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ON CERTAIN MODELS OF NON-LAMINAR FLOWS WITH
: TURBULENT DIFFUSION (*)

M. BURNAT (WARSZAWA)

A pew model of turbulent flow is proposed in the paper; the model takes into account
the situation when the mass transport proceeds along two mutually intersecting curvilinear
cones. Laminar flow represents the particular case of the model when the congs are reduced
to curves. . )

In the present paper we consider some models describing the flyid
motion with intensive turbulent diffusion. o ‘

Visualisation of the flow with intensive turbulent diffusion shows that
the mass trahsport takes place along curvilinear cones mutually penetrating
cach other. The natural question arises whether it is possible to build
a fenomenological model! of fluid motion in which the mass transport takes
place not along curves, as in the laminar case, but along curvilinear cones
mutually penetrating each other. Our dim is to propose some models of this
kind. These models are of interest for the kinetics of chemical reactions [71,
because they may take into account the self-mixing effects which are of great
importance for the chemical reactions. o '

We assume “that the fluid motion with intensive turbulent self-mixing
in the time interval <% ¢>, (t —the beginning of the observation),
results instantaneously at the time ¢ and each point x, so that the mass
transport takes place at the instantancous velocitiés v (¢, x, o), e A, (A—a
region in R*). We assume throughout the paper that v is continuously
differentiable. Roughly speaking, it means that mass m located at time ¢ in
a very small neighbourhood of x is decomposed into components m (i),
axeAd = R? and éach of these mass components moves at the instantaneous
velocity v (t, x,a). Hence, at each point x we have an infinite bundle
-of instantaneous velocities, and through each point pe R3 at tiine 0 passes

: {*} Paper partialy given at XVI Symposium on Advanced Problems and Methods in Fluid
- Mechanics, Spala, 410 September, 1983. : )
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an infinite bundle of irstantaneous trajectories

. - dx
(0 prx=x(,t%p,®), p=x (°, t%p, o), - =0 (t, x, a).

The mass located at time ¢ and point xe % (t, x), moving with the instanta-
neous velocity »(t, x, ) (Fig. 1) may reach, at the time ¢, ¢ >, (due to

T(tix’) T (1)

lv(t,x,cé)

v(t'xla')

Fic. 1.

intensive self-mixing) the point x'€ 7, {t', x"), and move with the instantaneous
velocity v {t', x'; &), o 5 o. Hence, the instantaneous motion along the instan-
taneous trajectories does not give the complete description of the flow.

Besides the o — velocities v (t, x, o} we introduce here other physical
a-quantities, that is the quantities dependirig on o, what enables us 0.
formulate the basic conservation lows. This leads to a number of closed
systems of PDE's describing the corresponding maodels.

It is assumed throughout the paper that all functions considered are
continuously differentiable. ' '

Integrating the a-quantities over the suitable subsets of R*x 4 we obtain
the mean values measured in the flow with intensive turbulent diffusion
such as the mean pressure f (¢, x), mean density § (t, x) or the mean Vvelocity
#t,x). If for (t,x)eG < R* and aeAd we have: v (i, X, o) = v*(t, x) and
p(t, %, «) =0, where the o-guantity p describes the mass transport caused
by the turbulent diffusion, then the mean quantities p (¢, x), ¢ (t, x), #(t, x)
satisfy the laminar Navier-Stokes equations. Thus in our model we may
consider the transition from turbulent to the laminar flow as well as the
inverse transition. '

There is a formal analogy between the proposed model and the classical
theory of iixtures {1-5]. However, there exist also important differences:

1. In constrast to the finite number of componénts in the mixture theory,
the set A describing in the present theory different trajéctories is infinite.
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2. Different components in the mixture theory are chemicaly or physicaly
distinguishable, while in the present model of self-mixing the difference is ‘'only
instantaneous and lies primarily in kinetics. ‘ ' ‘

1. KINETICS

In the laminar model the x-densitics are employed, that is the real
physical quantities are obtained by integration of the corresponding “expres-
sions over soine regions or surface in R? For example, theré exists no
mass at the time ¢ ‘at point x moving with the laminar velocity v (t, x).
However, for 4 small region w, = R3, xew;, the mass contained at ¢t in w,,

miw,, )= | e, x)dx,
By

moves with the approximate velocity v (¢, x). Moreover, we have

: imp (wx7 t)
t, x)= —_—
vt x) Ia!:ltilo m (o, £)

3

where Yo | is the volume of @,, and imp (o, {) denotes the momentum
of the mass portion m{w,, {),

imp (o, 1) = [elt, x)vit, x)dx.

