ROZPRAWY INZYNIERSKIE  ENGINEERING TRANSACTIONS * 33, 3, 2171283, 1985
Polska Akademia Nauk © Instytut Podstawowych Probleméw Techniki

MAGNETQOELASTIC STABILITY OF A CURRENT-CARRYING
ROD IN AN EXTERNAL MAGNETIC FIELD

K. B.KAZARTAN (EREVAN)

A theoretical investigation of the effects of a longitudinal magnetic field npon the stability
of a current-carrying rod is made. From generat noniinesr equations of rod static equilibrium
the linearised system of stability equations are obtained. It i shown that for almost. all
common boundary conditions the governing system equations are self-adjoint. By means of the

, stability “static approach fhe critical values of Ampere force are obtained, beyond which the
rod ‘becomes unstable. : :

NOTATIONS

L length of rod,
v radius of rod,
B, vector of magnetic field .induction
J, total current in rod, ) :
jo density of cufrent,
x, ¥,z spatial coordinates,
F vector force of internal stresses,
M vector of moment of force of internal stresses,
R vector of Ampére force (per unit of lengthj,
t unit vector of the tangent to central- lme of rod,
f, unit vector along x-direction,
I arc length of deforméd rod central lme
u displacement along z-direction,
v displacement along J'-dll’CCthll
E elasticity modulus,
C,,C,,Cy constants,
dq,d3,dy, dy  constants.

1. INTRODUCTION

In the present paper the stability problem for a current-carrying rod in
an external longitudinal magnetic field is considered. It is shown that the
interaction of a rod current with an extérnal magnetic field can bring about
the spatial buckling of a rod, analogous to the buckling of a rod under
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twisting couple [1-2]. In the casc when there is not dn external magnetic
ficld and a rod carries high currents, buckling due to its own magnetic
field also takes place [3-4]. A survey of investigations concernmg curreit-
-carrying rods stability is given in (4]

The effects of thie longitudinal external magnetic field on elastic waves
propagation in a bar with surface current are studied in [5]. A study of the
stability ‘of current-cartying plates is presented in the works [6-7] where
the finite plate solution is given. This study also included results concerning
critical values of plate current beyond which the plate becomes unstable.
The stability of current-carrying cylindrical shells is investigated in [3-9]
When there is an external magnetic field perpendicular to the middle surface
of a current-carrying plate in [10-12], the experimental and theoretical results
concernmg crltlc.ﬂ values of Ampere force are gwen

2. STATEMENT OF THE PROBLEM AND GOVERNING EQUATIONS

We consider a thick, elastic, conducting rod of a circular cross section
of radius # and length L. The rod is a part of the electrical circuit of the
cutrent J,. The current in the rod is uniformly distributed over a cross
section. There is an extérnal magnetic [ield By, the direction of which -
coincides with the direction of the currént of the unstrained rod. We suppose
that the rod’s current J, is sufficiently small compared with the current critical
value beyond which the rod becomes unstable due to its own magnetic field
only [4). This supposition makes it possible to neglect both the rod’s own
magnetic acfion and thermal effects. We also assume that the rod is frec
from mechanical loads. '

In the primary unstrained state the external magnetic field does not
imteract with rod current. When the rod is bent, the interaction of a current
with an external magnetic field takes place, and the Ampere force R (per
unit of length of the rod central-line), acts on the rod:

(2.1) R = (J, x By).

Let us consider the stability of the rod under cutmn of ihe force B by
means of the static method of stability.
We take a Cartesian system of fixed axes (x,y,z) of which axis of x
coincides with the central line of the unstrained rod.
We shall investigate the problem using thé following nonlinear Kirchhoff’s
equations which describe the static equilibrium of the deformed rod [13:
da¥ dM

2.2) e R =,
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The vector F is a force of rod internal stresses, the vector M is a moment
of force of internal stresses, { is the arc length of the deformed rod central-line
measured from the point of origin x =y =z =0, t is a unit vector directed
along the tangent of the deformied rod central-line t = (dx/dl; dy/dl, dz/dl).

In the deformed state of the rod we have

(2.3) Jo=Jot.

