ROZPRAWY INZYNIERSKIE * ENGINEERING TRANSACTIONS * 33, 3, 215234, 1985
Polska Akademia Nauk * Instytut Podstawowych Probleméw’ Techniki

INVESTIGATION OF TECHNICAL STOCHASTIC STABILITY
OF LATERAL VIBRATIONS OF MATHEMATICAL
MODEL OF RAIL VEHICLE

| W. CHOROMANSKTI J KISILOWSKI {WARSZAWA
and L. LOPATA (KRAKOW)

The anthors present a method for investigating the technical stochastic stability of the
mathematical model of a mechanical system with real input. The paper includes an_algorithm
which can be wsed in numerical applications. Sample results are given for a model of a four-
-axial luggage-car with coach 25 TN (Y25 Cs). '

1. INTRODUCTION

Studies on lateral vibrations of rail vehicles often deal with an analysis
of stability. The question of stability does not arise when vertical vibrations
with a structurally stable mathematical model arc investigated, The problem
of stability is essential for a proper guiding of the wheelset in the track, ie. for
such a guiding in which a confact between the track and the wheelset
is ensured ‘af two points. Most of the authors [1, 2, 3], while analysing the
stability, restrict their investigation to the wheelset or to a part of the rail
vehicle and the stability definition given by Lapunov [4]. This paper presents
a method for analysing the téchnical stochastic stability of a linear mathe-
matical model describing the whole vehicle. Such an approach seems to be
more useful for analyzing the dynamlcs of a real techmcal system w1th
natural hmltatlons '

2. BASIC DEFINTTIONS AND THEOREMS

Let us consider a differential equation (2.1):

dax
= =% E ),

@D FO)=%,
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where
X = [X1, X25 s X%,
=l 5015
<f_= [61, Cas s fn]T,
t —time, y —eléement of a set of elementary events. Assuming that the
stochastic process f (0, ¢, £ (¢, 7)) is absolutely integrable, ie.
(2.2) « P {Ojt 70,6, E(t, )| dt <o} =1 for every 1,

where P— probability, f, &, X — vectors, and that there exists a stochastic
process # (£, y) absolutely integrable m the consmlered 1nterval {0, T such
that there is the :nequahty '

(2.3) |f (%1, &4, ) f(xaf,f(h?)ﬂé?’!(f,?)lfffl for  te{0, T);

(i.e. the Lipshitz condition is fulfilled with respect to X with a stochastic
process #{t,y)). It is possible to formulate the theorem [4, 5] that thete
exists one solution of the set (2.1) and that this solution is an absolutely
continuous stochastic process with a probability one, for ¢ = ¢,.

Let us consider in turn two sets o and & contained in Euclidean space E,
where @ is a hmited, ppen and coherent set containing the origin of the
system, while © is a limited and c¢losed set and, moreover, w < Q. Let us
designate as ¢ the number fulfilling the mequdhty 0<eg< 1 The techmcal
stochastic stability is defined as follows:

If every solution of the system (2.1) X (t, ty, Xp) with initial conditions
belonging to the region w belongs with a probability of 1—¢ to the area £,
then the system is téchnically stochastically stable in 1elation to the regions
m, 2 and the process &{t,7) with a probdbﬂlty I—F ie.’

(2.4) , P{x( t,to,xo)eQ}>1—a for Xpew.
Let us assume that Eq. (2.1) may be presented in the following form:
(2.5) X=F(x,)+R (%, t,7),
where

o

Xz

x=|1|
X
Xy

R — vector of random disturbances (the product of the determined function
and of the stochastic process), and that F (X, t)—E—R (X, t,y) fulfills the same
conditions as for the system (2.1) Let us designate as V(x,t) Lapunov’s
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function fulfilling the following conditions:

) Vix, t) belongs to class C2 in relanon to X, and to class C! in
relation to f, '

2) V(x,6)>0 for X #0,

3) V(R 1) = 0esx=0,

4) [V(x, )=V (X, 1) < B|X'—X|, |¥'| < Ry, IX| <Ry,
where R, — radius of the area Q.

Let us designate as d° V/dt the derlvatlve of the functlon V(x,t) along
the solutlons of the systems

(2.7) dx/dt = F (X, 1),

and let us assume that

- (2.6)

7(0) = sup IR (X, ¢, 7).

