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ON AN ELASTIC-PLASTIC BEAM WITH THE ROTATION
CONSTRAINT AT THE SUPPORT

A GAWECKI (POZNAN)
|

" The behaviour of the geometrically linear clastic-plastic beam with the rotation constraint
at the support is analysed. The problem considered belongs to the mechanics of systems
at unilateral constraints. It appears that there exists an optimum value of the support limir

_rotation which is associated with the maximum elastic strength of the beam. The elastic
strength increase requires slackening or prestressing of the structure, what depends on load
position on ‘the beam. The analysis of this problem shows the close qualitative relationship
between slackening and prestressing of the structure. In the elastic-plastic range the loading.
and unloading cycle up to the ultimate load is considered. It appears that after unloading
of the beam when the limit rotations are less than the optimal ones there are no residua;li
deflections and stresses. For a larger value of limit rotations the residual deflections anH
strésses ocour but the stress state after unloading corresponds to that of the reference beam
with the optimal rotation constraint. Tt seems that the observations described in the paper

may be utilized in optimization, identification, shakedown and fatigue strength problems.

1. INTRODUCTION

Very few solutions are known to unilateral problems of elastic-plastic
structures, particularly in the case of boundary -constraints. The majority
of works mainly focused on elastic structures only. In the range of small
displacements there are numerical results for unilaterally supported “elastic
plates ([1, 2]). Others papers deal with thick beams on elastic Wieghardt
foundation [3] and thin elastic plates on rigid foundation, [4]. Particular °
attention has been paid to geometrically nonlinear problems of elastic bedms
and plates. Numerical results in the case when unilateral constraints occur
in the structure domain have been presented in [5]. Some results for
geometrically linear elastic-plastic beams and frames with rotation constraints
at the hinge connections are given in [6] and [7]. :

The present paper deals with the problem of a simple elastic-plastic
‘beam when the angle of the support hinge rotation is constrained. The beam
is subjected to the arbitrarily localized concentrated force. The effects of the
load position and limit rotation vajue at the support will be discussed in
detail. Considerations are restricted to the geometrically linear thin beam
theory.
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We assume that the material of the beam is linear elastic-perfectly
plastic with the elastic limit o and Young’s modulus E {(Fig. la). The
corresponding relationship between the bending moment M and curvature »
is shown in Fig 1b where My and My denote the maximum elastic bending
moment and the fully plastic bending moment, respectively. The bending

moment — curvature diagram in the case of an ideal I cross-section of the

beam -— is presented in Fig. lc.

' The beam considered (Fig. 2) is of constant cross-section, namely EJ =
— const, where J denotes the cross-sectional moment of inertia. The tension
fibre due to the positive bending moment action is designated by the dotted
line and positively defined rotation corresponds to the deformation caused
by the positive bending moment. At the support point I (see Fig 2) the
common hinge is applied. At the support point 2 the angle of the rotation
is constrained according to the formula

(11) MZ SO, ¢2—Gz—?0, M2{¢2_G5)=0)

where ¢, denotes the rotation at support 2 and G, is the lower limit
rotation at this support. The corresponding mechanical characteristic and
the model of this hinge support connection are presented in Fig. 3.
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F1G. 1. Mechanical characteristic of the beam: a) o (¢) diagram for the material of the beam,
b) M (x) diagram for the solid cross-section, ¢} M (x} diagram for the ideal I cross-section.

EJ = const

FiG. 2. Beam and load.
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Fic. 3. Unilateral constraint at support Z. a) Mechanical characteristic of support connection,
b) Model of support connection. -

Beam deformations are caused by an arbitrarily localized concentrated
force P and the deflected beam axis is described by the function W (x).
Since the beam depth is small, the effects of shear deformations are neglected
and, according to Bernoulli’s hypothesis, in the coordinate system x, W
of Fig. 2 we obtain '

¢2 = W,(L)s
x (x) = — W"(x),

where primes denote differentiations with respect to x.

The position of the concentrated load P acting at point 3 is determined
by the parameter o = A/L where A denotes the load distance from the
left hand support I and L is the span of the beam. Further considera-
tions are restricted to the cases when load P acts downward.’

