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PARAMETRIZATION OF BENDING MOMENTS IN CREEP ANALYSIS
"OF CIRCULARLY SYMMETRIC SIMPLY SUPPORTED PLATES

L BIALKIEWICYZ (KRAKOW)

This work presents the method of the solution, based on the parametrization of the bending
morments, for annular simple-supported plates. As a result of this parameirization, the solution
of the boundary problem is reduced to the solution of three ordinary differential equations of the
first order. The set of equations separated with respect to the derivative of unknown functions makes
it possible to apply the standard Runge-Kutta integral procedures. The time of the first cracks
will be calculated using the Kachanov—-Rabotnov damage law.

1. INTRODUCTION

The solutions, found in literature, of the steady creep problem of circularly sym-
metric plates, in the case of the application of the nonlinear viscoelastic Odqvist—
Norton model of the material [1], are based in general on approximate methods.
In particular, the boundary problem reduced to the differencial plate equation
(expressed by an unknown function of deflection) is solved with the aid of: a method
of ‘successive approximation [2], variation methods [3, 4, 5] and cettain methods
using the discretization of the integral region under the assumption that the stress
intensity is based upon the hypothesis of a maximum shear stress [6]. The numerical
1ethods applied in the solutions of circularly symmetric plates made from elastic-
-plastic material with power strain-hardening [7] are also adopted [6].

- 'The method of the solution based on parametrization of the bending moments
will be presented below. As a result of this parametrization the solution of the
boundary problem is reduced to the solution of three ordinary differential equations
of the first order. The set of equations separated with respect to the derivative of
unknown functions makes it possible to apply the standard Runge-Kutta integral
procedures. ‘

Additionally, the problem of calculation of the forming time of the first cracks,
under the assumption that stresses and strain velocities are constant, is considered.
That time has been calculated with the application of the Kachanov-Rabotnov
damage law [8, 9].

The governing set of equations will be formulated in dimensionless variables.
The algorithm which enables the numerical analysis of the creep process has been
illustrated by the solution for an annular plate simply supported along its external
edge. :
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2. FORMULATION OF PROBLEM

It follows from the assumption of circular symmetry that all inquired magnitudes
described in a cylindrical system of coordinates {r, 6, z} will be the functions of the
radius r, coordinate z (the midspan of the plate is determined by the coordinate
z=0) and time ¢. The solutions of the steady creep process with the analysis of
forming of the first cracks will be integrals of the following set of equations:
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The symbols o,, ¢y, 0z, 7, and w denote the normal stresses related to r, 6, z direc-
tions, shear stress and the midspan rate deflection. The magnitudes 4, no, n, 0,
are connected with the material property description. The function oy denotes the
maximum value of the principal tensile stress in particles of the upper z=—#4 or
lower z=h surface of the radius r=ro.

According to the assumptions adopted in the theory of the thin plates, the

constitutive relation (Norton—Odqyvist creep} (2.3) and (2.4) is written as in plane

stress state. The radial and circumferential strains rate (the left-hand sides of Eqs.
(2.3) and (2.4)) are expressed basing on the assumption of conservation of normals
to the middle-surface.

Due to the fact that the siatical boundary condiiions can be satisfied only in
integral form, the equilibrium equations (2.1) and (2.2) will be taken as follows [1]:
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where g (r) is the load function of the upper plate surface
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The definitions of the bending moments M,, M, and transverse force Q. are given by

k h it
(2.10) M = fcr, zdz, My,= fof, zdz, Q= fr,., dz.
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Introducing for dimensional purposes the stresses
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the bending moments M,, M, and transverse force Q, can be written as
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2.12) m= [s,td, m= [scd, 4= [scd,
. -1 : -1 -1
where the dimensionless coordinates p and ¢ are expressed by
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Besides the material constants o, and n, a constant ¢, (which has time dimension)
is simultaneously used for dimensional purposes. _

The equilibrium equations (2.7) and (2.8) after substitution of Eqs. (2.10)-(2.13)
will take the form

o : 1 '
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where g denotes the dimensionless load function
(2.16) q(p)= .l