With these assumptions, the sufficient conditions for the technical stochastic

stability of the system (2.5) may be formulated as follows [4, 5]:
If the following inequalities are true:
a°v
— =
dt

28 sup [if (1)f < 6

_ 20

—C*V(x, ) for r<|X]<Ry, =20, C*>0,

é
B§+F§st, 0<e<l, Mzian(i,t),

|.£|= Ro, t ; 0.
then the system (2.5) is iechmcally stochastlcaﬂy stable, ie.
Pix{t, to, Xo)| < Ro} =1l—g, 20, IxOI <F,

where r —radius of the w region.

3. METHOD OF INVESTIGATION OF TECHNICAL STABILITY OF A MODEL OF SIDE
VIBRATION OF A RATL: VEHICLE WITH STOCHASTIC DISTURBANCES

3.1. Mathematical model — denotations and designations. Formulation of the
problem

The subject of the study is a mathematical model of a coal car with
25TN trucks. The equations of motion are contained in the works [3, 6].
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They were derived on thie basis of Lagrange equdtions of the second type,
assuming a unit transformation matrix between an inertial and noninertial
system, and assuming that the present bodies (wheelset), truck frames and
car body) are ideally rigid. Summing up, the system describing later vibra-
tion has 11 degrees of freedom and may be presented in the form of a mamx
equatlon

(3.1) AP)Gg+B@ G+C(P)G=R @, 1),
where

_Q'1

qg

=y
i

vector of generalized coordinates,
Ld11
I3

p= p:z vector of parameters,

| Pr |

A, B, C — matrices of inertia, attenuation and rigidity, R (#, t) — vector of
random disturbances. The adopted ratéd model of a’car and the coordinate
systems with origins at points of the centre of the mass of the bodles are
presented ‘in Fig. 1.

It should be stressed that the matrices B and C are asymmetrical
Although the results presented in the next ‘part of the work refer to a specific
structure (coal car with 25 TN trucks), the considerations have a genéral
character and may fefer to any dynamic system described by Ea. (3.1)
The parameters and the matrices A, B, C are present in Appendix 1. Due
to some limitations in the system track — rail vehicle, the coordlnates s
i=1,.., I1, are subject to the following constraints:

(3'2} Iqll ty,

where gq;, i =1, 4 — lateral shifts of Wheelset (along the QY axis)
gl < aa,
where ¢, i= 5,6 — lateral shifts of truck frames (along the OY axis)
<,

where ¢q;, i = 7, 8 — rotation of the truck frames (along the OZ axis)

|Qi| iy,
where g;, i = 9, 10 — rotations of the truck frames around the OX axis

|Q'11_1 = as,
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q,-4, D= sz
4oy W
%= by,

G5 =44

Te  Huz

Gr = ¥y

Qg = ¥z

?_9 = ﬁbt

Fig. 1. The nominal model of a rail-vehicle.

where g;; — rotation of the car body around the QX axis. The problem
of analyzing techrical stochastic stability may be formulatéd as follows:

Let us define the region © by the inequalities (3.2). For a given vector
of disturbancés R (p, t) obtained, for example, by an experimental method
and the assumed number ¢, it should be checked whether the system (3. 1) is
technically stochastically stable.

It is often interesting not only to state whether the system is stable
or not, but also to impose some constramts on the parameters— p for
which the system is stable.

‘Therefore the problem may be formulated in a similar way: our purpose
here is to determine the boundary values of some parameters with fixed
values of other parameters. These boundary values separate the stable reg1on
from the unstable reglon in the space of parameters.

3.2 Problem solution

Let us introduce, for a standard, a dlagonal md‘mx Al deflned as
follows:

[ail=a, for i=1,4,
[aill=a, for i=35,6,
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[al]=ay; for i=7,8,
fafl=a, for i=9,10,
[afl=as for i=11..
This means that the matrix A* is a diagonal matrix with elements on
the main diagonal equal in value to hmltatlons unposed on the relevant

coordinates;
Next, we shall consider the following system

(3.3) A4 Z+BAIZ+CAIZ*R(1T 7,
“where
G =ayz, i=1,4,
q; =ty Z;, i=5,6,
G=asz, i=1,8,
g, =da, 2, 1=29,10,
g =asz, =11
for which R, of the region Q is equal to I, and therefore 1t is transformed
into an #-dimensional sphere.

