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'THERMOELASTIC CYLINDER SUBJECTED TO SUDDENLY
© “ "APPLIED RADIAL SYMMETRIC PRESSURE

M. M. MARJANOYV {(BEOGRAD)

Stresses, temperature and oscillations of a thermoelastic cylinder suddenly exposed to the
radial symmetric pressure are anafyzed in the paper. Saiution of the corresponding eigen-
value problem is obtained by means of the perturbation iechnigue, so that afl the results
are expressed as fonction of eigenvalues -and eigenfunetions of {lie corresponding uncoupled
(elastic) cigenvalue problem. '

i. InTROVUCTION

At the instant t =0, the perfectly insulated thermoelastic cylinder, having
been prevmus]y in a homogeneous temperature field T (r, ¢, z, t) = T, = const
(t<0), is exposed to. the radial. symmetric pressure Fig. 1. This pressure
initiates a stress wave which, propagating through the body, disturbs its
mechanical and thermal equilibrium. The- object of this work is to find
stresses, temperature and oscillations of the cylinder as functions of time
and space variables.

We assume that temperature changes and deformatlom are’ small 50 tha1
the problem may be analyzed within the 11near17ed coupled thermoelasucny
theory :
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2. PARTIAL DIFFERENTIAL EQUATIONS OF THE PROBLEM

If the scales for length, time, temperature and stress are taken as
a a 1—v (17v)F
PR st e e (EY (B DK
ductivity, ¢, — the isothermal velocity of the longitudinal wave, v — the
" Poisson’s ration, oy — the thermal dilatation coefficient and E —- the modulus
of elasticity, we get the following set of partial differential equations, initial
and boundary conditions of this ‘coupled thermoelasticity problem in the
dimensionless form: o ' '

where a represents the thermal con-

'

21) W) i = 0,
(2.2) . 9"+£—90-'8(L'{'+~u—) =0, -
. T N
eI w0 =i(n0)=0(,0=0(0=0,
Cfor r=00  |uh 0], 100 . <o,
(24) for r=g0 ¥le; f)ﬂi'-u% P -0 (¢,ty= —pH (1),
0@.=0.

In the above equations ‘u represents the radial ‘displacement, 0=
= T--T, —the increase of "the temperature, r —the space coordinate,
¢ — the time, p - the radial pressure,'H (ty— the Heaviside 'unit function,
g = (1+v) o2 ETy ' ST '

T - (I=-2¥) e

the 'Cbupling coefﬁéjeht, cs—fhe.-_speciﬁc heat . of

undeformed material and v, = rv;? A comma and a dot at the symbol

denote partial differentiation of the corresponding variable in space and
time, respectively. R -
Differentiation of the equation (2.2) with respgct to r and introduction
of the operator e
v d* o 1.
= e
and the sct of new variables u, # -and &, leads to the following system
of partial differential equations in the matrix form:

S To i offu]
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which can be written simply
U(nt=LU(r.t),

where the meanings of the vecior function U {r, {) and the matrix differential
operator L are evident. Here, we emphasize the fact that assumption of small
strain and temperaturc amphtudes makes the operator L linear, bounded
and continuous [3]. The procedure of solving the problem posed above
can be simplified if by using the extended deﬁnmon of the operator [3],
this homogeneous system of p.d.e. with nonhomogeneous boundary conditions
is replaced by an equivalent system of ~nonhomogeneous p.d.e. with homo-
geneous boundary conditions:

26 UG H=LU(R)+[0, H-pH@OIsr—a) 1],

- e :
W, <o

- ”.'1(@5)?’1%3"(5—2)' _,

28) ’

(2.8) vio. 8

uZ(Q,l)!vlrﬁ 0}.
e

1‘3 (Qa t) -

where 5(1 w-g) is Dlracs symbohc functlon

. 3. EIGENVALUES, EINGENVECTORS AND ADJOINT EINGENVECTORS -

Separation of time and space differential operators in the equation (2.6)
allows for the reduction of the posed problem to ihe eigenvalue one

G - e TR (Y= e (9,

with boundary conditions of the type (2.8).

In the equation (3.1) ¢ is the- eigenvector and A — the’ elgenvalne of the
problem. .