The components of the strain rate tensor (the left-hand sides of Eqs. (2.3) and

2.4)
‘ Z
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can be expressed by the rate of variability of the angle between the normal to
the midspan ,

(2.18) - e=—w,,

Talci.ng' into- accbunt , ! .
(2.19) = ()ta, PR=7 W)t

the expression (2.18) can be written in the dimensionless form

(2.20) ' PP)=-~w,.
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The constitutive equations (2.3) and (2.4) as a result of substitution of Eq. (2.18)
with simaultaneous use of Egs. (2.11)~(2.13) and (2.19) can be given by

1
(2.21) £, =5 s (28, —50),
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where 5, denotes dimensionless stress infensity
(2.23) s =525, Sg+s3 .

Similarly, introducing dimensionless magnitudes of the constant A and the prmc:pal
tensile stress o
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(2.24) A=Acoty, *, m=—tiy

G,

the Kachanov rupture law (2.5) can be writien in the following form:
(2‘.'253'-_i P max {J(noj}rl)f [s; (po, §=i1,,w)]"odr}= .

Dimensionless time 7 and in detail dlmensmnless iime of the first cracks -r* are
here expressed by -

(2.26) r=—, rh=—

The solution of the britile creep rupture of clrcularly symmetnc plates is reduced
to the solution of the governing set of equations (2.14)-(2.15), (2.18), (2.21)-(2. 22)
and (2.25) with respect to the dimensionless functions of the bending moments
m, and my, transverse force g,, rate of deflection % and angle of deflection &, and
to the dimensionless time of the first cracks +*. The method of solution will be
based on the parametrization of the radial 5, and circumferential 5, stress fonctions,
By means of the relations (2,12) the parametrization will be transferred to the func-
tions of the bending moments m, and m,.

3. PARAMETRIZATION OF BENDING MOMENTS

The basic idea of parametrization consists in redacing the number of equations
in the governing set as a resalt of identical satisfaction of the constitutive relation
(2.22). In this order the stress state components 5, and sy are expressed by the para-
metrizing function v (p, ) [10, 11]

n—1
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As a result of integration defined by the relations (2.12), the parametrization of the
bending momenis takes the form

-n—1
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From thc comparison of the expressions (3.1) and (3.2) the simple reladons between
the normal stresses and the bending moments can be Wntten_as
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The constitutive equations (2 21) and (2.22) after substitution of Eq. (3.3) will be
expressed by the functions of bending moments
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where, by analogy 1o the stress mtensuy, the bendmg moment mtensﬁy has been
introduced:

(3.6) . m;=m_ —m, my-+m? .

Equation (3.5) is identically satisfied; therefore in furthar formulation of a boundary
problem only one constitutive equation (3.4) will be taken. A simplified form of
Eq. (3.4) will be given dividing the members of Eq. (3.4) by Eq. (3.5):

1 2m,—m,
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The integral of Bq. {2.15) for a certain load of the plate g (p) is the function
of the transverse force g, (p). Therefore the governing set of equations in the nu-
merical soliition of the boundary problem is reduced to the eéquilibrium equation
(2.14), physical relation (3.7) and geometric expression (2.20). Iniroducing the
parametrization (3.2), this set of equatlons takes the form
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The solution of the boundary problem is reduced to the integration of three
ordinary differential equations (time is a parametr) with respect to the unknown
functions w (p), @ () and W (p). The known form of the parametrizing function
w—(p) makes it possible to calculate the time of the first cracks by means of Eqs
(3.1} and (2.25).

¢

1
(3-9) ?,0 ';

4, ALGORITHM OF CALCULATION

The algorithm of the calculation will be shown in the example of the solution
of an annular simply supported plate along the external edge, Fig. 1. The statical
boundary conditions will be formulated for a plate loaded uniformly with a moment
M, at the internal edge of the plate r==r, and load ¢ applied to the upper surface.

