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ON RELIABILITY ANALYSIS AND OPTIMIZATION OF PLASTIC
PLANE FRAMES

K. A SIKORSKI and A, BORKOWSKI (WARSZAWA)

The paper deals with a static approach to'the probabilistic analysis and optimization
of structures. A rigid-perfectly-plastic material is assumed dnd the two. types’ of problems .
are discussed. The first one corresponds to the so-called chance constrained approach in the
theory of stochastic programming, It allows cither to evaluate the ultimate load factor or to
find the optimum distribution of plastic moduli under the prescribéd probability that the
stress siafe remains statically admissible, The second appreach gives the lower bound on the
reliability index of a structure taking into account possible correlation between stochastic
paraméters (resistances or loads). In a discrete model of a slructure dll the cases considered
turn out to be reduceable to appropriate deterministic linear or nonlinear mathematical
programming problems, Several examples of the ‘makyms and optmnzanon of framed structyres
1i1ustrate the proposed procedure.

1. INTRODUCTION

The deterministic description of a structure is often inadequate since
in practice many factors are random. Such are wind and snow loads,
actions ¢aused by sea waves, properties of a material and even geometrical
dimensions of a structure. It is obvious that in any comprehensive model
of structural reliability, the structure itself and 1‘[3 env1r0nment must be
described in a probabilistic way. '

Practice shows that the intensity of load and the propertles of a material
have a much broader dispersion of values than that of geometrical dimensiohs.
Hence we assume in the sequel that dnnensmns of a strudture are deter-
mlﬂlS'[iC ) )

We confine ourselves to the study of rigid-perfectly-plastic structures
under the assumptions of small displacements and quasi-static proportional
loading. Our aim is to take into account the random character of the load
components and/or of the plastic moduli. We assume that all random
parameters have normal distribution. It simplifies considerably the mathema-
tical description and seenis fo be not too restrictive since a non-Gaussian
distribution ¢an be reduced in many cases to an equivalent normal one. -
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A probabilistic approach to the analysis of structure was considered by
many authors, Tt is well known that the failure probability of 'a system
can be bounded from below and above by assuming perfect dependence
or statistical independence of failure modes [1,2]. Some authors suggest
that an uppet’ bound obtained i such a way is not only safe but sufficient
for practical purposes [3]. This approach has been used also for the optimi-
zation of structures {4, 5, 6, 7] The more advanced methods take into
account correlation of failure modes [8, 9] Other authors use the theorem
of total probability [10] or the Monte-Carlo simulation [11]. A rcview
of these methods including comparisons of their dccuracy and efficiency can
be found in [11]. _ : , o

In our paper two types of problems are considered: the evaluation of the
ultimate load and the optimum plastic design. Before dealing with the pro- .
babilistic formulations of such problems we recall in the following sections
the usual deterministic models. Then each problem is formulated ina stochastic
way and reduced later to a proper deterministic counterpart. This is achieved
by means of the chance constrained method. The method was developed by
Charnes and Cooper [12] and discussed later by Kosun [13] Kare [14],
Rao [15], West [ 16] and others. The resulting deterministic models turn out to
fall into the category either of lnear or of sonlinear mathématical program-
ming problems. _ j ‘, j

" The chance constrained approach is simple and corresponds to the
semi-probabilistic evaluation of structural safety recommended by most codes
in civil engineering, e.g. [17]. An alternative way is to estimate the relia-
bility of a structure under prescribed statistical pardmeters of random lodds
and/or random resistances. Correlations between random variables are also
taken into accounf. Our aim is to,find a lower bound on the reliability
index by solving an appropriate lincar programming problem. o
~ In order to illustrate the proposed procedure several examples of the
analysis and of the optimization of frames are given.

-~

2. ULTIMATE LOAD FACTOR

Let a structure be descretized in such a way that its static state is
determined by a one-column miatrix of generalized stresses s R™ and a one-
—column matrix of loads pe R" Let load increase in a proportional way:
2.1) : p=pp’s
where p is the load factor and p° & R® contains the nodal forces corresponding

_to the réference level of load. The equilibrium equation reads '

(2.2) p=CTs,
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where Ce R™™" is the compatibility matrix. A general solution of Eq. (2.2) is
(2.3) : "s=C p+C°z.

Here C~ eR"*™ is the generalized inverse and C°eR"™" is the kernel matrix
of C. Since we consider hypérstatic systems only, there ‘holds r = m—n=>0
‘and zeR" contains free parameters (redundant stresses).

The generalized stresses cannot violate the yield locus in a particular
cross section. Assuming piecewise-linear yield 1001 ‘the admlssﬁ)ﬂlty COndltlDl'l
for the whole structure can be written as

(2.4) NTs <k.

