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NORMAL REFLECTION AND TRANSMISSION OF PLANE.
SHOCK WAVES IN NONLINEAR ELASTIC MATERIAL

S. KOSINSKIT (LODZ)

"The normal reflection (reflection and transmission) of 2 finite elastic plane shock wave
#f ‘a pline boundary (plane interface of two rigidly coupled materials), propagating through
an elastic Murnaghan’'s material is examined. Tt is assumed that the material region in front
of the shock wave is homogeneously strained and at rest. The Hnearized boundary value
problem is considered for analysing small but finite amplitude waves. Three types of boundary
conditions are considered. The obiained reflection solution is one shock wave, simple wave
o1 progressive wave, when the only transmitted wave is always the shock wave,

1. INTRODUCTION

- The oblique reflection of a finiteé plane shock wave at a plane boundary
in‘a ponlinear, homogeneous, isotropic elastic material was investigated
by ‘Wright [1, 2]. Using a strictly mechanical theory, Wright presented
a semi-inverse method for finding the reflected (transmitted) waves. In this
method it is assumed that the incident shock wave is given a priori and
that the medium ahead of the shock is homogencously strained and at rest.
It is also assumed that the state behind the incident shock wave and the
state at the boundary are connected by means of a sequence of reflected
simple waves and constant state regions. The most general reflection (trans-
mission) solution gives three reflected (transmitted) simple waves or shock
waves. In the case of three reflected simple waves the problem reduces to the
determination of the distribution of wavelets by means of oridnary differential
equations which ‘describe the variations- of the deformation gradient and
particle velocity [1}. The boundary. conditions on the surface of reflection
(the continuity conditions on the intetface) determine the intervals for the
parameter corresponding to each type of waves. .

In some cases the assumed reflection pattern may fail the admissibility
test, the pattern must then be modified to include shock waves.

In this paper the problem of reflection at a plane boundary, or
reflection and transmission at a plane interface of two rigidly coupled
materials, of the nermal .plane shock- wave propagating through an elastic
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Murnaghan’s material is examined. The material region ahead of the incident
shock is assumed to be homogeneously strained and at rest.

According to Wright’s suggestion [1 p- 1801, the case of normatl reflection
(transmission) can be treated in a way virtvally identical to the oblique
reflection, with the additional simplification that the fronts of all reflected
(transmitted) waves and the front of the incident wave are always parallel
to the boundary plane (interface) The speeds of propagation along the
normal, as a function of the deformation gradient, can be computed
directly.

The general normal reflection (transmission) solution can be obtained
from the system of nonlinear differential equations. This problem can be
solved only numerically. For this reason, the linearized boundary valus
problem is considered by using the Toupin-Bernstein’s equations for analysing
smail but finite amplitude waves. . '

The basic assumption is made that the reflection solution is in the form
of simple waves. Two types of boundary conditions and the corresponding
initial-boundary value problems are comsidered in Sect. 4. _ :

The linearized problem regarded below restricts the general reflection
solution to one reflected simple wave, shock wave or progressive wave,
depending on the boundary conditions and the initial deformations only.
In the case of the transmission at the interface, the transmitted wave is
always the shock wave. Section 6 contains a numerical analysis of the
reflection (transmission) solution for three types of boundary conditions.
The results are illustrated graphically. The notation used here is similar
to that of [1]. For convenience, some relevant formulas and results from [1]
are included in this paper. The repeated index convention for summation
should be systematicaily used in any formula where the same index appears
twice unless the formula is followed by the indication “no summation”.

2. REFLECTED SHOCKS AND SIMPLE WAVES

The motion of the continuum is given by x' = x' (X% 1) where:x', X% are:
the Cartesian coordinates of the material parficle in the present configura-
tion B and the reference configuration Bg, respectively. The deformation
gradient x!, the velocity 4’ and the Piola—Kirchhofl stress temsor for . an
isotropic elastic material are defined by : : o

A U VY
(2.1) xa;E-XT:. 1{_:—x~.7?. Tpi* = ok m,

where ¢ denotes internal cnergy -per unit mass in the reference configura-
tion Bg, ¢ is the density. in Bg. Here and henceforth the dot above
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a function denotes the derivative with respect to time ¢, two dots denote
the second derivative.

If the functions x*(X? t) are continuous cverywhere but have discontinuous
first derivatives on some propagating surface .7, then the jump conditions
across a surface .# are given by

I[TRiu]] N,=—pp U, [[ii]],
x.]=HN, [«]=-HU

(2.2)

(2.3) m = (Hi H)? = ([, ] [x¢1)? = 0.