Mﬁ .
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For a given load, the integral of Eq. (2.15) with the boundary condition
@n 1(0=

is the function of the transverse force
(4.2 : g R »*—rD.
_ r 2p i

The two further Boundary conditions for bending moments will be formulated on

the internal edge
1

Moyt

o, h*

“.3) | my (pa) = —

and the external edge of the plate
@y | m, (p)=0.
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- According to the parametrization (3.2), the first condition (4.3) ylelds the
relatlon

1 BV ~ i, n
(45) @(pa)=—4—(1+_2;;) (T) pa{ 7 B
: (_:os[w (pa)—-s'-'-]
x[)/3 cos w (pg)—3 siny (p,)].

The second condition (4.4) for the positive circumferential bending moment on the
external edge of the plate (m, (p,)>0) yields

“o =2

The boundary conditions (4.5) and (4.6) formulate a two-point problem for
Egs. (3.8)~(3.9). This consists in such a choice of the magnitudes w (p,) in the expres-
sion (4.5) so that after integration of Egs. (3.8)~(3.9) the function w (p) satisfies
simultaneously the boundary condition (4.6). For the purpose of choosing the
values v (p,), the linear interpolation method was used in the paper. It proved
to be of rapid convergence, even satisfying the condition (4.6) with very high accuracy.
The function ¢ (p) obtained in the numerical way allows to calculate the function
of deflection w as the integral of Eq. (3.10) with the boundary condition

(4.7 W (ps)=0.

In agreement with the adopted Kachanov law (2.25), the first cracks appear
in the place where the maximum tensile stress occurs. In the solntion of an annular
plate this will be the circumferential stress s,. The coordinate p, of the point where
the first cracks will appear (on the apper {=—1 or lower surface =1 of the plate)
agrees with the coordinate of the maximum circumferential moment

8) g =m (po). |

The stresses which are constant during the development of damages tiil the first
cracks appear enable transformation of Kachanov’s law to a form allowing for the
determination of time 7% without need of numerical integration. Regarding the
relations (3.3) this time can be calculated according to the expression

1

Alno+1) (1 i _2111—)"0 max [mg (ﬂo)]"" ‘

£

(4.9) T =

In the numerical analysis of brittle crrep rupture of metal plates at elevated
temperatures shown below, the constants descnbmg the properties of the plate
will be taken as follows: : : .

(4.10) _‘n =5, 'n0—35 J—ou _
These data correspond to creep and damage behavmur, typlcal of metals- used in
high temperature applications. : - .

Rozprawy InZynierskie — 8
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< In examples of the solutions, for the schema of load shown in Fig.-i;l, the influence
of g (for My=const) and M, (for g=const) on the shape of the functions m,, m,
and # is investigated separately. Particularly, the influence of the load g on the
form of the radial bending moment, for the fixed value My=-—0.35+10"2, is shown
in Fig. 2. Corresponding functions of the circumferential bending moment are presen-
ted in Fig. 3. The coordinates p connected with the maximum values of the functions

"'13-2 “Tig

my show localization of the points where the cracks will appear. The dependence of
the relative damage time (referred to the damage time of the plate loaded only with
a bending moment #,, §=0) on the load 7 is shown in Fig. 4. Considering appreci-
able differences in values of the damage time on the load g, & logarithmic scale has
been taken for the z-axis. For the same reasons a logarithmic scale has been accepted
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in order to show the function of deﬂectzon of theinternal edge of the p]ate W (p-2 5)
against the load g, Fig. .5. -

The independent investigations of thc influence of the load moment A, (for g=
=56.87-10"%) on the form' of the functions solving the problem of brittle, creep
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rupture of plate are presented in Figs. 6,7,8 and 9. The functions of the radial moment
m, for different loads -
¢ M 4} =mp (p =2. 5)

are shown in Fig. 6, The functions of circumferential moments corresponding to
them are shown in Fig. 7. It is seen from Fig. 7 that the values of circumferential
moments decrease with an increasing load moment M, (for fixed load ). This
influence will be marked with an increase of the relative rupture time (related to
the time of damage for M,=0) when #7, becomes greater. The functions of deflect-
tion of the midspan for the taken values of M, (Fig. 6) are presented in Fig. 9.