1n our model we use the x, a-densities, xeR?, ac 4, which are constructed
by means of different o-quantities.” It means that the actually observed
physical quantities are obtained by integration of the corresponding expres-
siong over subsets of the Cartesian product R* x 4. '

For example, actually no mass is moving at time ¢ and point x with
the instantaneous velocity v (¢, x, a). If, however, w, < R} xew,, a, < A, a€a,
where o, a, are small regions, then

n{a,, w,, )= {do |o(t,x,a)dx,
a, [
where o (L, X, o) is the e-density, represents the mass contained al time ¢ in
w, which is moving approximately with the instantaneous velocity o (¢, x, ).
Moreover, weé have ' ' '

. mp (a,, .,
v, x, )= lim w—g—(i—-—x )
leoxholed =0 w1 (a,, w,, )

?

where imp (a,, ©,, ) denotes the momentum of the mass portion m {(a,, ©,, t),

imp (a,, 0y, )= [da o, x, 00, x,o)dx.

Ay
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Thus we have obtained the momentum 1mp (a,, wy, t) by mtegratmg the x,
o-densities gv over w,xa, < R®x A,

Il a, lied, a# B, and il e ea, fea, a, tg = A are small subregions
then at the same time ¢ the small region w, is filled up by two different
mass portions m (a,, w,, t), m{ag, v, t) moving approxunately w1th dlfferent
instantancous velocities v (¢, x, o) # v {t, x, B).
~ Under the assumptwn of ve C! for each a e A, there exists a correspondmg
o-trajectory 9 (t0 p)ix = x(t,t° p, ), ie. the mapping

2

a,to (t) @ — Wy, 0 (f),
where w = R? is an arbitrary region ¥, 0 (t) p = X, x=x (t, 1% p, o) is a dif-
feomorﬁsm if v+ 0. The inverse mappmg Y () x=p is denoted by

p=p(t, % x, o
For reglons a< A, wcRwe mtroduce the followmg notatlons (see Flg 2)

a ¢ t) = U Wy, 0 t) Qo (t) = QA,:“ (t)

XER

a () FiG. 2.

In what follows the index (° will be omitted if this does not lead to
misunderstanding. The closure of £, {t) is ‘decomposed mto the foilowmg
wo dISJomt sets :

'Qa (t) = BQrz (t) U I'Qn (t) .
I, (t} will be called the inner set. xelQ, (t) if and only if all trajectories
7, (t,x), a€a, passing x at time f, intersect the region w at time ¢° < ¢.

This means that the t1a_]ect0rles 7, (t, x} may be parametrically represented
in ‘the following way: o

x=x(.9,t°;p,o¢), <8<, pew
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Fig. 3.

FiG. 4.

{see Fig. 3). BQ, (1) will be called the boundary set. xe BQ, {t) if and only

if there exists at least one point a'ea such that the trajectory 7 (t, x)

passing x at time ¢ has no common point with @ at time (® < r. Thus,

Z,(t, x) may be represented in the parametric form only x = x (%, %, ¢, @),

1 <9 <t, gé¢o (see Fig. 4). ‘

The sets 12, (1), B, (t) may also be defind in the following, equivalent way
12,(0)= () 0, (1), BL, (&)= do, (1),

xeda XEMR

where dw, (1) denotes the boundary of the region w, (t). The proof of this
fact may be found in [8]. ' '

In our model we distinguish two types of mass portions and the cor-
responding physical quantities. The first is the mass portion m (a, », t) which
s defined by the following two conditions: ) ‘
1."The mass portion m (a, w, t) is contained at time ¢ in .
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2. The mass portion m (a, w, t) being at time ¢ at the point x €@, moves
with the instantaneous velocities v (t, x, o), ®€a. '

~ In the'special case m (o, {) = m (4, o, 1) denotes the whole mass contained

in @ at time t. We have '

mw, t) =ma,o,t), a<A
If we now introduce x, a-densities of different physical quantities, for
instance: g (t, x, @) — the x, a-mass dénsity, ¢ (¢, X, o) v (t, X, o) — the x, o-mo-
mentum density, then the corresponding physical‘ quantities for the mass
portion m (a, w, t) are introduced in the following way. The mass:

(L1y Jﬁ(a,co,t)='jda fo, x, a)dx;
momentum of the mass m (@, @, lt):[l ’

(1.2) imp (a, @, )= [ dx fo(t,x,a)v (¢, x,0)dx,
and so on, | ﬂ w- :

From (1.1) it follows, that the measured mean density gft,x) is in oﬁr
model given by the following integral ' S

(1.3) 5,0 = e, x, %) da.
: A

Moteover, using Egs. (1.1) and (1.2), the measured mean velocity ¥ (¢, x) may
be expressed by the following formula ‘ '
_ imp (K, (x), t)

(1.4) bl = fim = G0

where K, (x) = {y:jy—x| <r} and
imp (K, (x), 1) = fda [o(t,x, ) v(t, x, &) dx
. A 5]

is the momentum of the whole mass contained at time ¢ in the ball K, (x).
Let us now formulate the general principle used throughout the paper
in our model for expressing the. physical’ quantities by the a-quantities and
the corresponding, x, a-densities in the case of 'the mass portion m (¢, w, t).
A. In order to express tlie physical quantity connected with the mass
m{a, ®,t) and the x, o-density D (t, x, @), we take one of the following
integrals ‘ :

{da [D(,x,a}dx or fdo §D(t,x,0)dx.

a ]

B. If the quantity considered has a laminar analogy then, performing
for cach mea the corresponding laminar, considerations for the flow along
the a-trajectories, we write thie proper x-density L{, x, «) for @ ot do and .
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take one of the following integrals:
fda fL(t,x,0)dx or jdoc VL, x, @) dx.

T (o] o

Introduce now the second type of mass portions, the moving mass
portions m” (a, w, t). Thls mass por‘uon is defmed by the foHowmg two
conditions.

1. The mass portion m” {a, W, t) is contained at time t in Q, (1)

2. The mass of the portion m”(a, w, ) being at time ¢ at the point
xef2, (t) moves only along the 1nstantancous trajectorles T, aed Whlch
satlsfy the condmon

Tat,x)=7,(t°,p), pew.
The mass of the moving portion m°(a, w,t) moves only along such
instantaneous tra]ectorlf:s T, uEd, whlch at tlme t% pass through the pomts
pew.

The mass m°{a, w,t) does not represent the whole mass contained at
time ¢t in Q,{t). If ¢ (t, x, ) > 0, then we have, in general, '

m (Q, (1), 1) > m (@, Q, (1), 1) > i (a, @, 1)
and for a= A:
m(Q), ) =m(A,2(0), 1) >m" (4, w, 1)

Velocities v {t, x, «) are only instantanepus and besides the instantaneous
mass transport along the trajectories %, we have to consider the mass
transport caused by the turbulent diffusion. Therefore it may happen that
for ¢ < t” the portion m’ (g, w, t"") contains only a part or does not contam
at all the mass of the portion m"{a, w, 1)

The physical quantities connected with the moving mass portion m*(a, o, t)
are expressed in our irodel by means of the x, oc-densmes in the followmg
way. Mass: ‘

(1.5) m'(a, o, )= {da | o(t,x,a)dx.
: a o)
Momentum of the mass m” (g, o, 1):
{1.6) imp”(a,w,t)= fdo [ o@t,x,a)v(t,x,a)dx,
d W, {f)
and so on. This is the natural way of expresqmg these quantmes because
the equa.hty

0 =0, = Q0 @), oca
_1mphes that the foBowmg 1mp0rtant conditions are fulfilled

m(a,w,to)wm (a,w,to), 1mp (a w, t“}wlmp (a, w, t%.
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Let us now formulate the general principle used throughout the paper
for expressing the physical quantities by the a-quantities and the correspon-
ding x, a-densities in the case of the mass portion (g, m, t).

