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DYNAMIC ANALYSIS OF HOIST CABLE USING TRTIANGULAR
SPACE-TIME ELEMENTS

M WITKOWSKI (WARSZAWA)

In the paper the space-time element method with triangular net was used in order fo
examine how to control a drum of hoist so that the load hung on the end a cable moves
in a definite manner. Taking the boundary conditions in consideration this problem becomes
a nonlinear geometrical one. Tt was shown, that the space-time element method with
triangular net leads to an uncoupled equations system, also when used for nonlinear geome-
trical problems. "

1. FORMULATION OF THE PROBLEM

The description of the motion of the cable (Fig. 1) coming from a hoist,
drum implies serious mathematical troubles. The increase of the length
results not only from the drum rotation but from the elongation of the
fibre as well. During the motion, transversal displacements coupled with
longitudinal ones appear. From the technical point of view we are faced
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the problem of how to control a drum of hoist so that a load hung
on the cable can move in a definite manner. The solution of this problem
is the subject of the presented paper.

From the beginning of the movement the point B on the circumference
of the drum is replaced to the position B, The position of the point B
is not known prior to the solution of the problem. This means that the
boundary condition is nonlinear. With the omission of the friction that
occurs between the drum and the cable, we can present the distance B—B;
as a strech-out so that the point C lying on the axis x is the reflection
of the point B.

A mathematical description of the motion of the hoist cable consists
of two coupled partial differential hyperbolic equations for the longitudinal
and transversal displacements. The derivation and analysis of the equations
are discussed in the book of Savin and Gorosuko [1]

For the model of Fig. 1 the equations of motion are

0% u E 0 u '_
ot o ox? =4

éw E 8 [ ou dw 0

g B EH) =0
where E — Young’s modulus, ¢ — density, g — acceleration of gravity and
¢ - time derivative of running speed of drum. '

We can notice that the first equation comprises only the derivatives
of longitudinal displacements; it can be solved independently of the trans-
versal vibrations. The last ones are not discussed in the presented paper.

Let us consider two positions on the space-time plane (Fig. 2). In the
former position (¢ = 0) the cable has the length of d+u, where uy is the
static elongation of the fibres. The load G moves in a definite manner, for
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example the motion with uniform acceleration a. In the moment ¢ = t; the
load takes the position G;. And so the line G—G; in the space-time is
a given life-line of the load G. The point 4 in the course of motion is
replaced to the position A4;, determined by the displacement wu;, which is-
unknown for the time being. ‘The line A-—A; is the life-line of the
point A. :

The curved line A—C is the locus of the points C which have already
been described. The position of these points is unknown and we indicate
distance C— B, as the displacement u, which is measured from the point B.

Let us take the space-time area limited in Fig. 1 by the thick lines
as a base for our analysis. On the boundary x = d the displacements are
known and equal with r+u, where r describes the motion of the load G.
The boundary ¢ =@ is the line of Cauchy’s initial conditions. Finally the
unknown displacements on the curved line are equal to u,. This initial
boundary problem in the space-time domain belongs to the class of mixed
problems composed of Cauchy’s, Picard’s and Darboux’ basic problems and
is described in KrzyzaNskrs book [2}

2. THE TRIANGUIAR NET OF THE SPACE-TIME ELEMENTS

We solve the initial boundary problem as previously formulated by
using the space-time finite element method with the triangular net of elements.
In this case it can be convenient to introduce a metric space by multiplying
the time by some scale-speed. This matter has been described in the aunthor’s
paper {3]. In the wave problem this speed may be equal to the velocity
of wave propagation. In the case of a longitudinal wave this velocity can
be described as follows:

2.1 5= \/E
e

The space-time domain has been divided into finite elements which are
conformable to the characteristic lines where possible (Fig. 3). If the space-
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_time domain is scaled like this, then the characteristic lines are coordinate
bisectrixes in the formula (2.1}

Remark that along the line x = d, besides the boundaries of the triangular
elements, the linear mass elements appear as related to mass as

2.2 1‘?"1*‘E
(2.2) 7’

where G is gravity of the mass.

If we introduce a metric space, then we can determine space-time
stiffness matrices and load vectors for all elements like this in a standard
finite element method.

The shape function for the mass clement (Fig. 4) is

{2.3) N = [N,. N1,
where
i
N,-=-2—(1+tir), i=k, n,
T = 2 x4_x4s .
d
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"The strains vector has only one element

d
(2.4) £§dz.
In this connection the strains matrix is
(2.5) | B = (B, B,],
where

dNi 2 dNt T;

T~ d d o a Tk

In this case the constitutive matrix contains only the mass, which is
multiplied by s* because we introduce the metric space-time.
We also have

(2.6) E = —ms™.
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The space-time stiffness matrix looks like

. Kkk Kkn :
(27) K= [Knk sz ‘
We may describe the elements of this matrix as follows:
. .
238) Ky= JB?' EBj%dr =— deff ms* (i,j=k,n).