The material normal in the direction of propagation is denoted by N,
the normal velocity relative to the material is U, and the amplitude vector
of the shock is H. The parameter m is a measure of the intensity of the
wave. The double brackets indicate the jump of arbitrary field () on .#

[C-T=(Y-(-)Y
The letters F and B indicate the limit values taken on the front and

rear sides of . Such propagating surfaces across which the velocity and
deformation gradient are discontinuous are called the shock waves.

According to [4], the propagation speed U, and amplitude vector H are
assumed to be expandable into power series of the parameter m.

H 0. i 2,
(m) =HymH+m*H +
m
(2.4) 0 1 2

U, (m)=U,+mU,+m*U,+ ..,

1]

where H', H',.., U,,U,,.. are constants for a fixed initial deformation
in front of #. For small but finitc deformations, m is a small parameter
m<<1 and it is necessary to determine the first two terms in the series
only, in order to obtain a good approximation to the solution [7]. In the
limit case m—0 the shock wave propagates with the same speed as the
acceleration wave. In this case the amplitudes of the shock wave and the
acceleration wave are colinear [4].

The Lax criterion [10] can be used to verify the stability of such shock
waves. According to this criterion, a shock wave is stable-if it propagates
with supersonic speed with respect to the medium in front of it, and with
subsonic speed with respect to the medium behind it. Analysing the connec-
tions befween the shock waves with the intensity m (2.4) and acceleration
waves (m — 0), WEsoLowskT [4] has proved that such a shock wave is stable
in the sense of Lax. :
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If the stress and velocity fields are differentiable, then the equations
expressing balance of momentum and compatlblhty conditions are

(2.5) Tute = nif, o= OX__ 0%
. Ri s R ¥ a aXaat at -

Simple waves [&], fl, p. 163] are deﬁned to be regions of space-time
in which the deformation gradient and velocity fields are continuous and
depend on a single parameter say y = G (X% t). Regions of constant y are
propagating surfaces called wavelets with unit normal and normal velocity
given in By by
(2.6) N,)=G,, (V&) ', U= -GG "
If G #0, Egs. (2.5) in the region of a simpfe wave may be written as

T U25i- u'j={)
(27) (QU QR. }')
Ux"g+u? Nyg=0,

where the prime indicates differentiation with respect to the wave param-
cter y and

aTRI
Q= —5- O J ——— N Ny =gr o N, Ny,
is the acoustic tensor.
We denote here
e
O‘['ajﬂ = AT Aauj -
6x ® 6X B

For Eq. (27); to have nonzero solutions in " it is necessary that

. det (Qij__\QR U’ 5:'}) =0
28 . @)
( } ut=k r, C(,i,j=1,2=35

where 77 is the right proper vector of Q;; corresponding to a particular
proper value gg U2, {2 =1,2,3), k is an arbitrary parameter Assuming
k= U, it follows from Egs. (2.7), and (2.8), that

dx’y  w du!

2.9) —Pi Ny, dy::Ua(;)", o B.j=1,23,

_ o -— No sﬁmmation
The right proper vectors can be determined, exact to an arbltrary scalar
function of the deformation gradient xi, f{(x), which can be chosen . for
convenience since it represents only a relabeling of the wavelets. Thus the
above equations may be rewritten as :
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FiG. 1. Incident shock wave.
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FiG. 2. Assumed shock reflection pattern.

=},

= Uy f{x) 17 (),

()5

(2.10) |
= —f(x) ¥ (x) Ng, o,B,j=1,2,3, o—no summation.

These ordmary differential equations must be satisfied in the region of the
simple wave. They can be solved with the initial conditions taken from
the regions of the constant deformation gradient and particle velocity 1, 3, 5
(Fig. 2). The intervals for the parameter corresponding to the simple waves
in the regions 2, 4, 6 can be found from the boundary conditions in the
region 7 (Fig. 2).

3. REFLECTION OF NORMAL PLANE SHOCK WAVE TN HYPERELASTIC MATERIAL

We consider the halfspace X* >0 (Fig. 1, 2) composed of a homo-
geneous elastic Murnaghan’s material. Such a material is defined by the
constitutive equation

l+2m A+ 2u+dm

é \
Bl  gro= ur—a . ptn

(I —=3)*+ (T—3)—

'4,u+n

—F =) G G-Iy (1),

where A, p— Lamé’s constants, [, m, n— second order elastic constants and
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) 1 Lo
I, =B, Izzj[fiz_BJrBIj]’ I3 = det (B),

arc the invariants of the left Cauchy—Green strain fensor B.