5. FINAL REMARKS

The algorithm of calculation, based on the parametrization of bending mo-
ments presented in Chapter 4, is limited in application to the analysis of creep
and damage processes of plates with nonzero boundary conditions for the angle of
deflection @. According to the parametrization (3.2), the sought value & leads
to vanishing of the bending moments m, and m,. Hence the algorithm of calculation
is valid for annular simple-supported plates. In the case of clamped plates or circular
plates without hole, a separate algorithm of calculation should be connected with
the -clamped- place or middle point of the plate, respectively.




PARAMETRIZATION OF BENDING MOMENTS IN CREEP ANALVSIS 35

REFERENCES

—t

. F.K. G. OoQvisT, Mathematical theory of creep and creep rupture, Oxford 1966.
2. N.N. MALMNIN, Steady creep of cireular plates loaded symmetrically, MWTU, 26, Mashgiz
1953 [in Russianl.

. N.N. MALINW, Fundamentals of calculations with respect to creep, Mashgiz, 1948 [in Russian].

. L. M. KacuANOV, Theory of ecreep, GIF-ML, Moscow 1960 [in Russian],

5. W.L. Bazawov et all., Calculation of construction with respect to temperature influence, Ma-
szinostr.,, Moscow 1969 [in Russian].

6. V. HonGE, Creep behaviour of circular plates, J. Appl. Mech., 25, 1, 1958,

7. W. W. Sororowskl, Theory of plasticity, Moscow 1969 [in Russian].

8. F.K. G. Opqvist, J. HULT, Some aspects of creep rupture, Arch, Physic, 19, 1961,

9. L. M. KAcHANOV, Fundamentals of fracture mechanics, Nauka, Moscow 1974 {in Russian].,

10. J. Brarxiewicz, 8. PIECHNIK, Parametrization of the Odgvist's creep law in the cireular-sym-
metrical problem, Eng. Trans., 25, 4, 1977,

11, S, PECHNIE, J. Biarkwmwicz, Ductile-brittle creep, rupture of circularly symmetric discs, Bull.

Acad. Polon, Sci., Série Sci. Techn., 27, 7, 1979.

>

FoG )

STRESZCZENIE

PARAMETRYZACJA MOMENTOW ZGINAJACYCH W ANALIZIE PEEZANIA
SWOBODNIE PODPARTYCH PLYT KOLOWO-SYMETRYCZNYCH

Przedstawiono metode rozwiazania oparta na parametryzacji funkeji momentéw zginajacych
dla pierscieniowych plyt swobodnie podpartych w warunkach pelzania ustalonego. W wyniku
parametryczacii rozwiazanie zagadnienia brzegowego sprowadza sie do rozwiazania uktadu trzech
rownai rézniczkowych zwyczajnych pierwszego rzedu, Rozdzielony uklad réwnafi wzgledem po-
chodoych umoiliwia zastosowanie standardowych procedur callcowania Rungego-Kutty, Czas
pierwszych peknieé obliczono postugujac sig prawem zniszezenia Kaczanowa—Rabotnowa.

PeswomMme

ITAPAMETPHBAITAA M3rMBHRIX MOMEHTOB B AHANIZE IIOJVYECTH
CBOBOAHO MOONEPTRIX KPYIOTOCHMMETPHYHRIX TUINT

TIpencraBiicE METON PEINEHNS, ONEPAICHIMACA WA TAPAMETPHIALHE byHxned mArEGHEIX MO-
MeaTOB An% CBOGONRO TOMNEPTHX KONBLESHX MIET B YCNOBHAX YCTAHORABILGHCS IIOI3YYECTH,
B pesyapTaTe HAapaMeTPHIATHN DOMSHAE KPAacBol 2aJaus CBOJNETCH X PEINEHAI0 CECTEMSI TPeX
oObIXROBEHHEX HGOEpPeNIMANLHEX yDABRERWH TEPBOTO HOPANKA. PA3IeNeHHAs 0O OTHOMMCHHIO
¥ NPOM3BOJHEIM (UCTEMA YpaBhenwuii IaeT BOSMOKHOCTE IPHMEHMTH CIAHNAPTHEIS HPONSAYPLI
maTerpepopanas Pynre-Kyrra. Bpems NoABIGHMA TEpBEIX TpEIIMH PacCYRTano, MOCHYKHBAACH
3aK0HOM paspymrenus Kauanosa—PaBoreoBa.
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