Here keR' contains the plastic moduli, e.g yield axial forces or yield
bending moments, and NeR™™? is the gradient matrix. Tt collects outward
unit normals to the facts of the yield locus. Combmmg Egs. (2.1), (2.3), (2.4),
- one obtams

25 ,uAp°+Bz <Kk,
where
(2.6) A=N7TC-, B=NTC°

According to the static theorem of the ultimate load analysis, the
ultimate value u* of the load factor is the largest one for which the static
admissible state of stresses exists. In’ matrix description p* can be found
soivmg the hnear programmmg problem [18]:

2.7 ' max {p|uAp®+Bz < k}.

If random properties of the material and of the ldading are taken
into account, then the stochastic counterpart of the relation (2.7) is
" obtamed: ' ' ‘

(2.8) max {uluAp® + Bz < k.
Let us denote

2.9) = AR+ Bk

Since F; 1s a linear combination of the normally distributed random variables
p? and k;, it will also have normal distribution, Then mean value f; and
the variance #; of h; are defined in a usual way:

a=1

(2.10) hi=p Y, AuBy+ Y Byzp—Fki,
g=1

@1 K12 5T My By Ayt i,

e=1fi=1
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“where: i=1,2,..,1 and the matrix 2 is as follows:

@, cov (P, D, .., cov (B, BY)
P = COV@?,ﬁg), 92 LRI COV(ﬁg, 132) 3

cov (3, pD)s cov (P By r P

k; is the mean value of k; and #; is the variance of k..

‘In order to solve the problems (2.8), we use the chance constrained
method. As its name indicates, the method introduces the notion of chance
constraints. The problem (2.8) is reformulated as follows [15]:

2.12) - ©max (WP [R<0] 2y, i=12,..1.
This means that the i-th admissibility condition must be fulfilled with a pro-

bability not less than a given ¥;. . _ .
The constraints of the problem (2.12) can be wriften as

: h—h Ry o
2.13 Pl H—<——— |2
19 [\/? N/ %”} !
where (‘ﬁﬁﬁi)/\/?} is the standard normal form of h;. Let f; denote the
value of the standard normal variable at which
(2.14) ® (B = 71>

where @ is fhe Laplace’s function. Then the inequality (2.13) can be
written as ) ' ' .

(2.15) @ (— \/_h?) 2 @ (B).

These inequalities will be satisfied only if there holds
(2.16) - S it i/ H <O,

The deterministic inequality (2.16) replaces the initial stochastic one (2.13).
Hence the problem (2.12) can be reduced to '

(2.17) max {puAp° +Bz+ /W P+K P < k},
where

(2.18) P = diag (a; 7 al),

2.19) K — diag ().

Here p°eR" is the column matrix containing the mean values p?, peR'
collects the given reliability indices f; and a; is the i-th row of A. More--

over it-is understood that a <b means g <b; and A:\/ﬁ means
A= \/?3—

i
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Let us compare the problem (2.7) which neglects the stochastic nature
of the problem and (2.17). Such a comparison shows that in addition to
the rather obvious replacement of p° k by the means p°, k one has to
reduce the admissible domain for stresses. The scale of such a reduction
depends upon the given §, P and K, ie. upon the rchablhty mdlces assunted
as well as upon variances of random varlables

3. OPTIMUM PLASTIC DESIGN

Contrary to the problem discussed in the previous section, we assume
now that both the reference load p® and the safety factor against the plastic
~collapse p* are given. The aim is to find an optimum distribation of plastic
moduli such that 2 given cost functiod attains its minimum and the structuie
is at the ultimate equilibrium stat¢ under the load p = u*p°.
- Let modifications be governed by ¢ design variables which form the
column matrix ¢eR’. These Varlables determme unlquely the d1str1but10n
of plastlc moduh

31 - | k=Ge

through the matrix of configuration GeR'™. One has to find an optimum
¢* such that a given cost function f= f(c) attains its constramed mmlmum
over the set of statically admissible stresses. =

The 31mplest is the case of the hnear cost funcnon

(2 - - ' f=g"c,

where geR’ is the column matrix of the given cost factors. Then the
optimum plastic demgn problem is of the linear programmmg type [19]:
(3.3) _ g - min {g7¢|Ge—Bz > Ap, ¢ > 0}.

We slip a detailed explanation of the model (3.3) because this problem
seems to be commonly known, If the vectors p, k are random, then the
model (3.3} transforms into the following stochastic programming problem:

(3.4) min {g7 §|GE—Bz > A, € = 0}.