Suppose that a plane shock wave propagates through this region, in the
direction normal to the boundary plane X? =0 at which it is reflected.
The characteristic parameters for such a wave can be computed by [7].
Various types of boundary conditions on X?=0, can be considered. We
assume that both {X*} and {x'} are coinciding Cartesian coordinates.

With regard to second order effects, the longitudinal shock wave speed

U, 1s greater than the acoustic wave speed (f)fu when the transversal shock
waves propagated with the acoustic wave speed [7]

The geometry of an incident shock wave 1s shown in Fig. 1. The material
region 0 in front of the wave is homogencously strained and at rest
The strength of this wave m= |[H'| > 0, the unit material normal and the
amplitude vector H [7] are

(3.2) N, =(0, —1,0), H(0,m,0).

It is assumed ([1]) that the reflected waves are three simple waves irél
regions 2, 4, 6 (Fig. 2), with unit normal ‘
(3.3) ‘ : N, 1,0).

Regions 1, 3, 5, 7 are regions of the constant deformation gradient and
- constant particle velocity.

The deformation gradient in front of the incident shock wave (F)" and
behind the wave (F)® are (Fig. 1)

. 4]
Lo X000 . [xe,0 0
(34) B =0=10 x* 0 F'=10 x*m 0
0 0 x33 0 0 x33

From the relation (3.2) it is clear that only the jumps of one component
of the deformation gradient and one component of the velocity are not
equal to zero:

(3.5) [x2.] = —m, [ul=—mU,.

Substitution of the relation (3.3) into Eq. (2.7); gives three homogeneous
equations for v (i=1,2;3):

2 2
Ulzlz—Uz 0'1222 [ li’l 0

(36) . G_zzlz 62222_U2 .20.22232 , u*t =10
0'3212 0'3222 0373 -U T 0l

It is scen from Eas. (3.3) and (2.9), that in the most general case three
derivatives of the components of the deformation gradient in the region
of the simple wave are not equal to zero:
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(3.7) Xt #£0, x%#£0, x7;#0.

In front of the incident shock wave and behind it the components of the
deformation gradient x!,, x*, are equal to zero. Tt follows from the relations
(3.7) that these components can change in the region of the reflected simple
wave. For this reason we suppose that the representation of the deformation
gradient in each reflected simple wave and in adjacent regions of constant
state has the form

X1 xlz 0
(38) F1 = 0 x22 0
0 x*, x,

The elasticities required in Eqs. (3.6) for the material (3.1) and the defor-
mation gradient (3.8) are

02%2% = 20,4205 ((xl 1)2+(x33)2]+203 (x'1)? (x*3) +4o .y (x?2)*+
+8a12 (x*2)* (x* )2 +(x*3)%),
0,22 = 20, +20, (x*3)* +46,, (x122 + 8015 (x73)* (x1,)%

63237 =20, 420, (x" ) +4doy; (724805 (x1 )P (x2)% _

(3-9) 2 2 1,2 132 332

g1 =X 2 X 2(40;1+40'12((x 1 +2 {x"3) )),

aity? = A4x', x%, (01 1+012 ((x33)2+(xl1)2)),

o737 = 4x3, x%, (01 1oz {(x%3)*+2 (xll)z)),
where

do - il
UK:W’ UKIJ:ma K)L_ 1)21 35

and
(3.10) Ty= )P () O3 ) (L),

Iy = (227 (6% + (20 (6 P %)% (607 + (1 5)? (623) o+
+(632 (60

The general propagation condition (2.8), gives three reflected waves.. For the
problem of normal reflection in Murnaghan’s material with initial deforma-
tion gives by the relation (3.4),, the deformations are functions of space
variable x? only. It is natural to expect that in this case, for the longitu-
dinal incident shock wave (3.2),, the deformation possesses symmetry with
respect to every plane which contains the X2-axis. For this reason we can
assume that only one lognitudinal reflected wave is possible. On this assump-
tion the deformation gradient in the reflected simple wave region has the
form (3.4),. With this additional simplification the equations for x!,, x*, and
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equations for boundary conditions are still nonlinear. For this reason, for
small but finite amplitude waves, the linearization of the initial-boundary
problem is reasonable,

4. LINEARIZED INITIAL-BOUNDARY VALUE PROBLEM

Considering the problem of propagation of a plane shock wave in an
isotropic elastic material described with second order elasticity coefficients,
it has been found that in the static case the principal stretches in the
region of the elastic shock wave are not greater than 1+0.0085 for steel
and 140.0030 for aluminium [7]. The deforimations for other metals have
the same order of magnitude [6). For this reason, the linearization of the
problem is justifiable. We have used the linearized Toupin-Bernstein equa-
tions of motion [9] instead of Egs. (2.5);.