As known, the exact solution of this equation imposcs considerable
mathematical difficulties. In the simpler problem. of a thermoeleastic layer
exposed to the symmetric pressure [7], the exact solution of its eigenvalue
problem leads to the practlcally unsolvable ir’mscendentai characteristic
equation. : : :
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The perturbation method proposed in this paper is based on the fact
that any spatial differential operator L of the linearized coupled thermo-
elasticity problem can be represented as

(3.2) S L= Lo+edlL,

where L, is the differential operator of {he corresponding uncoupled problem,
AL — the coupling operator and ¢ —the coupling coefficient. ' '

Generally, the coupling coefficient of a thermoelastic material is a small
number. For example, if the témperature of the natural state is T, = 293°K,
we obtaint & = 0.028 for aluminium, 0.011 for steel and even 0.001for concrete.
This is the main reason’ why' the solutions of the classical elasticity theory
(with £ =0), although qualitatively unsatisfactory and disregarding the in-
fluence of displacement field on the temperature {and, consequently, thermo-
elastic damping of any-mechanical process), are quantitatively so “close”
to the corresponding coupled thermoelasticity solutions.

Suppose now that the solution of the eigenvalue equation

(3.3) Lo W (1) = oW {1),

of the uncoupled problem with boundary conditions of the type (2.8) s
known, ie, the eigenvalue spectrum @, (m= 1,2,.) together with the
corresponding eigenvector functions ¥, (r) are at our disposal. Suppose also
that the set of eigenvectors i (r) of the adjoint operator I* is known.
Let the sets ¥ and W, be complete and orthonormal, so that

Qg W = O,
where the sign (,) indicates the complex type scalar product {z (k) W, dr,r
. .8 .

is the weight function, s denotes the region of integration and &, 18 the
Kronecker symbol. .
Using Eqg. (3.2), we can write for cach eigenvector ¢; of the operator L

(34) (’11 —LO) él = SALd)” i= 1, 2? e

If y,, and % are assumed as the basis and the reciprocal basis of the
vector space under consideration ¢; and AL¢; can be represented in the.
spectral form as

{35) R ) ¢i (]) = Z O im \llm (l'},
and-. . _ . _
36 A= L ()

where oci,,; and ﬁ ,-;,, are the complex constants.
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~ Making the left-hand scalar product of the equation (3.6) with adjoint
vectors Uik, we get

(3.7) Bim = (s, ALbs) .

Using the same procedure with the equation

(3.8) 2 (A= 0 G W = £ 3, W, ALDD b,
we find

* »
(39) iy = & M,

li—m-m
and hence

m> AL
(G10) =y S *’_Z-.,,m( ).

We make an assumption here that A; and ¢, are close to ; and Vi,
respectively. Then we can look for e1genvalues and eigenvectors of the posed
problem in the following form of power series in the coupling coefficient ¢:

3.11) A= by 24V 0
(3 12) B 4) \|’1+N;18+N126 + _ .

Clearly; the leadings terms obtainable upon - setting &= O are solutions
of the corresponding uncoupled eigenvalue problem. The complex constants

v;; and the complex vector functions N;; (r) are to be determined.
We substitute 4; and ¢ as given by Eq. (3.12) in Eq. (3.10) and obtain
(s AL G+ Ny 64+ Nig €24+ )

313) ¥+ Ny etNpe2+.. =23 m:
( " ) v i ? 8;" i+ Vi £V £ . — W

“Comparing the coefficient of y; on the left side with the one on the
right-hand side of this equation, we find

Viy 8+ Vi e+ .. _3<‘1’ AL(‘l’;'i'NuB‘*'N;zﬁ + .0,
and therefore e
(3.14) Vi = <‘|’i*, AL,
(3.15) via = {UF, LN, .