-1

Substituting Eq. (2.2} to the formula (2.7), we finally obtain

Gs* | -1 1].
(2.9) K_E[ | ml].
The shdpe functions for the triangle (Fig. 5) can be written in the form

(2.10) N b [, 2 W,

FiG, 5.

where A is the area of the triangle and the matrix W is composed
of node coordinates:

a; a; a
2.11) - w=|b b b, |
' c ¢

The notation is defined as follows:
ar = x X =} x4,
(2.12) b; = x}—x¥,
¢ = x7—x,
and the other can be obtained By a cyclical change of indices.
The strains vector has two elements:

(2.13) _ £= {8_11, V1)

and depends on the displacements by the relation
: | .

(2.14) .,

1 = Ou.

5x4
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The constitutive matrix may be expressed as
(2.15) E=[EA, —pAs?].

We transform the above formula by substituting Eq. (2.1).
We then obtain

{2.16) E=[EA 1, —1}.
The strains matrix can be given the form

11010 1

Let us remark that the matrix B is independent of any coordinates, therefore
the space-time stiffness matrix can be described as

(2.18) K= BTEBA = %WTFT LFW.

Substituting Eqgs. (2.11), (2.12), {2.16) and (2.17) to the above formula,
we find

EA bz 2 b! bJ‘ 4] Cj bz bm Crm
(2.19) K=" Ve b b;—c; ¢; bi—ci  bib,—¢; c,,,
b; b—c; Cp be ~CjCy  bZ
There are two types of triangular elements (Fig. 3). For type I we have
b= —d,  bij=d, b, =0,
(2.20) [ 0, Cy= _d: Cn = da

1 2
= 5 d7,

and Eq. (2.19) has the form

(2.21) K=""1-1 o 1t

EA{1~1 0
2 1lo 11

The space-time stiffness matrix for the tri'a_n_gle- Il can be written as '_ _

-1 0 ]

A
(2.22) K;% 0 .1 —1
I =17°0]

Now let us determine the loads in. the net nodes. For the boftom
points of the cable we can write the following formula (Fig. 6):

2
223) 0=00+0,=Gd13 %5 T
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If we take into account Eq. (2.1), we can transform the above formula to

‘ EAd*g
(2.24) 0= Gd+
257
The static elongation of the cable takes the form
per Q0 Gd gd®
{2.25) 7 usy-— EA = EA t o2 = g+ U,

We may compose the dynamic 'equilibrium equations for the nodes which
are on the line x =d.

- A part of the element net with the descitbed stiffness is presented in

Fig. 7. If r indicates the known displacements of the load G, the uniform
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accelerated motion leads to the relation

' 2
a ,. ad®

(226) . r,= ?ti == 23‘2 17,

All displacements of the load are increased in the quantity of static
elongation of the cable described by the formula (2.25).
Other notations in Fig. 7 are as follows:
EA- ', Gs?

(2.27) 1= b=
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The dynamic equilibrium equation for the i point can be described as

(2.28)

— 20ty o Quig+rp - 1) — 28 (74 u)+

+B8 Qug+ripi+ri-1)=0Q.

Substituting Eqs. (2.26) and (2.27) to Eq. (2.28), we obtain

(2.29)

where

(2.30)

CZ
o (24 A4-1),

Uy =

2Gs7

The above formula enables us to determine the displacements on the ling
x =0 independently of the displacements of other points of this line.

The displacements along the curve boundary can be determined basing
on dynamic equilibrium conditions for the points of the line x = 0. These
equations are different from the previous ones because the dimensions of the
new triangular elements are not known. However, these dimensions have
to be equal to the displacements of the curve boundary. The manner of
generating suitable equilibrium conditions is presented in Fig. &

This condition can be written in the following form: -

(2.31)
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where
ks, =K., s=1,1,T1II,

and node numbers in the triangles I, TI, TI begin from the left bottom
nodes and change leftwards (Fig. 9).
The space-time stiffness matrices according to Eq. (2.19) have the form

122
R, o M2 B d 7, = d*—ud
237 T 125 — —— = e
d”’ Wig du;,
2 2
Rn d*— (Ui —u;_y 5) B Hyp—Ujq 3
22 — ig = ———
’ duy, ' d ?
| 74 d* gy 5 (yy — s
(2.32) R, = — =12 (i —ti-10)

du,-z
g2 =
KI]I e K]II — i d s ISI,“;., - g’