Using the chance constrained method in a similar way as it was done
in thé previous section, w¢ replace the relatlon (3.4) by the followmg
‘ equwalcnt determlmstlc problem:

(3.5) min {g ¢|GE—Bz > Aﬁ+4/P+D p.c=0},
where
(3.6} D = diag (%)

with %, — variances of & and P defined in Eq. (2.18)
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~ Note that the optimum distribution of the mean values of plastic moduli
is looked for whereas the variances of these moduli are considered to bé
given, A similar formulation was proposed by Frangopol and Rondal [7].
It appears to be guite useful in practical applications.

Comparison of the resulting problem (3.5) with the problem (3.3) formulated
regardless of the random nature of § and k leads to similar conclusions
as those presented in Sect. 2. Randomization reduces the adimissible domain
for stresses and the scale of such a reduction depends upon §, P, D.

!

4, RELIABILITY PROBLEM

Let us consider now the problem of the lower bound on the reliability
of a structure.’ Note that in Sects. 2 and 3 the reliability of each cross
section of a structure was assumed to be given. This time we want {o estimate
the reliability of the whole structure. The mean values and the variances
of loads and plastic moduli are assumed to be known. :

Following Ditlevsen’s idea we introduce a notion of the safety margin
m; of the i-th cross section. In matiix description this margin is determined
by the column. matrix meR": o ' s o

@1 . m = k—NTs.

Then m = 0 is the stress admissibility condition. Obviously stresses and
loads have to satisfy the equilibrium’ equation. Let us determine the probabi-
lity of failare of the i-th cross section as P {(m; <0). Then the upper bound
on the probability of the plastic failure of the whole structure is

r +:1

4.2) B ’ p,< Y P(m;<0)
. i=1

The strategy of choosing the best estimation proposed by Ditlevsen
consists in making an iterative search of self-stresses that minimize the
largest of the probabilities P (m; < 0) on the right-hand side of the telation
(4.2). By means of the mathematical programming the same goal can’ be
achieved directly. Namely, the solution of the LP-problem

@3 min {17 y|y— P [k - Af—Bz < 0] >0},

gives the optimum y* which corresponds to the minimum upper bound {4.2).
 Using Laplace’s function ¢ the problem (4.3} can be transformed into
the following one: : '

@.4) i max {17 B|Bz+./P+K p <k—Ap},
where the matrix K = diag #; collects the variances of plastic moduli.

Let §* z* be the optimum of the problem (4.4). Then a sum of r+1
largest ¥ gives the upper bound on probability of plastic failure according i
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to the upper bound (4. 2) Contrary to the method in [20], the self-stress L

state z* is found automatically by solving the problém 4.4).

The model (4.4) estimates the reliability of a given structure; its main
application, however, lies in the p0331b111ty to compare the rehablhty of several
concurrent structures.

5. NUMERICAL EXAMPLES

5.1, Ultimate load factor of a single-storey frame

This example shows the dependence of the ultimate load factor on the
enforced level of reliability. The two-bay portal frame {Fig. 1) made of
1200 PE rolled steel is considered. The plastic modulus is assumed to be
random with the given mean value M® = 5390 kNm and the given standard
deviation oy = 428.0. The results shown in Fig. 2. were obtained by means
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of the model (2 17) It is seen that higher reliability can be achieved at the
expense of a lower ultimate load facfor. The dashed line corresponds to the
deterministic ultimate load factor, i.e. calculated without taking into account
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the random nature of the yield moments. It is clearly seen that the purely
deterministic approach is not conservative. Figures 3 and 4 show the collapse
mechanism and the _di_stribution of bending moments at collapse respectively.

5.2. Ultimate load factor of a two-storey frame

~ The frame shown in Fig. 5. is considered. The cross section parameters
are the same as in the previous example. Neglecting the random character

P, e
Q
o | ! ;
1 o
I
7 L0 |

Fig. 5.

of plastic resistance, onc obtains p* = 8085.0. On the other hand p* = 7278.0
if the reliability for each cross section is taken as 0.90. Hence, the more
accurate approach decreases the load carrying capacity by about 10.3%.
The collapse mechanism and the distribution of bendirig moments at the
collapse are given in Figs. 6 and 7. o
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5.3. Optimum design of a portal frame

Consider the optimum design of the portal frame shown in Flg 8.
Tt is subject to the loads H, V and the design variables are the yield

moment of the beam My and the yield moment of the column M. (both

! v

Fig, 8
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Fig. 9. o Fia. 10

columns are assumed to be identical). The load is deterministic: H =
= V= 1000 kN. The lmear function of the mean values of y1eld moments

f Mo+ Mg
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is to be minimized, ie. the cost is assumed to be proportional to the
quantity 2 (Mc+My) a. The coefficient of variation of the yield moment
at cach cross section is taken to bé 0.10. _ ]