Consider a motion

1) X = % (X% 0w (X5, ),

where X' — mean the initial deformations behind, the incident shock wave
front and w' — small deformation about the initial deformation in the reflected
simple wave region,
According to the definition in the simpe wave region, the deformation
gradient w', and particle velocity W' depend on a single parameter 7.
From Eq. (4.1) it follows that

xia: = )Eia 0 "l"wiac ?),
42) (0) { |
aw'

#=@ O+ ), o=

Cia=1,23,

where X', (0} — are the homogencous components of the deformation gradient
behind the incident shock wave front (3.4),, i (0) - are the components
of the particle velocity in the same region.

It is assumed that the deformation gradient (3.4), , and partlcle velocity
in front of the incident shock wave and behind it are constant in space
and time. :

For the mogion (4.1), the Toupin-Bernstein equations of motion are (r91):

@3 . (T O) whe =

First, we calculaie the equations of motion. and compatibility condmon
in the 51mple wave region by substituting Eqs. (4.2) into Egs. (27);.»

(Qij—or U? By vl =

@4) ST
UWUH‘l‘U’J Nﬂ = 0,
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where ;; = og ;2% are the components of the acoustic tensor, calculated
for the basic motion X, (0).

The condition that there exists nontrivial solutions for v¥ gives three
solutions for the characteristic speeds:

- L @ , .
@5 U%=d6%% 7;=04 a,j=123  a-—no summation

Combining the differential equations (2.10) and (4.2) and choosing
f(xiy= U, "', we obtain the differential equations
dwl, dw!

(4.6) & p =-U7t, cij:l, ja=1,2,3, a—no

summation,

where y, — are the parameters of the reflected simple wave. The remaining
derivatives of the components of the deformation gradient and particle
velocities, with respect to wave parameters, y, are equal to zero. The above
equations can be solved with the initial conditions (4.2):

4.7) wh (0= ({0)=0, a=1273.
Substituting the solutions of the initial value problem (4.6), {4.7) in
Egs. (4.2), we obtain
Xy =55 (0)—Us? vas
(48) Xy =x% (0) = 3%,
_)'c“‘ == {0)+y, p=13, «a=1273  «—no summation

The above expressions are the linear functions of the wave parameters 7,.
The intervals for the parameters y, corresponding to the simple wave can
be found from the boundary conditions in the region 7 (Fig. 1).

4.1. Clamped boundary

Let us consider the reflection problem of a plane shock wave, incident
on a plane clamped boundary; this means that

4.9 F=u=0 on X?=0, a=1,23

The functions in the conditions (4.9) are evaluated for ‘the final values
of the wave parameters 7,. Hence from Eq. (4.8);

{4.10) | 5= —iF(0), a=1,23.

According to the relation (3.5)2, only one component of the particle velocity
7% # 0, when ii* = > = 0. For this reason

(4.11) -~ T= - 0)#0,

H

?3=0.
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The functions x',, x*, are equal to zero in all regions of the reflected
simple waves. The parameters 7, 73 are not equal to zero in the case
when the material region in front of the incident shock wave is not at
rest and the components of the particle velocity: @' # 0, #® # 0. According
to the conditions (4.9), such an assumption is fully unrealistic.

From Eqgs. (4.8), and (4.10) it follows for the fastest reflected simple
wave (y,) that

Xty = 8,0 -Ustys, 0y <7,

@.11)
Fp=2 —i12(0) = —(—mUy) = mU,, m>0.

This means that x?, (y,) is decreasing with y, changing from 0 to 7, > 0.
As it was pointed out in [7], the simple wave speed U, (x?,) is a decreasing
function of x*,. Then the function U, is an increasing function of the
wave parameter y, when y, ranges from 0 to its extreme value 7,. The
solution in the form of the simple wave fails. As a consequence of the
boundary conditions assumed here, the reflected simple wave should be
replaced by a reflected shock wave ([1]) with the velocity U, and
strength m;.

The velocity jump across the reflected shock wave (Fig. 3) is the
relation (2.2), ' '

4.12) [x*] == 0)= —m, U,,.
According to the relation (3.5),
: i} 1 '
(4.13) o oomU,y=—m U, = —m (U, +m, U, +..).
where the reflected shock wave speed U, is represented by the power scries

6 :
of the parameter m, and U, is the speed of the acoustic wave.