Multiplying the system (3.3) on the left side by (44! and bringing 1’[
to the state coordmates we obtdm the fo]lowmg set of equa‘nons '

i,

(where P(t)=(AA)"' R (¢, p)), which, finally, may be presented in the fol-
lowing form: ' ' '

(378
Il

(3.4)

W = DW+F (¢, p)

where

block matrix 22 x 22,
0y, ~— zero matrix 11x 11,

T i — unit matrix 11x11,
(3.5) : -
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_ " z | -
B, = (AAY)"1 BA', W :[ ] Cy = (44H~t CAL.
u

It is easy to show that for Eq. (3.5) the conditions of the quoted
theorein of the existence of a solution are fulfiied. This means that

T T
j ID-O+F (¢, D) dt = j" \F (t, p)l dt <A ((A4")") IR (¢, P,

where A(X)—the largest characteristic root of the matrlx X, R, ff) is
assumed to be restricted and therefore

|DW,+F (t, py— Dy —F (¢, p)l = [D (W2 —W)] < |ID] [W2—w,],

|D| — norm of the matrix D for determined values of the parameters.
Lapunov’s function for the system (3.5) is defined as follows:

1
i Tg+—z" (Cy+CD zZ,

306 Viw) =V )= 1

where the index T means transpositions. '

Tt is easy to show that the function V (i, ) defined by the relation (3.6)
fulfills the conditions for Lapunov’s function, while the constant B of the
condition 4) is défined by the following relation: '

- . 1 .
3.7) B = max {RO, 5 Ro 4(C] +ci)}.

This results from the foliowing estimate:

o o /I R S
[V (22, #02)—Vizy, thy)] = o e Tuy—iny T“z‘l'? zZ, T

1

R R O T o
) |“1|2}+{‘4— Iz, + 2 (CT+C)) (Zz—Zl)l} =

1, o 1 o -
<7(|uz|+|b11|) |Mz—u1|+—4" [(Z3+2;)" (C1+C )} (F—Z1) <

o 1 o _
T R |u2_u1]+7 Ro A(CT+Cy)lzy— 24| = B* fw,— Wy

with the assumption that the matrix C,-+C7] is positively determined.
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" The derivative of Lapunov’s function along the soiu’aons of the system
is determmed by the following relatlon

dO

(3.8) i —aT (B, +BD @
Moreover, the foliowing relations are trué:

(3.9) V(z, 11)<—|ul2+ L e, +c NE2
(.10) V@) 24+ A% (C 1 CT R,

where A* (x) is the smallest characteristic root of the matrix X.

This is the result of bringing the posifively determined square form defined
by the equality (3.6) to a canonic form. Moreover thiese relations also follow
from the fact that for orthogonal transformatlons the module of the vector
remains unchanged.

If the matrix B, + BT is positively determmed then the followmg 1nequa—
lity may be derived in a similar way: '

v

(3.11) _

< — A% (B, + BY) ™.

Now it is necessary to find such a nuomber C* that

a’v
dt

(3.12) < —C* V(z, i),

Considering the set

r < |z| < Ry,

r < [#] < Ry,

it is possible to write

v

< —r2 ¥ (B,+BD.
o (B1+ Bj)

(3.13)

To satisfy the inequality (3.12), and taking mto account the mequahtles
(3.9), (3.10) and (3:11), wé may write '

z; * BT
(3.14) c*s( '”) 1 A B+ )

R 1 '
© 7+?A(C1+C'f}
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The input F (¢, p) is a function of the parameters v and A (v — velocity
of the vehicle, 1 — equivalent conicity). With fixed v and A we may write

(3.15) sup [F (t,p} <6, t=0.
Let us also note that

M=mf V(W)= RZ [(%+% A*(Cy +CT)}

(3.16)
|W§ = Ro, I 2 0.

Let us now analyse the third condition of the theorem of the techmcal
s’rochastlc Stabﬂlty, namely thé mequahty

3
(3.17) Br+— < Me.

Checking the inequality (3.17) with respect to the relauons (3.14) and (3.16)
con31sts in checkmg the followmg mequahnes

‘ d
Ro T"i""a';k‘"
T *
R} (TJFT A* (CﬁC{))
when
ACT+C) =2,
and
1 d
7R0 rA (CI+CB+——C*
6= 11 f.
' R(z, (—5"4-—4- A, *l“cf))
when

ACT+C) =2
In’rroducmg the foiiowmg estimates:
A(C+CT)
A*(AAYy °

AHC+CH
A(AAD

A*(B+ BT
A (447

A(CT+CY < H(CI+Cy) 2

A*(By+Bl) =
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the last condifion may also consist in ‘checking the following inequalities:

rA (AA")

(18 &> R OSAUA) L0257 (C+CT)
5A%(AAY) (0.51* (AA1)+0.254 (C+CT))
r2(AAY) A* (B+ BT [0.54 (4AN)+ 0254 (C+C™)]
when
A{CT+C) <2
or . t
A(AAL 0.5¢A (C+CT
(19 e> A*((iliAl)) {RO (0.54 (AA})io.zsA*) (C+CM) +
5A (AAY) (0.50% (441 +0.254 (C+CM)
r2 3% (AAY) A (B+ BT)-(0.54 (AA")+025* (C+CT)
when