"~ A In ordér to express the physical quantify connected with the mass
m’{a, w, ) and the x, oc~dens1ty D, x, oc), we take one of the followmg
mtegrals ‘

fda [ D(t,x,0)dx or fdau | Dt x,o)dx.
a {1 a deo, [t} :

B’ If the quantity considered has a laminar analogy then, performing
for each aea the corresponding laminar considerations on the flow along
the a-trajectories, the proper x-density L(t,x, o} will be written for «, (t)
or 8w, (t), and one of the following integrals will be taken:

fda | L(t,x,0ydx or fdo | L, x,o)dx.
a w,{f) . . u Bun, ()

Considering now a stationary flow with intensive turbulent diffusion,
and let us perform at point peR® the visualization of the mass transport
by introducing during the time interval < t% i > a smoke trace at point p.
Assuming that the flow may be described by means of our model in the
stationary - case, curvilinear cone K (p) occupled at tlme t by ‘the smoke
should satlsfy the followmg condition ‘

K(p)=SE= UAﬂi(p),

where % (p):x = x (¢, o), p = x (t° a), dx/dt = v{(x, ), the a-strcam line pas-
sing through the point p. Indeed, in the stationary case the whole mass located
at the time ¢ at point xe K (p) is transported with the instantaneous veloci-
ties v (x, a), a€A. Therefore the mass of the smoke may move only w1th
these velocities. If we assume that

inf o (x, o >y=>0,

then there should exist a number r>0 such that for the balt B, (p)=
= {x:jx—p| <r} we have :

K (p)nB(p) =5 @B @)

In this manner our model may be verified by visualization of the mass
transport. . I

The instantaneous motion with velocity o (x, «) is only the instantaneous
result of the motion with turbulent diffusion and does not describe the
flow fully. Owing to the intensive turbulent diffusion, the set €, ,0{(f) may
not contain any mass which at time t° was ih @. Due to this we cannot
determine in our model to what extent the set K (p) coincides with S (p).
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2. THE MASS CONSERVATION LAW

In order to formulate the mass conservation law, let us introduce a new,
real-valued x, a-density u (£, x, ®) which describes the amount of mass added
to the mass portions m (a, @, t) and m"(a, w, f), due to the turbulent diffusion
in a time unit. The physical meaning of this «-quantity without laminar
analogue is given by the following formulatlon of thé mass conservat:on
law for the portlon m(a, w, t):

2.1 % .[doc JQ {t, x,a)dx = —fda jg (v, n) dx-i—jdoc fu {t, x, o) dx

a w a fw a @

and for the portion m"(a @,.t):

(2.2) ;t da Jg(t X, oc)dx_Jdoc j,u(t x, o) dx,

a w, (#) a e, {f)

where the principles A, B and 4%, BY from Sect. 1 are used. In this way
we distinguish in the model two components of the mass transport.’

1. The instantaneous with velocity v (t, x, «).

2. The turbulent dlffusmn descrlbed by the x, oc-densr[y it x, o)
The integral :

(2.3) Vo u(t, x, o) dx
A @

describes the mass added to the mass m(w, () iIn unit time due to the
turbulent diffusion. The portion m (w, ) represents the whole mass located
at time ¢t in o, hence Eq. (2.3) gives the amount of the whole mass transported
in unit time through the closéd surface dw due to the turbulent diffusion.
If the flow takes place inside a vessel V W1th sohd walls 6‘V then the
followmg condmon wﬂl be satisfied

jdoc f,u(t X, oc)dx-—
If we now perform the differentiation d/dt in Eq. (2.1), change the integral
over dw into the integral over , and perform the localisation (¢ and w are

arbitrary), the following dlfferentlal form of the mass conservatlon law for
ma, o, t) is obtalned

(2.4) . . 0, Q+div {ov) = 1, xed.
Usmg for the differentiation- d/dt in (2.2) the formula
d
g Jdrx jfdx— Jdoc J [, f+d1v(fv)] dx,

0, (1} a o, (f) -
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we obtain, after localisation of (2.2), the equations (2.4) ash#he differential
form of the mass conservation law for the moving portion m” {a, w, ). ,

- Introduce now one more real-valued x, w-density, M (¢, x, a), its physical
meaning being given by the following formula ' -

- . - f

(2.5) fde | M, x,0)dx= ‘[[jdoc I, x,0]ds.
a @y () t a @y (°(3)

In this way M (t, x, o) is the x, a-density of the mass amount which was

added in the time interval < t° t >, (due to the turbulent diffusion) to the

instantaneous motion along the trajectory , (t° p (¢, £°, x, o)), where

p(e, 1% x,0) =Y, 0 (£) X.