The vector of magnetic field induction which is parallel to the axis x can
be written as o ' ‘ o ‘

24 - By = B, i,

where i, is the unil veclor directed along the axis x.
Using Egs. (23) and (24) we obtained the following expressions for
components of perturbed Ampére force: ' '

(2.5) R,=0, R,=J,B, 2 & -

dla z _JD BO'

From the relations (2.5) one can conclude that the rod is bent as in the
plane (x, y}, so in the plane (x, z), ie. we have the case of spatial buckling
of the rod. ' C ' '
By putting the relations (2.5) in the first equation (2.2) and integrating,
we obtained ‘ ' ' ‘ ' '

(2.6} - F,=Cy - F= - J, B0 Z+C-2§ | F.=J, BO‘y+C3'

Since the rod is free from mechanical load applied at rod ends, C, = 0.
The other constants of integration are to be determined from boundary
conditions, ' ' )

By putting the relations (2.6) in the section cquation (2.2) and taking
into account that for a’ circular rod ‘ ' '

4
2.7) M= [txﬂ],.
- di

4

we obtained the following governing nonlinear equations which describe the
strain-state the rod (E is an elasticity modulus):

nhrt d ﬁdzzﬁ_dz. >y
4 dl\ dl di? dl dr

' dz ~ dy @ dy

= Jo Byl o 4y & o, 2

0 0(2 I+J’ )+C2 BT G, T

(2.8)

ﬂEr“i d_zdzx_ili &z i dx dx
4 dl N\ dl 42 dl di?
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(2.8) nErt d (dx d?y dy &°x\ dx
i dr Al dr

dx
R = J By z oy
kol T4l 0 Boz =y
The equations of equilibrium (2.8) are essentially simplified when the rod
is slightly deformed {/ = x, dyfdl < 1, dxfdl = 1, dz/dl = 1).
From Eq. (2.8), neglecting small nponlinear terms, we obtained the fol-
lowing linear system of equations with respect to small displaccments of the

rod z="u (), y=v{n), n=x/L,

d*u dv d* v du

A Ay LD g =0
dn4 +a0 dn El dnd. aD dﬂ >
29) o
4By I
b= ToE®

Equations (2.9) are static equations of stability of the current-carrying
rod in the presence of an externa! longitudinal magnetic field.

Equations (2.9) are to be solved with common boundary conditions at
rod ends 5 =0, n=1. ' '

3. SOLUTION OF THE PROBLEM

Now our task is to solve Egs. (29). ‘

When the bourdary conditions at rod ends are symmetrical with respect
to displacements u, v it i convenient to define a complex function w (m=
= u(n)+iv(n). ' ' '

Then, instead of Eq. (2.9) we have

4 .
(3.1) woo, dw

We consider Eq. (3.1) with the following boundary conditions:

(3.2) W@ =wO=wl=w{1=0,
(3.3) w(0)=w (@) =w(1)=w(1)=0,
(3.4) w (0) = w"(0) = w (1) = w1} = 0.

In the relations (3.2)-(34) the primes denote differentiation with respect
to #. Let us now show that the above mentioned boundary value-problems
are self-adjoint, ie. we have to show that the functions w,, w, satisfy the
following condition [13]: ' '

35 (Dwy, Wy = {wy, Dws),

where D = d*/dn* —ia, d/dn, wy, wo 8I€ functions which satisfy the boundary
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1 : : :
conditions (Wi, wyy = j wy, wydip, W is a conjugate complex function w.
By mtegratmg the mtegral {Dw,, w) we obtamed

<DW1, Wopp = [WIIU Wa— Wi W+ wh Wh—wy Wi —aq iw, W15+
+j" (w, WY +iay w, W) dy.

For each boundary condition the expression in the brackets vamshes and
therefore the condition (3.5} in fulfilled.

Since the boundary problems under consideration are seif-adjomt the
application of the static method of stability is valid [2].

Noté that the boundary value problem correspondmg to a cantllevered
rod is a non-self-adjoint one.

The general solution of Eq. (3.1) has the form

(3.6) w=d;+d, éxp (—2ain)+dy exp [(/3+1) an]+

tdgexp [(— /31 an], a=Yay/2.