L A{CT+C) =

the above results may be u’nhzed for a numerical programme of stabﬂlty
analysls

4. ALGORITHM OF CALCULATIONS. EXEMPLARY RESULTS

In stability analysis, three parameters are found to have the greatest
impact on stability afeas. These are: k, — rigidity between the truck and -
the body of the car around the OZ axis, 4 — equivalent conicity, v —- velocity.
The selection of the above mentioned parameteérs follows from the analysis
of sensitivity ind from the practical possibilities of modifying elements of the
real constiuction and conditions of operation. Assuming A to be constant for
stable profiles [6, 3] and equal to 0.038, we shall analyse the influence that
the paraméters k, and v exert on stability areas in a rectangle defined by the
following inequalities: a ‘ '

(41) k,,-, min < krfi < kc,f/ max 3
< U << Uy

ITlln

The algorithm of the procedure may be presented by a diagram shown
in Fig. 2. It should be stressed that for the stability of a’linear system
defined this way it is casy to prove that a necessary condition for a system
to be stable in the technical stochastic meaning is its stability in Lapunov’s
meaning. Sample results of numerical calculation are presented in Table 1.



IJ‘?‘A&‘T]

ddoption of initral valves
af ko and y qra canstont

DS For Lhe BTG
Logromerens

C‘a/ca/a{.rm @f‘ £ AA T racrtrix

LSt

X”(AA} A(AAD

[

~ .rt&vé/e @ L o;a%r

|
Change GF porreions

Estmrate: A(B+8% A(C +C7T)
A@ra?), XCC+07

i e mepy
(25) ,@m//aa’ £

e system 18 Stble
7 teehribayl SOCALS T

75 e mvspw e
(FE) fulfritdey 2

The spshom o sddle
/tr Eechiecal .rfacéar:'zc

TICQAUTIF PR
- —
The Sylern (§ unsioble rom |
/i3 TBCARCOE SIOCAOSIE
eI
F1G. 2. The algorithm of calculation.-
Table 1.
v = 60 [km/h] A = 0038 kg max = 10% [Nm/rad]

i

kymin = 10° {Nm/rad]

Bousndary values of k, for Sldblhty in
Lapunov’s meaning

Boundary values of k, for stability in the
fechnical and stochastic meaning

ky, = 5.7-10° {Nm/rad]

ky = 6.5-107 [Nm/rad]

k,=2-107 [Nm/rad}

A= 0038 vmin = 20 [km/h]
Y = 150 [km/h]

Boundary values of v for stabﬂlty in
Lapunov’s meanmg

Boundary values of v for stability in the
techmcal and stochastic mcamng

v.= 71 [km/h]

v=47- [kmﬂﬂ

[229]




230 W. CHOROMANSKL, J. KISILOWSK]1 AND H LOPATA

5. CoNCLUSIONS

The regions of parameters which ensure technical stochastic stability
of the system are narrower than those ensuring stability in Lapunov’s
meaning. From the point of view of analysis of the " stability of real
physical systems, which are as a rule subject to limitations and random
mputs, the determination of stability in the technical stochastic meaning
seems evidently more useful. o ' ‘ '-

The presented method used for investigations in the stability of the
mathematical model of a specific structure may slso be applied to any
physical system, what can be described by the relation (3.1).

APENDIX 1. SPECIFICATION OF PARAMETERS

No Designation Name Value

1 2 3 4
m mass of wheelsel 1400 kg
m,, mass of truck frame 1600 kg
my mass of car body TO000 kg
J.l 1747 kg m?
Iy moments of inertia of the wheelset 131 kg m?
Joz S 1747 kg m®
s 790 kg m?
Jwyl moments of inertia of the truck frame 1006 kg m?
J e L 1090 kg m? '
Jax : 426800 kg m?
Ty moments of inertia of the car body 976500 kg m?
Tnz S 921900 kg m?
c., - 1,38 x 0% kg/s
C., 233 x 10* kg/s
C, coefficients of damping 600 kg m?/s
<, . o X 200 kg m?/s
C, S00 kg m?/s
K., 228 % 10° N/m'
K., 55.6 x 10° N/m
K, ¢ coefflicients of rigidity 115 x 10% Nmyrad
i S S 0
Ky (table 1)
i 09 m
b | 375 m
dy geometrical parameters 35 m
I ) 075 m
f1y 02 m
h 0.86 m
s 0.46 m
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dalszy cigg tabeli