It is clearly seen that for the small value of P the beam is the pin-pin
ended one. For a sufficiently large value of P when the rotation at the
support 2 reaches the value of G; = —G, the beam becomes the pin-fixed

(1.2)

a
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FIG. 4. Prestressing of the beam in the case of G~ > 0. a) Mechanical characteristic of the
support connection b) Initial strain and stress states.
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‘one. It is worth to notice that for a positive value of G;, even for an
- unloaded beam, the pin-fixed beam appears and the presence of prestressing
is observed. Such a case is shown in Fig. 4. ‘

2. ELASTIC STRENGTH OF THE BEAM

The elastic response of the beam corresponds to the cases when the
effective stresses are no larger than gg If the shear force influcnces are
neglected, the absolute value of the bending moments at critical points 2
and 3 should be no larger than the maximum elastic one, My, namely

M| < Mg, Mp>0, i=273
or more accurately .
@1 . ' —M; < Mg, |M3]< My,

which follows from the unilateral conditions at support 2.
For convenience we introduce the following dimensionless notation:

{=x/L, m=M/Ms, p=PLMs, =g EJ(M;L),

(2.2) B )
¢ =G EJ[MgL), w;=W EJ(M;zI,

where the subscript i denotes the number of the reference critical point.

The total values of the bending moment m;, totation ¢; and deflection w;

can be expressed by

1
m; = Z 'mIS)_ = m{®+mf",

@3 =3 ol = ool

5=0

!
Wi ¥l = w00
' =0
In Eq. (23) s is the number of the type of the beam. For the pin-plh_
ended beam s=0 and for the pin-fixed ended beam s=1. In the elastic
range the following relaﬁons hold:

=0 m®=0, mP =a(-a)p, |
24 o= —a(l-0)2-a)p/6, o = —a(l—a?) p/6,
w§ = o (1—a?) p/3;
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s=1: mPP= —a(i-a?)p2, mP=a2+a)(l-n)?p/2,
@4 o = —a(l—app/4, ¢ =0
[cont.] :
wi = a? (1 —a)® 3 +a) p/12.

Assuming g, = —g and using Eq. ('l‘.l) together with Egs. (2.4), we can stéte ‘
that the pin-pin ended beam occurs if '

o = —a (1—-a?) p/6 > —g,

hence
: , 6g
(2.5) P<pol0) =" G o7y

For a larger value of p the beam is the pin-fixed one.
In the case of a pin-pin ended beam the bending moment at pomt 3
reaches its maximum elastic value if the clearance g at support. 2 reaches
the value of g,. Thus

m [po (g0)] = 1.
Sul_)stituting Egs. (24) and (2.5) into the above relation we obtain

1+a
(2.6) A go = 3
and '
(2.'7) Po @o) = Pomx = —“1”““'
- a(l—o)

" So for g > go the maximum elastic load pg is equal t0 po

g = go = (1+a)/6.

1
(28) PE = Pomax = m’

For g < g, the pin-fixed ended beam appears and the minimum or maximum
glastic bending moment occurs at point 2 or at point 3, respectively.
In this case the elastic behaviour of the beam is observed if

(29) P S. PE = min (pEzs pE;;')’ g = Jo = (1"!‘&)/6,

where pg, and pg, correspond to the conditions m, (e} = —1 and m; (pEa) 1,
respectively. On the base of Egs. (2.4) we obtain

my (PE;) = ““2—“(1—“2) [PEZ—PO (@)] = —1
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s (e = ) [po (@01 + S [or,—po ()] =

: 1
= o (1=a) po (g)+— a (2+0) (1—a)* [pg,—po (g}1 = 1,

*hehce

2(143
| o Pr: = ailiag;’
 2(1-3ug)

| (2”) - PE = A a) @+0)

: The relations (2.8) and (2.9) together with Egs. (2.10) and (2.11) describe
- the boundary of the pure clastic response region of the beam in the pg, g plane.
Geometrlc mterpretaﬂon of these equations is shown in Fig. 5 The straight

-prestressing - -

=13 - Dot 9o g

T1G. 5. Elastic load pg versus limit rotation g at support 2 (case of a > o).