One may say that M describes the history of mixing.
Differentiating (2.5) with respect fo f and performing the localisation,
as in the cdse of Bq. (2.2), we obtain the following differential equations

(2.6) o, M 1-div (M) = g, aeA.

In the laminar case, if the velocity field v (¢, x) is given, the mass con-
servation law leads to the closed system: one equation and one unknown
function g {t, x). In our case the mass conservation law leads to two families
of equations {2.4), (2.6), and assuming that o (£, x,a) is known, to thiee
familics 6f unknown functions ¢, ¢, M, x€ 4. In order to close this system we
introduce the constitutivé equation of mixing '

o.M =M, M, @, v,.).

It may be suggested here that a fluid with given chemical properties may,
in different situations, follow different self-mixing states described by diflerent
mixing constitutive equations. The simplest possibility of the mixing constitu-
tive equation is. : i o o '
@n oM = p.

For the physical explanation of this condition let us introduce a new
a-quantity M (¢, p, o) satisfying the following condition

t

[do § (e, pooddp= [[fdo [ p(t,x, 0 dx]d9.

@ 0, (5)

This means that the quantity R describes the amount of mass, which -is
added, as a result of the turbulent diffusion, to the instantaneous moiion
along the trajectory (% p) in the time interval {t°, ¢). In this way M
describes the future of mixing. i : '

Let us denote by J(t, p,«) the Jacobian of the mapping Y, .0p=x,
x = x (t, 1° p, «); then, in the stationary case the constitutivé equation (2.7}
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may be justified by the following assumptions

o, J 8,7
J(Z

< 1, «1, 0=1,2,3

and C
{grad, Wi(t, p, ), v (p, ®)> =0.

The last condition means that the direction of maximal change of ¥ {t9, p, o)
is pelpendicular to v(p, o). The proof and the general 111stat1onary case is
c0n31dered in more detaﬂ in [8].

3. THE MOMENTUM CONSERVATION LAW

For the moving mass portion m’{a, w, 1} the momentum conscrvatlon
law may be formulated in the followmg way

(3.1) ft Jlm ngdx%F(t)-i—FB{rHFI(I),

a o, (1}

where

F()=1{da | gft,x, ) f{t,x)dx

a @, {t)

denotes the cxternal mass forces with intensity [ {f,x). Fp.and F; are the
boundary and internal forces which appear as a result of mtemchon of the
mass portion #"{a, w, {) and the rest of the flow. '

The boundary forces are acting in the boundary set BQ" (1. We assume
the existence of the function = {1, x, o, nj

TIR*xAxS, » R, 8§, ={x:|x|=1}
such that
Fy®)=fda | t{t,x,a, n)dx,
a Qe (D)
where in the integral over dw, (i), n is the outer normal vector to dw,(f).
7 is the o-stress vector; for more detdils see [8].

The internal lorces are due to the momentum transfer between different
masses located at the same time and the same point, and moving w1th
different velocities v {t, x, &), v {f, x, f§), & # B. We assume that

Fr{)=fdo | i(t,x,a)dx,
d iy (1)

where i: R*x A — R® is a new unknown a-quantity. We suggest the following
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expression for i(t, x, o);

Do, x,Bvit,x,f)—et,x, 2 v(t, x, ®)]

ii(t,x,ot)= J(p(a,ﬁ) - dx.
where .
¢p:AxA-R, ¢@P=0@Bx, ¢oa=0
and
3
L(f;);aﬂﬂ 0f (6 BF X v, B0, S 0%, ),
ﬂé;ﬂ= atf(ts X, EX}-[- i v, (t, X, GC) axﬂf(t, X,OC)

are the f, o material derivatives. In different modeis we may choose d1fferent
functions ¢ («, f).. For more¢ details see [8].
For the a-stress 7 (t, x, o, ) == (14, T2, Ta), the following equality holds

3 .
(32) T; (t,x,oc, n): Z T::j (t,x,cx) nja

i=1

where n = (ny, ny, 13), |#| = 1. Moreover, T;;= T; if and only if the angular
momentum is conserved. For the proof see [8] Tensor T wﬂl be called
the a-stress tensor of the boundary forces.