By satisfying the boundary condition for the first boundary problem (3.2),
we obtamed the followmg f:quatlon determmmg emgenvalues

sin g™ (cos a'—ch /3 aM) =0.

The minimal e1genvalue Wthh corresponds to the cr1t1cal Ampere force
is equal to a{"’'=m.
The elgenfuncnons corresponding to a, have the form

= —2cos 7y [sh\/gmq—kshf (17—1)]+sh\/§ncos 2+
-|-f 1+ch\/§n sin2m1 3sh\/§n.

=—2$1nnn[sh\/§m1+shﬁn —1) —sh\/ngstnr]Jr
—i—\/— 1+ch\/?:7r ) (cos 2an—1).

For the second (3.3) and the third (3.4) boundary condmons we have
the fol]owmg equatlons determlmng elgenvalues

cos 24 = cos a ch /3 a~ V3sinash/3a,
cos 2a = cos a ch 3a+\/§smash Ja.
The minimal nontrivial roots of these equations are
a® =~ 3623, o ~2611.

Let us consider the following numerical cxample concerning a free-sup-
- ported copper rod (a; =~ 2.611),r = 1.6-107* m, L= 0.66 m, E = 0.87 x 10t Pa.
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This example was considered in the work [4] where it was shown that such
a tod with current the (external magnetic field is absent} is unstable due
to its own magnetic field when the value of the crmcal current Jo, 18
close to 4000 A, '

In our case we have the following critical values for current J, << Jg,
and external magnetic field induction mtensﬁy By,

I J,=80A, Bg=2T71T,
2. J,=1004, BO* =216T,
3. J,=200A, By, —108T.

In the above mentioned cases the density of critical current is less than the

admissible dens:ty jo ~ 5% 107 A/m®, below Wthh the Joule thermal effects
are smiall.

In conclusion we note that the current-carrying cantilevered rod is stati-
cally stable. Such non-self-adjoint boundary value problems have to be
investigated by means of the dynamic stability method analogous to the
nonconservative problem of a cantﬂevered rod subjected to a follower
force [2].
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STRESZCZENILE

MAGNETOSPREZYSTA STATECZNOSC PRETA PRZEWODZACEGO PRAD
I UMIESZCZONEGO W ZEWNETRZNYM POLU MAGNETYCZNYM

Przeprowadzono analizg teoretyczng wplywu podiuznege pola magnetycznego na sta-
tecxnos¢ preta przewodzacego prad. Z ogéluych nieliniowych réwnan statyki preta otrzymano
zlinearyzowany uklad réwpan statecznodel. Wykazano, Ze dla niemal wszystkich zazwyczaj
stosowanych warunkéw brzegowych odpowiedni uklad réwnani jést samosprzgzony. Stosujac
statyczne podejscie do problemu statecznoici wyznaczono krytyczng warlodé sﬂy Ampéra,
powyzej ktore] pret staje si¢ niestateczny.

PE31OME

MAIHHTOVYIIPYTASL YCTOHYHUBOCTE CTEPKHS TTIPOBOASINEIQ TOK
K TIOMENIEHHOI'C BHYTPL MATHHUTHOTO TIOJIA

TIposesieHo TEOPETHYECKOE WCCHOAOBAHME BONPOCR BIMSNHS BHEIIHETO IPONOLHOTO
. MaruUTHOTO [OJA Ha YCTOMYHBOCTH TOKOHECYIUEro crepkHi. Ha ocHope OOMINX HeRMueHHBIX
YP&EHeHWL CTATHVECKOTO PABHOBECHA IIONYYEHA JIHHCHHAS CHCTEMA YPaBHEHHH YCTONUMBOXCH.
HokasaHo, 9T0 ANA OOYTH BeX OOBITHHIX TPAHHYHBIX YCNOBHH IONYMERHAS CMCTEMA YpasHeHuH
AaigeTca camoconpmkenuofl. MeXofm 3 CTATHYECXOTO NOAXORA K 3a/auaM  YCTOHYHBOCTH
[I0JIYUEHBt KPHTHUECKKE IHAMCIIMA CWJL AMACpa, NPH KOTOPBIX CTPEMENL MPOCTPAHCTREHAQ
HeYCTOHYME. '
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