equations may be written as follows:

(3.18) λ =
‖dev τ‖ − ‖dev τ

p‖
nη ‖dev τ

p‖n−1 ,

(3.19) ‖dev τ
p‖n + αRn−1

(
trτ − 3ληαRn−1

)
− Rn = 0.

In the above scalar equations, the unknowns are λ and ‖dev τ
p‖. It is obvious

that for any n > 1 and α 6= 0, we cannot give any explicit formula for the λ
multiplier. In such a case we have to solve the nonlinear algebraic Eq. (3.19).
For numerical simulations to be shown in the next chapter, the implicit Newton
method was used.

Let us take into consideration two special cases in which the multiplier λ can
be expressed in explicit form. For the DP yield function we take n = 1. Thus, it
can be proved that

(3.20) λ =
‖dev τ‖ + α trτ − R

η (1 + 3α2)
and Dvp = λ

(
dev τ

‖dev τ‖ + αI

)
.
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In the case of the HMH yield condition, substituting α = 0 into Eq. (3.20)
we obtain a well-known formula (see [4])

(3.21) Dvp =
dev τ

η

(
1 − R

‖dev τ‖

)
.

It is obvious that for the HMH yield criterion, the plastic deformation does
not cause any volume changes. Thus, the Eq. (3.21) may be rewritten replacing
the Kirchhoff stress tensor τ by the Cauchy stress tensor σ.

4. Application

The aim of formulation of constitutive equations is to predict the behav-
iour of pavement structure under dynamic load. The problem we should solve is
a coupled system composed of initial-boundary-value problem, given by the mo-
mentum equilibrium and the constitutive equations. Since the boundary-value
problem is usually solved by the FEM, the constitutive model has to be imple-
mented in an appropriate way.

The constitutive equations considered can be mathematically classified as
a coupled system of non-linear ordinary differential equations, building an initial-
value problem. The solution of such a system can be embedded in an incremental
FEM formulation with displacement approach, leading to the well-known explicit
FEM problem for non-linear material equations, which has to be solved itera-
tively [3]. The constitutive equations were programmed within the ABAQUS/Ex-
plicit system [1]. The system requires the incremental procedure to be defined
in VUMAT subroutine coded in FORTRAN language.

In this section we will show the results of dynamic simulation of multilayer
asphalt concrete pavement exposed to the impulse of pressure. Such a load may
be a simplified model of the aircraft tire impact at the time of landing [13, 14].
We will assume the axisymmetric topology of the model. The schematic view of
the model is visualized in Fig. 3. The load acts during 0.1 [s] with the intensity
of q = 1200 [kPa]. The pressure is uniformly distributed over the circular area
with the radius equal to 20 [cm]. The pavement layers were modelled using
2820 axisymmetric 4-node elements of the CAX4 type (see [1]). They rest on
a discrete Kelvin–Voigt viscoelastic foundation have the elasticity parameter
equal to k = 150 [MN/m3] and the viscosity module η = 1 [MNs/m3]. The FE
mesh is built over the 1.4 [m]×4.0 [m] rectangular area.

We carried out three numerical calculations assuming various material prop-
erties of the pavement layers. The first simulation was executed for a perfectly-
elastic material. The values of elastic parameters (see Table 1) are assumed to be
partially based on [10, 19] and are of the same value like in [20]. The parameters
presented in Table 1 were also used for next simulations.
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Fig. 3. Schematic view of the structure.

Table 1. Elastic parameters of pavement layers.

K [MPa] G [MPa]

Wearing course 160 74

Binder course 186 86

Base course 439 203

Subgrade 125 58

The second simulation was carried out for elasto-plastic rate-independent
material with MS yield condition. The inelastic material constants for each layer
have the following values: n = 1.2; k = 160 [kPa] and α = 0.2.

The third simulation concerns the elastic-viscoplastic model presented in the
previous section. The material constants are of the same value like in previous
simulation with the additional viscosity parameter equal to η = 500 [kPa · s].

The contours of equivalent HMH stress are visualized in Figs. 4 and 5 (elasto-
plastic pavement) and in Figs. 6 and 7 (elasto-viscoplastic pavement). The scale
deformation factor to be used in these figures is equal to 20. The contour plots
show differences in distributions of stresses at the moment of unloading for t =
0.1 [s], as well as at the end of analysis for t = 1 [s].

Additionally, Fig. 8 shows the displacement history curves at point A lo-
cated in wearing course (see Fig. 3), constructed for three material models to be
taken into consideration. The results allow to evaluate both the maximum de-
flection and the maximum permanent deflection in the structure. Thus, the max-
imum deflections to be obtained have the values between approx. 2 [mm] (elastic
pavement) and approx. 4.5 [mm] (elasto-plastic pavement). When the load is



372 A. ZBICIAK

Fig. 4. Contours of equivalent HMH stress in elasto-plastic pavement for t = 0.1 [s].

Fig. 5. Contours of equivalent HMH stress in elasto-plastic pavement for t = 1 [s].
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Fig. 6. Contours of equivalent HMH stress in elasto-viscoplastic pavement for t = 0.1 [s].

Fig. 7. Contours of equivalent HMH stress in elasto-viscoplastic pavement for t = 1 [s].
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Fig. 8. Vertical displacement history curves for various materials of the pavement structure.

removed, the permanent vertical displacements are equal to approx. 1.3 [mm]
(elasto-plastic pavement) and approx. 0.8 [mm] (elasto-viscoplastic pavement).

It should be strongly emphasized that these results must be viewed with some
caution as they are based on insufficient laboratory tests.

Moreover, the results of the elasto-plastic rate-independent analysis may not
be simply obtained basing on Eqs. (3.18) and (3.19) because if η = 0 (no vis-
cosity) then the Eq. (3.18) is singular. The constitutive relationships for the
rate-independent model can be formulated using the procedure described in [8].

5. Conclusions

The numerical studies which have been conducted demonstrate that the ma-
terial model presented in the paper may be used in order to characterize asphalt
pavement’s dynamic behaviour in a wide range of material parameters. As it was
emphasized in the previous section, the detailed analysis needs complex experi-
mental tests to be conducted. The numerical example we presented herein shows
only the applicability of the theory. Additional testing is required of the static
and dynamic ranges of load rates, in order to evaluate plastic and viscous prop-
erties of the material. For example, a somewhat similar material model presented
by Gonzáles et al. [7] was calibrated basing on direct tensile test results carried
out for various strain rates. In our case such an experiment should be completed
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by testing the material in pure shear stress state because of the complexity of
the yield surface.

There exist many possible enhancements to the current model. For instance,
in the case of large pressure-stress states, the material obeying the Mises–Schlei-
cher yield condition does not exhibit the plasticity phenomenon, what leads to
inadequate prediction of inelastic volume changes. Thus, some modification of
the yield function leading to so-called cap models should be also considered [12].
This problems is now being studied by the author.
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