Imes pe, (g) and pg, {g) intersect at the point M where the elashc streright
teaches its maximum value ppn.,. This maximal elastic strength corresponds
to .the optimum value of 11rmt rotation ¢,,. The locahzat1on of point M is
deterrmned by :

g = g )= LED_L
opt 6 - 3’

B ) = I+a
PE = PEmax - o (1 Ot'.} .
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This interesting feature of the beam with the support rotation clearance
confirms the well-known feeling that a sufficiently small gap is favourable
but it is not profitable to have it larger than a certain critical value. The
optimal value of g depends on the parameter « which determines the
load localization on the beam. MNote that for « < o, the optimal value of the
support clearance is megative. In these cases a prestressing of the beam is
requited and the initial bending moment at support 2 is given by mj = 3g,,.
The vaiue of «, follows from the condition g,, (o) =0, namely

(2.14) o = ./2— 1= 04142,

The pg{g) diagram in the case of o <, is presented in Fig. 6.

N 7] ' .
13 Dot g, g

FiG. 6. The pg—g diagram in the case of o < e,

Emax

15 -

104

e

prestre s'sing slackening -

FiG. 7. Maximum elastic foad pgaa (@) and optimum value of limit rotation at supporl 2,
dopt (@} '
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... Now we can conclude that the maximum elastic strength of the beam
corresponds to the optimum value of the ‘support limit rotation gy which
depends on the load distribution parameter «. The optimal solution is -
realized by means of “slackening” or prestressing of the beam. The meaning
of the statement expressed above is iltustrated in Fig. 7 where pg,,, (@) and
" Gopt (o) diagrams are shown. The result obtained here exhibits the significant
relationship between prestressing and slackening of the structure at unilateral -
boundary conditions. The slackening of the structure may be treated as
a negative prestressing. ‘

The elastic strength of the optimal solution in comparison to the elastic:
strength of the pin-fully fixed beam is illustrated by Fig. 8. The corresponding

Prroae! Pe

Emax

d .

o 1

FiG. 8. Maximum elastic load pgmax in comi)ariso_n to elastic load p{M of pin-fully fixed beam.

formulas are obtained from Egs. (2.4) and (2.13). Hence

2
H o ‘g- acs
9 o (24 o) (1—a)?
(2.15) P = 9 | .
o (I—OCZ) ) = Gy
thus
(1=o*)(2+0) L
J l PEmax 2 - e
(2.16) = s
E pE - M.. o ? ac

2 >
It is noted that in the case of the standard (bilateral) boundary conditions
the prestressing of the pin-fixed beam provides also the increase of the

elastic strength, If m% denotes the bending moment at support 2.due to the
prestressing, the following relations hold: o

my=m§—ozp, My= mm§+a3 b,
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where, according to Eq. (2.4),
' 1 2 1 2
A= (1—-a%), oz= 5 (Z+a)(1—o)%

Consider the problem of maximizing pg subject to the constraints
a) m —0y pp < 1,

b mi-appz —1,

c} Otmf+OC3 pesl,

d) . amitoypp> —1,
- e) ] m$ < 1,

) miz -1,

g) Cpe=0.

The admissible region in the Pe, m% plane is presented in Fig. 9. It is
clearly seen that the maximum value of py corresponds to the point S where
 1+a . (14 o)?

a(l—g) M=yt

(2 17) pEmax =

F1G. 9. Graphical solution of maximizing p in the case of presiressing the pin-fully fixed beam.
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From Eq. (2.17) it follows that the maximum elastic load in the case of
optimal prestressing of the standard pin-fixed beam is identical to that
obtained previously for the beam with the optimal rotation constraint at the
support 2. Note that m} <0 if a <o, and mf =0 if o> a,.

3, ELASTIC DEFLECTIONS OF THE BEAM

The variations of the beam stiffness in the course of elastic deformations
appear as essential features of the beam at wnilateral constrains. In order
to illustrate this problem, consider the relationship between the load p and
deflection of the load action point “3”. Basing on Eg. (24), the following
“deflection-load” relation is obtained.