On the other hand, if all the other terms of the perturbat:on series
on the left and right-hand sides of the Eq. 3. 13) are equated, the following
result is obtained : '

P, AL+ Ny N 24 L) v
{w;— ) (1 it ey V2 g2 ) :
_ W;— 0 ,

] i m

Nil 8+Ni2 £2+ = EZ"
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where symbol X’ indicates that the sum is to be taken over all values
of m except m = i. This equation can be written in the following way as well

1 ) l V'1 )
3.16) N, e6+Nj e+ ..=¢)) - : e+ .. |X
( ) ! z ; [wi“—wm' m)2 }

x <‘I’:§=r= AL(‘I’;“‘N,; e+ > ll!m.
Equating the coefficients of &, &°, .., we find

r<‘|’ﬁa AL\I’:> i

(3.17) Ny = ; 0 — s
— N (P, ALNi > Vi s AL
(3.18) Ni; = ; [_'wwi-wm w. | (@, ] 1|

Solution of the probleﬁl (2.6H2.8) requires also the knowledge of adj.oint :
eigenvectors ¢ (r). : _ _

It is easy to conclude that the ad_joint' operator [¥ may be written in
the same way as L in Eq (3.2), ' '
(3.19) I¥ = X +4e(AL)*

In this relation, I% is the adioint operator of the corresponding uncoupled

problem, and (AL)* is the adjoint of the coupling operator. G
- Since A, represent the eigenvalue. spectrum of the operator L, the complex

conjugate - .. T RS e : S

(3.20) L L@y sV R L

is the eigenvalue spectrum’ of the adjoint “operator I*.

Repeating the already used procedure we can find the adjoint vector
functions ¢ (). For that purpose, expansions of $f and (ALY*¢¥ in terms
of ¥ are required, together with expansion of ¢F into the perturbation
series in terms of the coupling coefficient o o '

Consequently, the identities are obtamed

Vi = (b, (ALY = QU ALV,

vip = Wy, (AL)*M;=> = (P, ALN; ..,
followed by the functional coefficients: of Eq. (3.21) ©

(322) M; =)' M_%;—"’QM, |
(323) My=13" [ s (A. _)’iMu) vy s ALY VD }\!},ﬁ,

0 — Dy : (B~ D)
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~ Therefore, we write the space operator of our problem in the form.
101 0 0 009
(3.24) L=Ly+edL=4 0 —1]+ej0 00 .
00 4 0 —40

Figenvalues ; of the operator L, are grouped in sets of three (k = 1, 2, 3;
4,5 6: 7,8 9;.) Two imaginary, mutually conjugate eigenvalues w, = @,,
4 = Os, ... are successive solutions of the equation

(3.25) iwpldy (lwe)—(l—h)J (iwe),
and the thlrd s, wﬁ, .. (index divisible by 3) are successive solutlons of
(3.26) Jy(iJwe)=

In the above equations i is the imaginary unit and J,, J, are Bessel’s
functions of the first kind.

Eigenvectors s, are also grouped in sets of three. The first and the
second (1, 2;4,5;..) ones are the complex conjugate. For example,

o 1
(3.27) Uy (2) =, (1) = a, [wl] Jy (iwy z).
- 10

The third eigenvector in every set (3,6, 9,..) is real. For example,
: w Iy o o '
1 u—wr¢L3@~myhmhm

328 )= all os [ T liwsr)+ /Q )
(3.28) W (n) “3[(’(';~} ot i/ Jo w39 -X

. .
pd @y Jo(iJoyry].
(!)3_ 2 -

w3
Relation
(3.29) (G, LF) ={I¥G,F),
leads to the adjoint operator
| | o [0 v 0]
(3.30) BE=]1 0 —ev},
T o 40 -1 ¥
with the boundary conditions ¢+ -
IV (0)] < o,
v; (g}

(3.31) 7 _ & (@) + vy =0,

() =0, 3{@)=0
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obtained from the requirement that the transformation of the left-hand side
of the Eq. (3.29) into the right-hand side, should be homogeneous.
So we can sec that, according to (3.19),

o vol oo o
(3.32) =1 00] and (Ly={00 V|

Knowing that the eigenvalue spectrum of It is o, (k=1,2,3;4,5,6; o)
we can easily find the adjoint eigenvectors Y. Again, in each of the three
vectors, the first and the second ones are the complex conjugate and fhe
third one is real. For example, ' ‘ ' '

| ) - w? (@, —1)
(3.33) PP =5 =b wl(wi—n Ty (i 1) —

—— 0 i
-__Jl(_iwlé') A5 Y
Jl(i\/éf@)[?]ml\/;] -

SR F0)
(334} \Tla‘ (T‘) = b3 lO] Jl (i PYALE J')|
The bar over i is purely formal, due to its subsequent use in the
complex scalar products. ' o _
Coelficients g, and b, of the eigenvectors and the adjoint eigenvectors,
obtained from the condition - f

QU b = dijs

are
1y = by = & = by = [0y~ D @} = 1-vD JE @ 0] 2,
and - .
aszbg,:\/i{i«/wsvg(l—ws) [iws 0 Jyg (iws @) — -
f(l_vl) Ji (iw; @)] J, (i /@3 Q)}“;%,
and so on.