Hence
(414) m1 = —mag +0 (m%),
where
[
ao=U, U}
o LSS "Eﬁ_”
/ (xd)® \
B (120
F

R
v, $2) =52
N A T (#2=0(0)

P xt-x%

FiG. 3. Reflected shock wave.
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For small deformations the terms O (m}) can be neglected. The speed

]
U,, of an acoustic wave propagating in the direction of X2, (N = (0, +1, 0))
behind the incident shock wave front, is greater.than the incident shock

1]
wave speed U, U, > U, [4]; this implies that a, < 1.

The amplitude vector of the reflected shock has an opposite direction
to the amplitude vector (3.2); of the incident shock wave:

(4.15) H“} = (0, — Mg, O), Oy << 1.

The jumps of the deformation gradient define the deformation in the region
behind the reflected wave front:

(4.16) - (x*2)" = 3%, (O)+ HEy N, = %2, (0)— moxg.

The entropy conditions admit the propagation of compressive shocks only [7].
The reflected shock wave with the amplitude (4.15) can also propagate. The
velocity of the reflected simple wave U, (y,) must be a decreasing function
of the wave parameter. The propagation of the reflected simple wave for
a clamped boundary is possible for 7, < 0 only. It will be possible if the
material region in front of the incident shock is not at rest. For a medium
with a boundary plane this requirement is fully unrcalistic. The general
solution reduces to a sihgle shock wave only.

4.2 Free boundary._

The reflection problem for the case in which the stress vector ¢; = T,7 K,,
=0, —1, 0) vanishes on the plane X 2 = 0 is examined. This means that
(4.17) TRI = TRZ == TR3 on - )(2 ={,
For the defermation gradient F, (3.8), the components of the first Piola—
—Kirchhoff stress tensor are _
Tra® = 20g X%, Loy +a, (G2 + (3307 a5 (x33)? (xli)z],
(4.18) Tre* = 208 X2 {0y + oy I +03 1y),
Tra® = 208 %3° (61 +03 I +a5 1),
To meet free boundary conditions assumed here, it is convenient to choose

{in Egs. (2.10)), f(x%,) = 1. Combining Eqs. (2.10) and (4.2), (4.5} and makmg
use of the initial conditions (4.7), we oblain

(4.19) L TP L

dy, dy,

[ %4
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Xty = X7 (0) V4
(4.20) x*=E0)+U, 7y, : :
xy = x% (0) = %%, w«=1,2,3," o-—no summation; . f=1,3:
The boundary conditions (4.17), 5 are satisfied when
(421)  xlL,=x%—0 on -X?=0.
= The funcﬁdns x's, x*, are linear functions of the ‘wave paramefers y,.
Assuming X', (0) = %, (0) = 0 we obtain 7, =7, = 0. We can choose. the

initial deformation (3.4), such that %', (0) # 0, '32 (0) 7& 0; in th;s case the
parameters ¥,, ¥; are not equal to- zero. - -

The components of the Piola—Kirchhoff stress tensor (2. 2)’fo’r ¥=1 are
equal to zero. The function T (F) may be expanded in the convergent
Taylor series about F = 1. For small but finite deformauon only the first
order terms are retained: ; - C

N (1)+371‘L(x —5k,;)

Assummg that all. components of the representat;on (3 8) can change
we obtain for Ty,? L P P i
423) G’ =52 (D" Do 21 (%~ 42y (x‘:‘a;’i}}f'_ _
+a;21"‘(1)x 2+0 2P (X3, i=1,2,3.

The values of the elasticity coefficients ¢%f (1) are
0% =242, o7 (D=0, (D=4,
(424) 2727 (1) H 271 (1)=0373° (1)

01 1 (1)-5 (1)“*

The other components are equal to zero.
Substitution of Eq. (4.20); for « =2 into Eq. (4.23) for i=2 gives the
value 7, of the wave parameter y, on the boundary.

(4.25) 7, = X2, (0)—1+%(56‘1 ©0)+%%; (0)—2).

et
1+2l

The initial deformation (3.4); in the material region with free boundary
cannot be arbitrary, it should be chosen such that

4.26) - Tr2? (F) on  X?w=0,
or in the linearized form o .