Substituting the formulas (2.32) to Eq. (2.31), we finally obtain the equilibrium
condition in the form of a guadratic cquation with the unknown displa-
cement iy,

2
(2.33) (HH 1,12y 3 'Mg) ufz“i"[d Moy Fiy 1) —

—2d (ug+u,+ri+d)+u_ (ui_l,[ +yy —

1 .
3 ug)] Uiz + ity (2d*—u? 1,2)=10

The above equation is the nonlinear recurrence equation because its factors
also contain the displacements on the curve boundary, except for the displace-
ments on the line x=0. They are determined in the previous point,
The triangular net enables us to solve only single nonlinear equations instead

Fia 10
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Table 1.
i ¥i (75
10 045 057
20 1.80 191
30 404 4.15
40 7.19 7.30
50 11.23 11.34
60 16,17 16.2%
70 22.00 22,11
80 2875 28,85
90 36.37 36.47
100 4491 45.01
110 5435 54.45
120 6468 64.78
130 75.91 7601
140 88.03 88.13
150 . 10107 101.16
160 1499 11508
164 119.34 11943

of the whole system. The results of this evaluation arc presented in Table 1.
The original length of the cable is d and at the end of the caleulation — 2d.

In Fig. 10 we may see the essential character of the displacements u,
which should be applied on the drum of the hoist so that the load G
can move in the manner described by r. In Fig. 10 the scale is not observed
for the displacements u, because the differences u,-~r are slight as is shown
in Table 1.

The sample problem is solved by the following: data:

E=10°MPa, G =100kN, d =120 m,
A= 8cm?, ¢ = 7800 kg/m*, a =8 m/s%

3. CONCLUSIONS

The discretization of space-time using finite elements makes possible
the direci step from the partial differential equations which describe the
motion of matter continuum to algebraic equations. The efficiency of the
algorithm depends in a great measure on the form of the algebraic equations
matrix,

The triangular element net is very convenient because it leads to a lower
triangular matrix of the equations system which does not require any inversion.
It was Open [4] who first noticed this property for the longitudinal vibrations
of a straight bar. Other experiments which use these nets were described
in the work of Kaczkowski [5] and the author’s paper [6).



DYNAMIC ANALYSIS OF HOIST CABLE USING TRIANGULAR SPACE-TIME ELEMENTS 455

In the presented treatise the triangular- nel was used to the analysis
of a geometrical nonlinear problem. Nonlinearity of the system of equations
ensues from the property of boundary conditions. The most interesting
conclusion of the presented analysis is that the use of the triangular net

leads to an uncoupled system of equattons both in linear and nonlinear
probiems.
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STRESZCZENIE

ANALIZA DYNAMICZNA LINY WYCIAGOWEI PRZY UZYCIU
TROJKATNYCH ELEMENTOW CZASOPRZESTRZENNYCH

W pracy zastosowano metode elementéw czasoprzestrzennych, z siatka trojkatma, do
zbadania jak naleZy sterowaé bebnem wciggarki diwigy, aby cigzar zawieszony na koscu
liny wykonywal znany ruch. Tak sformulowany problem jest gecometryczoie nicliniowy ze
wzgledu na warunki brzegowe. Wykazano, ze metoda czasoprzestrzennych elementdow z trdi-
katng siethy prowadzi do rozprzggnigeia ukladu rdwnan takie w zagadnieniach geometrycznie
nielintowych.

PeEzwME

OMHAMMUYECKWI AHANNW3 KAHATAB KPAHOBOW NEBEKU
TPEVIONBHLIMU BPEMEHM-TIPOCTPAHCTREHHBIMU DAEMEHTAMH

B paboTe HPUMEHEH METO/ BPEMEHH-TIPOCTPAHCTBCHEEIX STCMEHTOR ¢ TPeYroNEHOH CeTKoH
UCCAS/OBAHNA, KAK CNEGMYeT ympawnsrs Sapabanom xpanopodl aeeixk, urobm rpys, mofse-
WEHHBIA HA KOIUE KANATA, COBEPINAL HIBECTHOS Amakeune. Tax copmysnpoBamHad 3agaya
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ABISIETCA TECOMETPHMCCKH HemmHelHOH u3-3a rpannussix yoaosuil, Tloxasawo, 4To MeTon
EPeMEHA-IPOCTPANCTREHINX JIEMEHTOR ¢ TPEYTOABHOH ¢eTxOH HOPHBOOUT K DPACHPHEKEHWUIO
CHCTEMBI YpaBHCH#I Takke 8 3aka9dX YeOMETPHYECKY HOIHHCHHEIX.
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