1 2 3 4
A ] _ 0.038 rad
s

0.038 rad
: 0.038 rad
e 1.69%107 N
] Kalket’s coefficient 1.93x10" N
o ' 7.83 % 10* Nm

41 9z 43 %4 -9  9s 97 S8 Gg G0 In

2Jzz

+dyz

2izz*
twz

Jwrx

durx

JNx

e Yp Ys Uq Ysr Uz Wbt ¥z Par dpp ¢

1. m+,uﬁ,sz
My,
2 Myttt
w' g 435
3 M _ dnz
- 4 405

Matrix A (matrix of inertia)



% gz 93 Q4 gs 96 g7 ga ~ §s G qu

’ ~Czy 1 ’
’ ~Czy 1 )
’ Czy 1 ’
4 cay = :
“Czy | ~Cay 3 _ % % % | -Zhbczg
o | g | 0 ™
g i g ;lﬂn } % 17,
2 z ZhyCzy . N
2 2 | -2heCay . o |-
“C -Cy 2¢4

Y4 Yz Ys ys  Ypt Uz We1 ¥z ®p1 G2 ¢
2rk v
1= oy b

2 hbczg“‘z'zi-’w Crz

e
. 4
3 2°29+2a§,
Zk
2.2 Py
4. gyt py o ¥ Vo
2b%
5 Gw.;.....v‘_?.{

6. c¢+2£:zzlz;-2czgh§
Matrix B {matrix of damping)

[232]




4 gz 23 Q4 45 qs g7 Qs 83 Q10 dn

1 ~kay ~ 2y 4
1 ~kazy -2kpg; 4
1 -kzy ~2kpy 4
1 -kzy ~Zkpy q
~kzy | ~kgy 5 |- ;—% %. % ~2hykzy
‘kzg "kzg _;;_#’ﬁ 6 - % - :Tu; ‘Zhbkzy
5 | 5 - % —% z
5 5 2% —;T"; 2
4 4 ~Zhpkay - J —kp
4 4 ~2Zhpkzy
~kp | ~ks | Zke

Y Yo - Y3 Yq Upr Yz W ¥z %1 Paz ¢

) 2.2 2N
Kzt 2l ,l-!wkzz*"gi'[iwkps

=

R

kyy -~ BN,

=]

Zhgy i+ 2hz 1 4y

B

Bpkzy+ szpi kzz

A
5. 2bkpy
ke
Zaﬁ

o

‘kzg"

Matrix C {matrix of rigidity)

[2331
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STRESZCZENIE

ANALIZA TECHNICZNEJ STATECZNOSCI STOCHASTYCZNE]
DRGAN POPRZECZNYCH MODELU MATEMATYCZNEGO POJAZDU SZYNOWEGO

Rozwazania przedstawione w artykule dotycza analizy statecznodei technicznej stocha-
stycznej liniowych modeli matematycznych ukladdw mechanicznych. Zaproponowano sposob
oraz. algorytm postepowania przy badaniu wyZej wymienionych statecznodci oparty mna 1T .
metodzie Lapunowa. Zaprezentowane w pracy wyniki obliczed numerycznych odnosza sig do
analizy’ liniowego modelu matematycznego wagonu towarowego — platformoweglarki z woz-
kami 25TN. : )

PE310ME

UCCHEAOBAHUE TEXHUYECKOHA CTOXACTUYECKOW. YVCTONYHUBOCTH
JUHEHHEIX KOJEBAHWUH B MATEMATHUYECKOW MOJEIWU BATOHA

Paccyxnenus, npeacTapaennble B CTATHE, KACANYTCH AHAIMM3A TEXHMUCCKOH CTOXacTHUeCKOH
YCTORYMBOCTH MHHeHHEIX MaTeMaTHIecKnX MoZcNcil Mexahuveckux cueteM, IIpeanoxeH cnocob
W AITOPKTM MOCTYDAHHS IIPH WCCHENOBAHHH BLHILIEYOGMAHYTOH YCTOMMMBOCTYH, OmMparomieHcn
#a IT wmetonm Jlsmywosa. [lpescraBnenssie B paGoTe pesyibTaTHl UHCIEHHBIX DACUETOR
OTHOCHATCS K AQHANE3Y AuHedyoll MaTeMaTHHeCKOR MOBENH TORAPHOTO RATOHA — YIOJBHON
BAroH-EATGOpMET ¢ Terexxamu 25TN.
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