0

4.27) ¥,—1+ S a2y =0

ad
1+2 i




NORMAL REFLECTION AND TRANSMISSION OF PLANE SHOCK WAVES 495

According to Egs. (4.25), (4.27), (4.20) and (3.5), ¥%; (0) = X*,—m
(4.28) 5, = —m, —m<y, <0 '

The function x2, (y;) is an increasing function of the wave parameter 7y,
when y, changes from 0 to §, = —m; this indicates ([77) that the function
U, (y,) decreases when y, changes from 0 to 7, < 0 and, according to the
critetion given in [17, that region “2” (Fig: 2) represents a reflected simple
wave. The pro‘pagation“of" the reflected shock is not’ possibie because
U, (7,) < U, (0). According to the second equivalence theorem [3], there
exist for the clamped and free- boundary the solutions of the relations (4.5)
for «=1,3 and j=1,2,3 The boundary conditions (4.9) and (4.17) and
initial deformation (3.4), make propagation of such waves impossible and
restrict the reflection solution to one shock or simple wave. :

5. REFLECTION AND TRANSMISSION OF THE SHOCK WAVE

Let two nonlinear elastic solids (described with the Murnaghan elastic
potential) differing in elastic properties and having different mass densities
be rigidly ‘coupled at the interface X* = 0. When two solids are in rigid
contact; then the displacement vector or particle velocity vector ' and stress
vector ¢; must be continuous from one medium to the other:

(5.1) W= =t on X2=0.

In the region of the transmitted waves- X2 < 0, all functions and quantities
have the denotation (-), whereas in the region X > 0 all symbols are such
as in Sect. 4. : . ' ' R

We assume the deformation gradient and particle velocity in regions
X?>0, X* <0 in the form (42) and (5.2), respectively,

= (X O+ WX 1),
(52) &, = #, O)-+ W, (G,
' ._ o'

%= a0y 0 (), B ,
() (v) i py

fa=1,2,3,

where ! (0) — the components of the homogeneous deformation gradient
in the form analogous to the relation (3.4}, in the region X* <0 and
i {0) are: components of the particle velocity in the same region, Wt oare
the components of: the small deformation about, the initial deformation in
the region of the transmitted simple wave,

The boundary. conditions for small deformation W', éh'albgo.u.é'to the
relation . (4.7) are

(5.3) W (0) =" (0)=0, a=1,2,3.
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Equations (4.4) in the region of the transmltted simple’ wave may be
rewritien as

(QAl’j_gR 02 ‘Sij) ﬁ,j =0
According to the relations (4.5) and (5.4),, the propagation of three reflected
(transmitted) waves in the halfspace X > 0 (X2 < 0) is possible. The solutions

for characteristic speeds and right proper vectors for such waves are:
Reflected waves (X*>0), N(0, 1, 0)

(55) UZ=422 (f) =64 Ja=1,2,3, #—no summatiot.

Transmitted waves {X? < 0) N, —1,0)

- () . . e :
(56) U2=622% F,=68, j,a=1,2,3," «—no summation

(5.4)

From Eqs. (2.10), and (52) we obtain the equations for particle velocity
in both regions X2 >0, X? < 0:

. dv® ~
= Uy Ty f;zs ]

. % — no summation,
" Taking f, (x*s) = U, ' and f(x ,,)—- U7 a=1,2, 3), with the boundary
conditions (5.3), we obtain : o
(5.8) =y, =9, a=1,62,3.

*E

The functions u in (5.1) are evaluated for the final values of the para-.
meters 7, and §,. This implies Egs. (4.2), and (5.2); three equations for
the final values for parameters of the reflected and transmltted waves:

(5.9 i=7%6 Ts=% Htit0)=

The equations for the components of the deformation grédiénts w',, and W,
are Eqs. ((2.10), and (5.4),) :

dw’, dw*,

dy, = =1, Nz fo» a7, ==t Npfe, a=1,2,3

(5.10)

o -—no summation.
Taking into account the boundary conditions (4.7) and (54), we obtain

(5.11) why=~Uty, wo=U0'%, a=1,23.
o — no summation,

Substituting the relations (5.11) in Eqs. (42), and (5.2), we obtam the
expressions for the components of the deformation gradient:

I

(512) x*=-U;1y, %, = +U 19, a=1,3, aunosumltnation,
(513) X2, =%,(00-Us'y,, 5L, =%5L,0+0;'5,, a=2.
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Analogously to Bq. (4.22), we expand the components of the Piola-Kirchhoff
stress tensor Tg;? (F) in the Taylor series about F = 1. Let us assume that
the initial static deformations in both material regions are pure homogeneous.
These deformations cannot be arbitrary, the condition (5.2), must be satisfied
in the static state, too. Substitution of the expressions (5.12), (5.13} in
Eqgs. (4.23) and (5.2), gives three equations for i = 1, 2, 3; they together with
Eqgs. (5.10) may be used to find the final values of the wave parameters

T’aa ﬁx-

 x=U;'U, 1+ 05 U,

14 Fo= — M et MY =1
(514) 72 "0 w05 ! * O TR,
where % = (1-+2u) (1+2f)7", 4, A; ji, A— Lamé constants in regions X%2>0

and X? < 0, respectively, and

§2='”

uxty = jf%, = (WU '+ A0 9, =0, a=1,3,
o — no summation.