1 | .
: ?az(l_a)zph ngo (g,oc),
(31) 5(P>ga“)EW3(P»Q:OC)=

]

1
?az (L—a)* po (g, o)+

1
+ﬁ a2 (l_a')a. (3+OC) [P—p() (gs m)]5
po{g, ) <p<pelg, o),
where, according to the Egs. (2.5), (2.8), (29), (2.10) and (2.11),

L

‘ 6
(32) Po (g, %) = a_(i""f—aﬁ’
Ta(l-a?)’ 9 < o>
2(1-3
R = = AT
L‘_Oﬂm(—llza)—ﬁp"(g“’“)’ g2 go = (L+0)/6.

Substituting Eq. (3‘2).i1.1to Eq. (3.1), the deflection-load refation takes the
form

1
T Z(1—a?p, pP<polg.®
(34) 5({), g,oc):

1
= AN 2 a3
) oc(l. o )gﬂTzQ {(1—a) 3+a)p,

Polg,®) < p<pe(g, ).

: Ihe-typical p—0 di_agrams are presented in Fig. 10.
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FiG. 10. Load-deflection diagram for the beam . with the rotation constraint at support 2;
a) case of o> ¢, b) case of < a,

Taking Eqs. (3.3) and (3.4), one can derive relationships between the
elastic load pg and the corresponding deflection 8. For g < g, the following
equations are valid: “

2{(1+3
pE (gaa): EE—I_:'_‘&%%,
(3.5) - . oc(l—oc)r .
dg{g, o) = [(1 —o) (3+a)+ 1297

6(1+a)
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and for g = goy

_ 2(1-30g)
(36) pE(gsa)“_ cx(l—a)z(.'Z—I—oc)’
. o
Srlg ) = 0D 22 +3 (G-+a+6g).

Equations (3.5) and (3.6) represent two straight lines in the pg, 6z plane.
" Eliminating the parameter g we finally obtain '

' 1 1
(37) G o 35(pr) = — a0+ (1-0)° g,

L , 1 |
(38) 9> gow: F5(pp) = (1=a")—p a(l—a) pp.

Equation (3.7) describes the line ABD and Eq. (3.6) describes the line AC.
Using these equations the coordinates of points 4, B, C, D may be casily
obtained. : ‘

In the case of prestressing of the standard pin-fixed beam the deflections
depend on the prescribed boundary conditions at support 2. If the optimal
prestressing is realized by the suitable rotation of the fixed end of the beam,
the p—é line for sufficiently large load is identical to that obtained for
the beam with the optimal constrained rotation at support 2. This situation
is explained in Fig 11. The initial deflection of the prestressed beam &*

P

3 E/{ Gopt

AP
- gptimal
slackening

/4
' optimal

= f:i—h prestressi gg
é'v

Fic. 11. Tnitial deffections and p (8} diagram for the prestressed beam.

corresponds to the first term in Eq. (3.4),, namely

(39) L = 0 (1= 0%) gy = Tl,:oc (1—a?) [(L+ap=2].

2
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4, ELASTIC-PLASTIC BEHAVIOUR OF THE BEAM

In th_e beginning let us concentrate on a limit load problem for the

“rigid-plastic uniform beam with the rotation constraint at support 2.

In the presence of the support rotation clearance (ie. G > 0) the way
of reaching the ultimate load is not unique. In the range of moderate
deflections the yield load p§® occurs and the plastic flow mechanism 0 of the
pin-pin ended beam develops (see Fig. 12a). This mechanism is stopped -

a ok R P(n) ¢ P :
. R = LR e
&M -0 -—-4{0] 4
b PL[”: PL 3
. _ i -A

!
- D6

TN

FiG. 12. Rigid-plastic uniform beam with the rotation constraint at support 2. a) plastic flow
mechanism 0, b) plastic flow mechanism I, ¢} load-deflection diagram.

when the hinge rotation at support 2 reaches the value of —G and the
deflection of point 3 is equal to A, =(l--a) LG. Then we observe an
increase in load up fto the value of BV = F, which corresponds to the
ultimate load of the beam. Further plastic deformations develop according
to the plastic flow mechanism 1 typical for the beam built-in at support 2
(Fig. 12b). The corresponding load-deflection diagram where geometry changes -
are neglected is shown in Fig. 12c. Dimensionless yield loads are given by

© _ My 1

a1 . Pr M, mct(l o 0 < g,
" LMy Tk

Pr="p Mg a(l—o)’ Lo
where

Oy =(l—a)g.