Now we are able to calculate the differential form of the momentum
conservation law (3.1). Using (3.2) we may change in (3.1) the integrals
over dw, (t) into the integrals over m, (f). Performmg the dlfferentlatlon WIth
respect to ¢ in Eq. (3.1) we find

(da | {[8,(ov)+div (gv; tH—of;i—(iv T);—i} dx, j=1,2,3;
4 ) . .

after localisation and apphcahon of (24) we obtam the foﬂowmg dlfferentlal

systcm

3
(3.3) 0@ v+ Y v,8, v-f)=divT+i-po,acA.
o=1 ’

In order to obtain closed systems we must introduce a constitutive
equation connecting the o-stress tensor with the kinematical and thermo-
dynamical a-quantities and their derivatives. We shall use an analogy to
the Navier-Stokes laminar constltutwe equatlon whach may be wrltten in the
followmg form :

T=1 (~p+/1 div v)‘+2y D (u),




ON CERTAIN MODELS OF NON-LAMINAR FLOWS WITH TURBULENT DIFFUSION 247

where 1 the unit matrix, A= const, y = const

and .
d d,
D(v):(i”%mf’—), ij=1,2,3.

In our model we assume the following form of the conshtutlve equatlon
(3.4) =1[—p+v¥ (W+41, d1v v+/12 d1v (grad, W+
+2y, D (0)+2y, D (grad, p),

where Ay, 1, y1. ¥2 are constants, and: p(t, x, %) is a new x-quantity, the
pressure. For the a-pressure and other thermodynamical a-parameters such
as the a-density g (t, x, a), a-internal energy U (¢, x, a) etc, we shall use the
state equations of the equilibrium thermodynamics: The term ¥ (1), y:R = R,
in (3.4) enables us to take into account the situation in which the surface
forces acting in the perpendicular direction to dw, (f), depend not only on.
the thermodynamical parameter p (£, x, %) but also depend in an essential
way on the turbulent diffusion described by the «-quantity x The term
2y, D (v) introduces viscosity y; similarly to the Navier-Stokes model. The
vector grad, g gives the direction of the maximum change of the turbulent
diffusion. Hence grad, u may be considered as the direction of an increased
mass stream caused by the turbulent diffusion. That is why we have iritroduced
additional viscosities A,, and y,, connected with this mass stream.

4. THE ENERGY CONSHRVATION LAW

The energy conservation law for the mass portlon m" (a, @, t) may be
written in the following way: -

o EJo oo

wy{t)
where U (t, x, o) is the a-internal energy, P (1), Py (t), P (t) — intensities of the
forces F (), Fg{t), F; (1) acting on the mass portlon m¥ (a, iv, t), Q(t)— the
non-mechanical energy flux, '
Applymg the pnnclples AY, BY formulated in | Sect. 1, we rnay wrlte

P({t)= [dx | <of, D)dx

a e {t)

)dx = P(O)+ Py ()+P, ()10 (0),

By ={da | {Tn,vpdx=[da | [<v, div T + Z T;j 0, vy] dx,

a Dew, (i) o adi) i, j=1

B(e)=[dox | G, 0 dx.

a 0, (1)
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The flux of non- mechamcal encrgy | is decomposed mto the boundary and
1nternal parts:

Q= QB O+ Q: (1)

and introduce the corresponding two new g-quantities. The a-boundary flux
of energy is g {t, x, &), q:R*x A R?® with the following physical meaning:

Op ()= [do | <n,q>qfxz — [ doe | divgqdx:

4 Ao fi) a @, ()

The second new o-quantity is the x, a-mean of interpal flux of energy
0t x,a), 0:R*xA— R with the foilowing physical meaning:
04 ( t)—— ~jdoc | Q(t x, o) dx.
g di)
After differentiating with respect to ¢ and locahsatlon of (4.1} we obtam
the following differéntiat form of (4.1):

(U+; lvll) [, Q—}-div (ov)}+8, U+ Z v, Oy, U+
, +<v o (&, v+z Vg By, ) = (v, @) >+ (v, div T+

3 _ '
+ Y T, vi+<o, iy—divg—Q.

Lj=1

Applying the mass conservation law (2.4) and the equation .of mot;on (3.3),
we finally oblam the followmg set of energy equatlons

: 3 .3 pi?
@) U+ Y s o U= Y Tydyo wUtn

g=1 i,j=1

—divg—Q, weA.