From this it follows that _
(5.15) §,=5,=0 for a=1,3.

The values of the wave parameters y,, 7, depend on the clastic properties
of two rigid connected solids and on initial deformations in these two
‘materials {the velocities U5t U5 1), According to Eq. (5.14),, the final value
of the parameter ,, , < 0.-The function %%, (5.13), is a decreasing function
of the wave parameter 7,, when §, ranges from 0 to its extreme value 7,.
This means {[7]) that U, (5,) is increasing with §, changing from 0 to
%, <0, and that the transmitted wave is every shock wave. Therefore, from
Eq. (5.14);, we obtain for (Fig. 4)

. q_-’ . : Aw
i Oauy <o i oo

FiG. 4. Reflection-transmission patterns i) reflected simple wave and transmitted shock wave
it) reflected and transmitted shock wave,
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) U,;'U,<x reflected simple wave,
i)  U;'U,>x reflected shock wave,
i) U;'U,=x reflected infinitesimal progressive wave.
The unit material normals and amplitude vectors are:

Ne=(0,1,0), - Nyp=(0, ~1,0),
H, =(0,m,0), H,=(0,m,,0)

The parameters of the reflected and transmitted waves in cases i) and i} can

be computed {rom Eq. (23) in a way analogous to the expressions (4.15)

and (4.16).
(5.16) P = —mpytomd), my=me(1—Uy' f),
(-‘322)3 = i’zz (0)—"12,, x22 ()721{ = fzz (O)f' (*]2—1. ?72R;

mU,=m U, +m, U,,,
(5.17) my=—mUz" By, my = am {1 — ﬁflﬁe):

(izz)B =.x* 2 (0)‘"1'"2, (xzz)B = %22 —m,,

where f, =(x— U, 0,905t +%U2 Y=Y my and m, - — reflected and trans-
mitted shock wave strength, y,* —final value of thz parameter in the
- reflected snnple wave, U,,1 and U,,z reﬂected and transmttted shock” wave
speed.

The second equivalence theorem [3] admits. the propagation of - the
reflected and transmitted mﬁmtemmdl progresswe waves fo; = 1,3, Egs. (5.5)
and (5.6). The continuity conditions defined on the interface ’("" 0 by the
expressions (5.1) made such a propagation fully unrealistic.

6. NUMERICAL $OLUTIONS

The reflection and reflection-transmission solutions discussed in Sects. 4
and 5 are examined numerically. for steel and aluminium. The elasticity
constants of the first and second order were taken from’ [6, 7] In the
case of reflection, the results for the initial deformal:ons in steel x!; = x?, =
= x%; = L0085 and x!, =x3, = 09915, x2 2= L0085 determine in Figs. 5
and 6 the solid and broken line respectlvely The initial "deformation” and
the material region behind the wave front should rémain elastic. Hence the
discontinuity jumps cannot be arbitrary, and the. apprOpnate estimate for
.m should be established [7].

Figure 5 refers to the case of a reflected simple wave (free boundary)
The value of the incident shock strength is changing from 0 to m'= - 0.017
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FiG. 5. Reflecied simple wave: a) deformation gradiemt b) wave speed as functions of y,,
- ¢) distribution of the wavelets in reflected simple wave region.

and according to the expression (4.28) — m <y, < 0. The component x?, and
the velocity of the reflected simple wave U, (y;) are shown as functions
of the wave parameter y, in Fig. 5a, c. The velocities of the wavelets in the
reflected simple wave for y, changing from y, =0 to y, =79, = —m, are
shown in the X?—t plane in Fig. 5b.