The results M%, M3 obtained by means of the model (3.5) for various
reliability levels ‘are plotted in Figs. 9 and 10. It is clearly scen ‘that
highet reliability leads inevitably to higher cost of the structure. The dashed
lines show thé¢ values of yield moments calculated in a purely deterministic
way (model 3.3). ' o

5.4. Reliability of portal frame

The overall reliability of the same portal frame as in the previous
example is considered.” The load is the same, the beam and the colimn
have identical mean value of the yield moment M = 700 kNm whereas
the coefficient of variations of the yield moment is 0.20. The model (4.4)
gives f* = 273 as the lower bound on the reliability index. It corresponds
to the probability of failure p, < 0.0027. :

6. CONCLUSIVE REMARKS

We considered two possible approache to the probabilistic ultimate load
analysis and plastic optimization of structures. The fifst one is simpler:
a certain safety level for each admissibility . constraint is assuméd and an
‘equivalent deterministic problem is formulated and solved. The admissibility
domain for stresses depends on the assumed safety indices. e

The second approach is more advanced: one tries to.estimate the reliability
of the whole structure. It is possible to find a lower bound on such a’ global
reliability index using the static approach. Application of linear programming
for the aitomatic search of self-stresses allows to find the best possible
bound. 1 ) )

It is obvious that further investigations are necessary in order to gvaluate
an upper bound on the reliability index from the kinematic approach.
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STRESZCZENIE

NIEZAWODNOSCIOWA ANALIZA I OPTYMALIZACJA
PLASTYCZNYCH RAM PLASKICH

Praca dotyczy statycznego podejécia do probabilistycznej analizy i optymalizacji kon-
strukeji  sztywno-plastycznych, Rozwaiono dwa rodzaje probleméw. Pierwszy odpowiada
tzw. metodzie ograniczent losowych w teorii programowania stochastycznego. Pozwala on
oszacowal mmoznik Obciazenia granicznego [ub znalesd optymalny rozktad moduiow plastycz-
nych dla okreslonego prawdopodobiefistwa statycznej dopuszezalnosei stant naprezed. W drugim
zagadnieniu podano dolng granice wspdlezynnika niezawodnoéei uwzgledniajac mozliwe kore-
lacje migeday wielkodciami losowymi {wytrzymalodé ub obcigzenie). Pokazano, ze dld dyskret-
nego modelu konstrukeji rozwazane przypadki moga zostaé sprowadzone do odpowiednich
deterministycznych liniowych lub nieliniowych probleméw programowania matematycznego.
Podand przykiady numeryczne analizy i optymalizacji ram ilustrujace proponowane procedury.
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PE3OME

AHAJNAZ HAIEXKHOCTH W COTUMHM3AIINA TNACTHYECKUX CTEPYKHEBBIX
KOHCTPY KW

PaBoTa xacaeTcs CTATHUCCKOrO HOAXO/A K HPoGabNINCTHIECKOMY AHATTH3Y M ONTHMH3ALHE
JECTKO-ILIACTHYECKHX KOHCTpYKIui. PaccMoTpennl fpa twua mpobnem. Ilepsas oTsenaey
T.HA3. METONY CRYMABHLIX OTpAHHueH#H B TEOPHH CTOXACTHHECKOIO IPOrpaMMHPOBANNI.
TloaposfeT ON ONENET: MHONHTENb TPeJeibHON HATPY3KH Win HaliTH ouTuManpHoe pac-
[pEfe{eHHE TLTACTIMECKHX MOAYIICH AUt 0T(peSICHHON BEPOATHOCTH cTATH4ECKON AOMYCTHMOCTH
HAIPSEKEHHOTO CcOCToAHHA. Bo Bropolt mpobieme TpuBe/cH MENIAE Tpegen xoadpunuenTa
HANEXHOCTH, YHHTBIBAS BOIMOKHBIE KOPPEJALMH MEXLY CITyHafiHbiMu (IPOHOCTH HAK HATDY-
wenue), Flokasano, 4To ATA AMCKPETHOH MOECAN KOHCTPYKIHH DACCMATPHBASMBIE CIIY9aH
MOTYT GBITh CBCACHBL K COGTHETCTEYIOLIMM ACTEPMUHHCTHIECKIM JIMHCHILIM HIH HEATHHEAHEIM
poGaeMaM MAaTEMATHMECKOTO NPOrpaMUpOBanust. I1pupeIeHbL MC/GHHEIC HPHMEPE ALANH3A
d OTTHMH3AUNN paM, WILTHCTPEPYIONINE EPeAIaragMEIC TPOe/yphL
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