Keeping in Eq. (3.11) the linear terms only, we find now the cigenvalues
of the problem (3.1) in the following form

(335 M =IAymote {MZ(lmw.l) i

+ 03% [{t—vi) Jy (i .601 Q)—i\/C—UTQ Jo (i /o1 Q)]}

(1—601)2 (wf 924'1—"%) Jq (i 0y Q)




‘THERMOELASTIC CYLINDER SUBJECTED TO SUDDENLY APPLIED RADIAL SYMMETRIC PRESSURE 525

(336) 4y~ (03—6{ @34

1——603

2m3% J, (im, Q) 1
(1 w,)* [ies @ Jo (iws g)—(1—v,) J; (i3 0)] Y

and so on.

Taking into account the properties of some real thermoelastic material,
one can verify these results: two complex conjugate cigenvalues A; and 2,
have negative real parts, what is essential for the manifestation of thermo-
elastic damping. The third eigenvalue remains real and negative.

Figenvectors and the adjoint eigenvectors of our problem are, according
to Egs. (3.12) and (3.21}, '

(337) NCER [‘pk ez YDA L‘l”'> b m],
(338) ¥ ()~ d, [ft’rf ez LIV G )]‘
@y, — Wy

As stated above, the prime at the summation symbol means that the
term with the index i=X is to be omitied.

4. SOLUTION
Now we seek a solution of Egs. (2.6)«(2.8) in the form

@1) 0= 3 o ()b (),

where ¢, are, for the time being, certain unknown complex functions of time. -
Using Eg. (3.1), we also have

@2 - LU (r,0) = Zlﬂk )& (7).

, - : _ 0
Free term of the equation (2.6) F(r)={0{o, )—pH {t)] 6 (+— Q)[ 1}
: 0
expanded in the eigenvectors has the form

[<9)

43) F(ro)= 3 A o),
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with the coefficienis

@4y B =<0 Fy'= ga [0 (e, )= PH (0] % |
x [w b Q) be 3y e ULIWE)
. k=1 — i

. O i

Symbol ¥ denotes the second coordinate of the respective vector.

Introducing those expansions into Eq. (2.6) and taking into account that the _
eigenvectors are lingarly independent, we get ‘the infinite set of the first
- order differential equations with respect to time: )

(4.5) 6 (o O— B () =0, k=1,2,3,.,

with initial conditions resulting from (2.7) oy (0} =0.
Applying the Laplace transforms to these equations, we get

s (8)— o (0)— Ay % (5)— By (5} =0,

(4.6) _
~ g(Q,S)—%
g P % e k=1,2,3,.,

¢ S“A/Ik—ﬁ#.. §— A

where the symbol () means 2 (-} and

- © (G (ALFUE -, ]
ek=eck[¢f;:a Qe 3 NI gy (g)].

!
=4 wk

Taking the Laplace transform of the expansion (4.1} we arrive at

@ 0¢9=3 &k(s)m(r-){é(e,s)—%]kz *

=1 S#Ak

o (7).

Integrating the third coordinate of this vector with respect to r, we obtain
the Laplace transform of the temperature increase in the form

@8 G(r,_s);[é(g,s)——ﬂ ¥ A e,

K= S A
with th_e' notation

i) = e | ors (1) dz.

¢ (s) being the integration function. "l:his funczion' must be equal to zero
because, for p=10, 8 (r,t)=0(¢,t)=0(r,8)= 0(g,s)=0.
For r = g, we obtain

AT
’ ~ P 1 S—A
9 , —_— .,

K= 5=

2 !ﬁ?‘z(e)].' -
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Using this result, together with the final-value theorem it is easy to find
the limit temperature increase in the cylinder

: i Jeto)
(4.10) im0 (o, £) = lim 8 (r, £) = lim s (e, sh=p k=1 A
e o s = filo)
3 +1
k=1 k

The expression (4.9) may also be written in the following form,

p Pis)
s 0"

P9 = JQ; (=) 3 fle)

(o, 5)=—

oD

(S)*“H(S‘m Z fio @)+ A= s).