For exampie, in the case when U (Z, x, ¢} = = CO {t, x, w), where C = const
and @ (f, x, ) is the u-temperature, the o- qudntltles g (t,x, o) and @ (f, x, &)
may be expressed in the following way!

g(t,x,o0)=D{@) @, x,q),
Q. x, 0= {9 MO, x, fl—O (, x, a)] dx,
where ! |
S(a, 00 =0, I, f=3(B,a).
In a special case we may put D = const, § = const.
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5. EXAMPLES OF CLOSED SYSTEMS

Let us now present some of the simplest examples of closed systems.
For brevity we will consider only inviscid flows, and assume i, = 4, =y, =
=y, =0 in the Constitutive equation (3.4).

Hence (3.4) takes the form T=1(—p--y (1))

Incompressible flow. We put g (t, x, &) = ¢ (¢), hence the measured mean
density

g (t,x)= | o () da = const.
A
The function ¢ () is chosen arbitrarily, for example g (x} = const. Taking

into account (2.4), {2.6), (2.7), (3.3) we obtain the following closed system
without the energy equation, ' :

- edive=pu, oacAd,
(5.1) S M+div(Mvy=pu, acd,
M=y, acA,

3
{8, v+ Y v,0,, ") = —grad, p+grad, ¥ (W—uv+
=1

D [Q (ta X, ﬁ) U(t’ X, ﬁ)_g (tn Xy O’.') v (tn Xy OC)]
Dt

+Jf,o(oc, B df, acA.

A

Here we have obtained six families of equations with six families of unknown
functions : ' o ' o o

w M, v, 05,05, oeA.

Compressible flow with very intensive turbulent diffusion. In this model we
assume that the turbulent diffusion is so strong that the influencé of pressure
may be neglected. Hence the constitutive equation (3.4) takes the form

T= 1y (p). 7
In this way by taking into account (2.4), 2.6} (27) and (3.3), we obtain
the following closed system '

dyo+diviovy=p, .aeAd,
O M+diviMv)=pu, acd,
(5.2) M=y, aed,
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3
0@ 0+ Y v,8,, v)=grad § (p)—po+
o=1

ccA.

+J‘P(°" p DL (r,x,ﬁ)v(r,x,@t—g(r,x, Dol 40

A
of unknown functions

p, M, vy, 05,03, G€A.

Compressible not heat conducting flow. Taking into account the equations
(24), (2.6), (2.7), (3.3) and the energy equation (3.7) we obtain for T=
= 1(—p+y () the following closed system '

6; g+divigr)=pn, oA,
0, M+div(Mv) = p, wacA,
(5.3) M=y, acA,

3
0@ v+ Y v, 0, v)=grad p+grad ¢ (u)—po+
=1 . -

+J‘(P(Oﬁ,ﬁ) D[Q{t,x,ﬁ)v(t,x,lgg—g(t,x,a)v(t,x,oc)} . aeA,
A
2, U+§: Uy 0y, U=(—p+y (0)—pU+p |v2| , wed,

p=Fflg, U\ aeA,

where p=f(g, U) is the equilibrium termodynamical state equation. We
have here eight families of equations and eight families of unknown functions

o H:Mapaga{]:'Ul:UZ;UB: OC'€A.

Stationary models. In the stationary case, in the systems (5.1), (5.2) and (5.3)
let us disregard the time dependence and introduce additional changes in
the second and: third equations. In the stationary case the equation
8, M (t, x,0) = p(x,0) is equivalent to the equality '

M (ta X, 0{') = (t_to) H (x,'ot_).
Therefore, the two equations containing M reduce to one equation

- div:(,uv) = 0.
Thus, in the stationary case the éystems (5.1), (5.2, (5.3} contain one family
of equations less and also one family of unknown functions M, xe A less.
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The systems (5.1), (5.2), (5.3) are integro—differexitial equations, but by
means of discretisation of the integrals over 4, we may reduce them to
partial ones (see [8]).

6. TRANSITION TO THE LAMINAR FLOW

Let us now show that in the model described one may consider the
transition from the turbulent to ]amlnar flow as well as the inverse tran31-
tion. | Consxder the system

(6 1) . -0, p+div (Qv)=,u; acAd,
3 :

62)  e(@v+ Y v, 0., v)= —grad p+grad ¥ (u)+(A; +7,) div v+
o=1 .