In the relations (4.1) My denotes the fully plastic bending moment of the
beam cross-section and & is the dimensionless deflection. Note that in the
case of g, for the shape factor My/M; =1 the ultimate load p, (x) is
equal to the maximum elastic load p,., (). '

In the case of a negative value of the limit rotation G, the initial -
position of the beam corresponds to the cantilever beam built-in at support
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“> and the dimensionless deflection of the point “3” is equal to 6% =
= —(1—o)gy (Fig. 13a) When the load reaches the value of p, (i) =
= My /TM,; (1—a)], then the plastic flow mechanism i occurs. The correspon-
ding bending moment diagram is shown in Fig. 13b. Further deformation
develops according to the plastic flow mechanism 1 associated with the
ultimate load p{¥ = p,. Figures 13c,d, and e illustrate the plastic flow
mechanism 1, the bending moment and “ioadndeﬂection” diagrams.

a
e
b
T
c 4
! s
5 -
d

FiG. 13. Rigid-plastic beam with negative rotation constraint at support 2, a) Initial plastic
flow mechanism 4, b) Initial bending moment diagram, ¢ Plastic flow mechanism 1,
d) Bending moment diagram, €} p(d) diagram.

Passing on to clastic-plastic analysis, for ease of exposition we assume
an ideal T cross-section of the beam. In this case My = My and for g = g,y
the ultimate load p, is reached in the purc clastic way. For g # g, when
the plastic strains arise, there are two deformation modes. The first mode
appears for g < g, when m, = —1 and m3 < 1. Then the structure stiffness
corresponds to the pin-pin ended beam (see Fig 14a) and the following
“deflection-load” relation is valid

(42) - 59,0 =05(g,0)+5 o (o) [p=pelg,0)l,  pe<P<PL, -
where 8y (g, o) and pg (g, @) are expressed by Eq. (3.7).

The second mode occurs when g > go and m; > —1, my = L The structure
stiffness results from Fig. 14b and the “deflection-load” relation is '
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" FiG. 14. Beam deformation modes in the elastic-plastic range a} case of g > gon. b) case of
g < Gopt- ) : i

@Y 50.0.90=5.0, 90 3 (- —pe @8], P <p<pr.

where 0z (g, o) and pg (g, ) are given by Eq. (3.8).

Using Egs. {4.2) and (4.3) one can compute the deflections &, associated
with reaching the ultlmate ioad p; in both cases described above. The final
- results are '

1 .
-6—oc(1—oc2}::5[ (@), G S Gopts
(@4) 5= |

1
'—6“(1—&)2“][“(1'—&)9: 5: (g, oc), g>g0pl'

goptr g
Fi1G. 15. Yield deflection &, versus limit rotation at support 2,

Rozpr. Inzyn. —2
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FiG. 16. Loading and un}.(.ya&ing cyclé (éase of o< o) a) p(3) diagrams, b) m, {p) and m; (p)
diagrams in the case of g < gop, ¢) my (p) and m, (p) diagrams in the case of g > gopr-

[438]
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Fi16. 17. Loading and unloading cycle (case of « > o) a) p{§) diagrams, b) m, (p) :;nc_l ms (p)