The symbol [ represents the product of all factors s—4A;, except the
j=1
one with index j=k.

The degree of the polynomial P(s) is lower by one than the degree
of the polynomial @ (s). Suppose that Q (s) has infinitely many distinct
zeros o, i = 1,2, 3, ... Then, making use of the Heaviside expansion formula,
together with the corvolution theorem, we can find the boundary temperature
increase in the form ‘

Pl
o <

@ se=ry

4@ (s)
ds
Using the convolution theorem again, it is easy to obtain the inverse
Laplace transform of the expression (4.8), that is, the temperature increase
at any point of the cylinder

with the. abbrevizition Q} =

o0

0 ot At A 1-— At 0
(4.12) 9(;-,t)zpk;{z eai_‘;‘ g((z))Jr af [1+2 gfaﬂ}fk()

i=1

Applying the same procedure to find the inverse Laplace transform of the
first coordinate of the vector (4.7), we get the radial dlsplacemcnt

w0 gkl e_ﬁ.kr P(Oti)

(4.13) u(r,t)=Pk;ek{i; iy O

1—e™ > Pl |1 )
T [”E, Q’(ai)]}"““")'
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Finally, the radial stress may be represented in the form

u(r,t)
I:

414) o(r,t)=u'(r,t)—m —0(r,t)=

2% — elkr P (“i) 1— elk:

= — + X
P kZ'I “ {:Zl =A@ (o) Ay

[1 3o ’)]}[cp (- 20 f(pga(r)dr].‘

It is clear (see Sect. 2} that all these quantities are dimensionless.

If we introduce ¢ =0 in those solutions, we obtain undamped, “elastic”
solutions, with 0 (r, ) (homogeneous function of the coupling coefficient),
equal to zero.

5. CoNCLUSIONS

In this paper, the thermoelastic cyhnder exposed to a suddeniy apphied
radial symmetric pressure is examined.

The assumption is made that the temperature increase and the deforma-
tions are small so- that the problem belongs to the linearized coupled
thermoelasticity theory. ‘ *

The corresponding eigenvalue problem is solved by means of the perturba-
tion method and all the results, representing stresses, temperature and
oscillations as functions of time and space variables, are expressed in terms
of the eigenvalues and eigenfunctions of the corresponding uncoupled c1gen-
value. problem
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STRESZCZENIE

L

WALEC TERMOSPREZYSTY POD DZIALANIEM NAGLE PkZYLOZONEGO
SYMETRYCZNEGO OBCIAZENIA PROMIENIOWEGO

W pracy oméwiono problem wyznaczania napreZef, temperatury i drgan walca termo-
sprezystego poddanego nagle przyloZonemu, symetrycznemu obcigzeniu radialnemu. Rozwia-
zanie odpowiedniego problemu wartofci wlasnych otrzymano za pomocs metody perturbaci;
w ten sposdb rozwigzanie wyrazi¢ mozna w postaci funkcji wartodci i funkgi wlasnych
odpowiedniego niesprgzonege problemu dla ciala sprezystego.

PeE3omMmE

TEPMOYTIPYTUN WWJIHHAP [0 JEACTBHEM BHE3AIHO [PHIIOXEHHOW
CUMMETPHUYHO PA/IMAJTBHON HAPPY3KU

B padoTe pACCMATDHBASTCH 3afiaMa N0 ONpPeJIENeHAI0 HANPHKCHHH, TEMIEPATYPEL A KOJe-
Gammit TepMOYTIPYroro UMAMEAPA, NOABEPREHHOTO AcHCTBMIO BHE3AHO IPHIOKEHHOH, CHMME-
Tpuunoil paguanbioll Harpysxu. Pemiende cOOTBETCTBYROINEH 3apaun COOCTBEHHEIX IHAUCHMH
OBUTO HORYYEHO ¢ IOMOUIBIO METORA meTPySamyy; TakuM o6pa3oM PENICHHE MOXHO BHIPAIATEH
‘B BMAE GYHKIMH CODCTBEHHBIX 3HAYEHWH COOTBETCTBYIOHICH HeCONpSXeHHOH sajaum R
YOPYroro Tena,
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