+{(A2+7y,) div (grad p)+7, Av+y, A (grad p)—pv+

+j¢(“,ﬁ) [Q(txﬁ)v(txﬁgt Q(fxtx)v{txoc)] 8.

xe A,

A
3
(63) U+ Y 0,0, U= —pdivo+y (1) divo+i, [divi+
o=1 . : .

+ 4, [div (grad w12 +y, Y (B, 0,48y, 0) 8y, 0+
. -

2

i
+2y2 )@y, O, Y — U+ e ’Zl
ij

—divg— JS(oc,ﬁ) [@ (&, x, f)-

—@{t,x,oc)]dﬁ, ,aEAa

where Eq. (6.1) is the mass conservation law, Egs. (24), (6.2) and (6.3) are
the equations of motion, (3.3) and the energy equation (4.2) in the case when
the constitutive equation (3.4) is taken into account. The corresponding system
for the laminar compressible Navier-Stokes model is of the following form’

¢, 0+div (pr) =0
(6.4) 2 (8, v+Y, v, 8, v) = —grad p+(A+2) div v-+ydv,

8, U+Y v,8,, U= —pdivo+i (div v)*+
x: 77

+yza Dj+ 8y, 1) Oy, v div q.

Let us now consider in our model the mean measured values: § (¢, x),
i (r, x) given by (1.3), (2.4) and, in accordance with the principle B in Sect. 1:

P)= | [p (¢, %, a)— (1 (&, x, )] o,
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the mean measured pressure,
0(,%=[Ultx,odo,
A

the mean measured internal energy,
gt,x)=§qft,x, ode
A

the mean measured flux of non-mechanical energy. Then, assuming that all
quantities considered are twice continuously differentiable, we may simply
prove the following theorem: : ‘ ) '

THEOREM. If;b(O): 0 and if in some G < R* for (t,x,0)eGx A we have

uit, x, a) =0, v{t,x, )= (e, x), then D(t,x) = % (¢, x) and the functions @, i3

U, 5, § satisfy for (t,x)eG the Navier—Stokes system (6.4) with A= 4, i,
y =71 {4l ‘

Proof, The equality #{t, x) = % (t, x) follows immediately from Fq. (14)
and the mean value theorem for integrals. W¢ put in the system (6.1),
(6.2), (63) v=17, and p= 0, and perform the integration over aeA. Due to
the symmetry of ¢ («, f) and 3(x, f) we have

Jd“ j(p . B) Do (t,x,ﬁ)v(t,x,ﬁl);e(t,x,oc)v(t,x,oc)] i =0,

A A
and

I do. j 3 (d, ﬁ) [@ (t; X ﬁ)‘_@ (ta X, OC)] dﬁ =0.
A 4

Hence, integrating the system of Egs. (6.1), (6.2), (6.3) over aed, we obtain
the system (6.4) with p=p, ¢ = g, v="0,q=4 and o

A=A fdo, =7y fda,
A A

what ends the proof.
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STRESZCZENIE

O PEWNYCH MODELACH NIELAMINARNYCH PRZEPLYWOW
Z TURBULENTNA DYFUZIA

W pracy przedstawiono nowy model turbulentnych przeptywéw, w ktdrym transport masy
odbywa sig wzdluz krzywoliniowych stozkGw przenikajacych sig wzajemnie. Przepiywy lami-
narne wystepuja w modelu jako szczegdlny przypadek, w kidrym stozki redukuja sie do
krzywych. ) )

PE3tOoME

O HEKOTOPBIX MOAENAX HENAMWUHAPHBIX TEYEHMI C TYPEYJAEHTHOM
OHODYIAENA

B paBore mnpeAcTaBiena HoBag TypOynenTHas MONENb TeHdeHHil, B KoTopoit MepeHoc
MHCCHI COBEPHIAETCH BAOJE KPHBOIWHCHHBIX KOKYCOD IIPOHHRAOIIMXCA B3AHMHO. JlamMuHapHBIC
Te4eHHS BBICTYNAIOT B MOOCHH KAK 9acTHRId cnyualt, B KOTOPOM KONyChl PeOYIUHPYIOTCA
K KpHBBIM,

INSTITUTE OF MATNEMATICS
UNIVERSITY OF WARSAW,

Received November 10, 1983,