. diagrams in the case of g < gyy, ) my{p) and my (p} diagrams in the case of g > gou. .
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Basing on Eq. (44), we can state that 8 = of if g = gop and &y < &7
if g> gou. So the deflections at the yield point are not less than or,
namely &, = 6;. Note that all cases of g < g,y correspond to -the same
value of &, = 8;. The d, (g) diagram for a given value of o is presented
in Fig. 15.
For the sake of 111ustrat10n consider the behaviour of the beam throughout -
" the cycle of loading and unloading. In the loading process deflections increase
up to &, and then the unloading process begins. The cycle is stopped when
the load p=0. The final results are gathered in Figs. 16 and 17 where
p (), m, (p) and m, (p) diagrams are given. Figure 16 is related to the case
of o <t o, when the optimal solution corresponds to the prestressing of the"
beam. The case of o > o, is illustrated in Fig. 17. _
It is clearly seen that the behaviour of the beam throughout the cycle
of loading and unloading strongly depends on the limit rotation g. We
observe substantial qualitative differences between cases discussed before.
In the case of g < go, the total energy dissipation is concentrated at the '_
right support 2 up te:reaching the ultimate load p;. Therefore there is no
residual deflection after unloading. For g = g, we obtain the particular case
in which there are no energy dissipation, residual stresses and deflection,
The way of reaching the ultimate load is pure nonlinear elastic. For ¢ > gop,
reaching the ultimate load is associated with the energy dissipation at point 3
localized between the supports of the beam. For this reason the residual -
deflection 4, remains. .
Finally we compare the results obtained here with the solution for the
standard pin-fixed ended beam (ie. bilaterally constrained against rotation
~at support 2). The corresponding p (6) diagrams for « > o, are shown in
Fig. 18. It is seen that the elastic strength increase for the beam with optimal
clearance at the support is associated with the considerable decrease of the
beam stiffness. In other words, the ela'stjc strength increase requires suitable

----- bitaterally constrained
beam (8, #0)

—— unilaterally constrained

optimal beam
=0}

%

FiG. 18. Load-deflection diagrams for the unilaterally and bilaterally constrained pin-fixed 'bea_;ﬁ.
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slackening of the structure. This conclusion is valid when the load position
corresponds to o > o, In the case of o < a, when the optimal prestressing
is applied, the unilaterally constrained beam stiffness is identical to that
of the reference optimal prestressed beam at bilateral boundary constraints.

5. CONCLUDING REMARKS

The problem of an elastic-plastic beam in the presence of clearances
at the support is of theoretical and practical importance. The analysis
of this simple structure leads to some unexpected results. The considerable
strength increase and nonlinear behaviour of the beam appear as essential
features in the range of elastic deformations. The examples presented in the
work demonstrate the close qualitative relationship between slackening and
prestressing of a structure. More detailed analysis shows that there exists an
optimum value of the limit support rotation for which the elastic strength
reaches its maximum. The elastic strength increase requires, the suitable
slackening of a structure. It seems that the observations described above
may be ut111zcd in fatigue strength, optimization and identification pro-
blems. , '

The behaviour of the beam at unilateral support constraints in the
-range of elastic-plastic deformations is not typical In the course of loading
and unloading cycle one can observe the variability of the beam stiffness.
“For I cross-section of the beam in the case of optimal rotation constraints
at the support the way of reaching the ultimate load is pure nonlinear
clastic. If the rotation constraint is less than the opiimal one, the plastic
deformations concentrate at the fixed end and after unloading there are no
residual stresses and residual deflections; moreover, the cledrance at the
support due to plastic deformations becomes the optimal one. ‘

In the case when the support rotation constraint is larger than the
optimal one, some unfavourable effects are noted as relatively small stiffness
and residual deflections. For arbitrary values of limit rotation, however,
the residual stress state after unloading corresponds to the case of a beam
with optimal limit rotation. In other words, we observe an adaptation of the
beam to the optimal stress conditions.