Some characteristic results in the case of a reflected shock wave (clamped
boundary) are shown in Fig. 6a, b, The graphs in Fig. 6a show the incident
shock wave speed U,, the reflected shock wave speed U,, and the acoustic

wave speed U in the region behind the incident shock wave as a function
of the incident shock wave strength m. The components x?; (0) in the region
behind the.incident shock wave (x?,)* in the region behind the reflected
shock wave and the reflection parameter o, .are shown as functions of the

oo
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FiG. 6. Rcﬂectedushock wave: a) incident and reflected shock wave speeds U, U,, and acoustic

]
wave speed U, b) deformation gradient and reflection parameter o as functions of m.
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F1G. 7. Reflection-transmission case: a) final parameter 5,% of the reflected simple wave and
reflected, transmitted shock wave strength m,, my, b} deformation gradient as functions of m.

incident shock strength m in Fig. 6b. Both initial deformations give nearly
identical values for the components x2, (0), (x2,)®. - o

Figure 7 presents the case of reflection and transmission ‘at a plane
interface between two selected solid ‘media: steel and aluminium, perfectly
welded along the X '-axis. Both initial deformations: in steel x!, =x%,=09913,
x%, = 1.0068 and in aluminum x', =x2, =x*; = 1.0030 satisfied the condi-
tions (5.1), in the static case. Two cases were taken into consideration:
the incident shock wave propagates through steel — case (I), »=2453 or
~through aluminium — case (IT} » = 0.408, in the halfspace X2 >0 and is
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reflected and transmitted at the interface. The results obtained for these cases
are different. The reflected wave is a simple wave (1), (U, U; ! < %) or a shock.
wave (IL), (U, {7,,'21 > x). It is characteristic that the shock reflection-trans-
mission patterns depend first of all on the mechanical properties of both -
solid media (»). The influence of the initial deformations and incident shock
wave strength is small. The final parameter 7," and the reflected, and
transmitted shock wave strength m,, m, for both cases are shown as functions
of the incident shock wave strength m in Fig. 7a, for some values of m.
Figure 7b shows the graphs of the deformation gradient comiponents as
a function of m.

The anthor would like to thank Professor Z. Wesorowskr for his helpful
comments and suggestions concerning the above problem.
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STRESZCZENIE

ODBICIE NORMALNE I TRANSMISJIA PLASKIEJ FALI UDERZENIOWET
W NIELINJOWYM MATERIALE SPREZONYM

Rozpatrzono zagadnienie odbicia {odbicia i transmisji) plaskicj fali uder7emowej o.
czonej amplitudzie od plaskiego brzegu (plaszczyzny sztywnego polgezenia dwéch materia
" propagujgcej sie w materiale spreZystym Murnaghana, Przed [rontem padajace” fah
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niowej material pozostaje w spoczynku i jest jednorodnie wsigpnie odksztalcony. Dia analizy
fal o malej lecz skorczonej amplitudzie rozpatrzono zlinearyzowane zagadnienie brzegowe
dla trzech réZnych typow brzegdw. Rozwiazanie dla fali odbite] moze mie¢ postaé fali prostej,
fali uderzeniowej lub sinusoidalngj fali biegnacej, podezas pdy fala transmitowana jest zawsze
w postaci fali uderzeniowej.

P esromEe

HOPMAJBHOE OTPAMEHHWE W TPAHCMMCCHA HNIQCKOU YI{APHOM BOJIHBI
B HEMWHEHHOM YIIPYI'OM MATEPHUAJE

PaccvoTtpena npodsema oTpaxenys (OTPaXesus 1 TPAHCMUCCHH) TUTOCKO#H YAAPHOH BOIHBI
KOHCYHOH AMILUTHTYAB! OT IROCKOM IPAaHHiB! {HIOCKOCTH XECTKOTO COSAMHEHMS JIBYX Marepha-
TOB), IPAYEM ROJIHA PACHPOCTPAHAETCA B YAPYTOM MaTepmane Mypaarana. [Tepen dponTomM
nanaroinell ynapHOM BOJIHEI MATEPHAN OCTRETCH B [IOKOE W NPEABAPUTENBHO OMHOPOIHBIM
obpasom pedwopmuposan. [ auanssa BOJH Manci, HO KOHEMHOH AMILTRTYE!, PACCMOTDEHEI
JIWHEAPUIOBAHALIE KPASBHIE 3A0AYH AL TPEX PA3HLIX THHOB TPAHMIL Peilienue ANs OTpameHHoOl
BOJIIB] MOXKET HMETh BUJA HPOCTOH BONHBI, YIAPHOW BONHLEL HIH CHHYyCOMAanbHOH Oerymrei
BOJHEL, B TO BpeMd Kax NepexoJfilas POJHA BCETIA HMEST BHI YAApHOH BOJHEL
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