The work presented may explain some effects occurring in real structures
when connection slackenings result from exploitation processes.
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STRESZCZENIE

O BELCE SPREZYSTO-PLASTYCZNE] Z OGRANICZENIEM OBROTU_
NA PODPORZE

W pracy przeanalizowano wplyw ograniczenia kgta obrotu przekroju podporowego na
zachowanie si¢ belki sprezysto-plastycznej w zakresie malych przemieszcze. Rozwazane zadanie
nalezy do mechaniki ukladéw z wigzami jednostronnymi. Okazuje sig, Ze istnieje pewna
optymalna wartosé luzu podporowego odpowiadajaca maksymalnej nosnosci sprezystej belki.
W zaleZnosci od umiejscowienia sity skupionej, stanowiacej obciazenie belki, podwyzszenie
noénosci sprezyste} wymaga albo rozluZnienia albo wstepnego sprezenia konstrukeji. Analiza
tego zagadnienia wykazala $ciste jakodciowe pokrewienstwo zabiegéw rozluzniania i spreania
konstrukeii. W obszarze odksztalcen sprezysto-plastycznych badano cykl obciazenia i odciazenia
dochodzac do noénosei granicznej. Okazalo sie, 7e po odciazeniu przy luzach mmiejszych od
warto$ci optymalnej nie wystepuja ugigcia 1 naprezenia resztkowe. Dla wigkszych wartosci
luzéw resztkowe ugiecia i naprezenia pojawiaja sie, jednak stan naprezenia po odciazeniu
belki odpowiada belce o optymalnej wartofel luzu. Wydaje sie, Ze spostrzezenia zawarte
W niniejszej pracy moga znaleZé zastosowanic w problemach optymalizacji, identyfikacji,
przystosowania konstrukeji oraz wytrzymalosci zmeczeniowe;. .

PezroME

Ob YITPYIOIITACTUYECKOM BAJIKE C OPTAHUYEHUEM BPAIIEHU S HA OIIOPE

B_ paboTe NpoaHANWIHPOBAHO BAMAHHE OTDAHHYEHMS YINA BPAMIEHMS CEYEHHS OIOPH
Ha TOBefeAue yapyronnacrmgeckoll Oankp B 00KacTH MankIX lepememenn#. PaccMmaTpusae-
Mas 3aava DPEHAJJIEKHT K MEX2HHKE CHCTEM C© OIHOCTPOHHUME CBA3AMH. OKa3bIBAETCH, YTQ
CYHIIECTBYET HEKOTODOES ONTHMANBHOE 3HAUEHHE 3330pPa OIIOPH, OTBCUAIOIICE MAKCHMALHOH
necymeli cocobroctH ynpyro#t Ganku. B 38BHCEMOCTH OT DaCilONOMEHHA COCPEROTOYEHHOM
CHJIBL, COCTaBssomlel HATpYXKenme GANKY, DOBLIIIEHHe YOpyrolf mecywmleli crocobHocTn Tpe-
ByeT wnn ochabnrenss, mom OpeHBAPUTENLHOTO HANDMKEHHA KOHCTPYKINH. AHaNE3 3TOH
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3a7aYM MOKA3aJ] TOMHYIO KaYeCTBEHHYIO AHAJOTHIO NpPHEMOB oOCHabieHus H HAUPHKCHUA
KOHCTpYKuaH, B OBGNacTH yopyronmacruseckux medopmanyil MCCHEfOBaH IHKN HAIPY3xi
M pasTpy3Kd, DPHXOAS X NpefcaeHoM Hecymedl cnocofHoCTH. Oxaswipaercs, YTO MOCHE
PA3sTPY3KH, TPH 3430DAX MEHBIIHX MEM ONTHMANBHOE 3HAMCHHS, HE BRICTYIAIOT OCTATOUHLIC
nporubs! # Hanpmxeana. s Gonprmuy 3HagYeHn 3a30p0B OCTATOYHES nporuGel 1 HAIPKEHHA
THOABJMOTCH, OAHAKO HARDMKEHAOE COCTORHHME IOCHE DAsTPyskn Gamxa oTReMaeT Gamxe
¢ ONTHMAJLHHIM 3HAYCHWEM 3a30pa. KameTcd, 9TO 3aMeYamus, COMepXaBIIuecs » HacToauieH
paBoTe, MOTYT HATH NMPUMEHCHHE B MpoliemMax OTHEMU3AIINH, GAeHTHAKALMH, TPHCROCOG-
NeRHA KOHCTPYKIHH H YCTAJNOCTHOH NpOYHOCTH. :
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