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A CLASS OF RIGID ANNULAR DISC INCLUSION PROBLEMS
INVOLVING TRANSLATIONS AND ROTATIONS

B ROGOWSKI (LODZ)

The paper considers the class of problems related to the annular inclusions lecated in
an elastically supported layer. The layer is considered to be fransversely isotropic and the
inclusion is located on the plane of symmetry. The analysis is based on the potential
functions referred to the cylindrical harmonics. The governing triple integral equations are
solved by employing two approximate schemes: one focusses on the asymptotic expansion
fechnique and the second focusses on the iterative series technique. The rotational and
franslational stiffnesses for the embedded anoular disc inclusion, related to the displacement
of the annulus in one of four ways: (i} translution and {ii} rotation in a direction normal
to the piafne face of the annulus; (i) rotation and (iv) translation in a direction parallel
to the face, are being investigated. The solutions of the special and limiting cases are also
presented. Numerical calculations are carried out with some practical materials.

1. INTRODUCTION

When foreign inclusions exist in an elastic matrix, their presence leads
to intensification of stress in their vicinity, which plays a dominant role in
controlling the mechanical behaviour of the whole matenal {1]. The degree
of this stress concentration depends on all soris of influences, such as their
size, the disparity in the elastic properties, the shapes or forms of the
inclusions and the matrix, their existing locations and the sort of applied
loads and others. The evaluation of the effect of inclusions on the strength
of materials is important in engineering technology, especially in connection
with brittle fracture, in geomechanics and in the study of multiphase
composite materials. In the context of composite materials reinforced disc
inclusions are used to strengthen non-metallic or metallic matrices or to "
increase the overall stiffness of a composite.

Most of the existing analyses [2-5] of inclusions have dealt - with ‘a
infinite and isotropic medium. Therefore, their solutions do not sahsfactorlly-
clarify the mechanics of inclusions near or at the surfaces of the materia
Inclusions problems in anisotropic media of infinite extent have been soly
in some papers [6-9]. B
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In this article we consider a series of axisymmetric and asymmetric
problems related to the annular, rigid disc inclusion embedded in a bonded
contact with a transversely isotropic, clastic layer, elastically supported at
both surfaces, to clarify the effect of some factors mentioned above.

The axial, rotational and transiational stiffnesses for the embedded annular
disc inclusion are studied.

2. BASIC EQUATIONS

In the absence of body forces, the displacement equations of equilibrium
in three dimensions may be written as follows:
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where ¢;; are the elastic constants of a transversely isotropic solid body,
the elastic displacements in cylindrical polar coordinates (r, 6, z) are denoted
by u,, ug, u, and

a? 1 2 oo
2 _ -y
(2.2) vi= ar? + r or + r2 8%

is the Laplace’s operator referred to the polar coordinate system.
Introducing potential functions ¢;{r, 0, z), (i = 1,2, 3) [10] given by

I 1 ¢
u, = W(’“Pl‘f“@z)‘l'T a0 P
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1 ¢ a
(2.3) 0 P (kp1 +@2) ar @3,

]
U, = 5= (1 +hps),

the system of equations (2.1) is replaced by the following partial differential
equations

_ 2
(2.4) (V2+S;—2 W) o (r,0,2)=0 (i=1,2,3),
provided that s} and s} are the roots of the quadratic equation with
respect to &7

(2.5} Ca3 Caq 8" —[Cy1 €33 Cy3 (€13 +2Caa)] $7 11 €aa =0,

while

(2.6) 53 = (11— ¢12)/2C4a,

and k is the function of the elastic constants and the root sf, namely
27 k={ca3 S%_—CM)!’(CH +Caa)-

The components of the Cauchy stress tensor ¢ can be expressed in terms
of the derivatives of the potentials ¢; (r, 8, z) as
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where Gy = cqq is the shear modulus along the axis of symmetr'
material (z—ax1s) which has five components of the elastic stlffn
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3. THE ANNULAR DISC TNCLUSION PROBLEM

We consider the problem of the annular rigid disc inclusion which is
embedded in bonded contact with the elastic transversely isotropic layer
of height 2h. Inner and outer radii of the annulus are denoted by a and b,
respectively (Fig. 1). The inclusion is located in the middle plane of the
layer and is subjected to a system of forces and couples which causes:
(1) a rigid body translation § in the z-direction, {ii} a rigid body rotation
Q about the y-axis, (iii) a rigid body rotation w about the z-axis and (iv)
a rotation free lateral translation 4 in the x-direction.

By virtue of the symmetrical geometry of the annular inclusion this
problem examines, completely, the generalized displacement of the inclusion.
The embedded inclusion imposes certain symmetry properties in the displa-
cements and stresses, with respect to the plane z=0. We may therefore
restrict the analysis to a layer 0 <z<h in which the plane z=0 is
subjected to appropriate mixed boundary conditions and the plane z = h
is elastically supported at all points. When a plate is clastically supported
at all points (r, 0, h), the following conditions between deflection and normal
stress, radial displacement and shearing stress, circumferential displacement
and shearing stress must be satisfied there:

(3.1 O..= —kpti,, 0= —ku, o= —ku,
il Tut
. L e _}|P 1 Transversely isotrapic =
B it ! ’ _7 elastic layer
_ ¢ 5 il Annular dise
inclusion
;_E: =

FiG. 1. Geometry of the annular disc inclusion and the resultant forces
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where k, and k, denote the spring stiffnesses for the lateral deflection
and the displacements in the radial and circumferential directions. When
k,= oo and k, =0, the plate is supported by a rigid bases along which
it may slide without friction; when both the stiffnesses are equal to infinity,
the plate is clamped at all points, etc.
The relevant. boundary conditions are summarized:
(i) For the rigid body translation in the z-direction

(3.2) u,(r,05y=0, rz=0;
(3.3) w, (r,0M =8, a<r<bh;
(3.4) o, (F, 0 =0, 0<r<a, b<r;

O, .= —ku,(r, ), 7rz0,

(3.5)
a, (r,hy= —k,u{r,h), r=0
(ii) For the rigid body rotation about the y-axis
: u, (r,8,00)=0, 20, 0<6<In;
3:6) ug(r, 8,0 =0, rz=0, 0<6<2im
3.7 u, (r, 0,0 =Qrcos @, a<r<b, 0< a4 < 2m;
(3.8) 6,(r,08,00)=00O0<r<a, b<r, 0<0<2nm;

G (r, 8, )= —k,u, (r,0,h),
(39) Gz (r, as h) = “kt U, (P", ea h)a
(P (F‘, 69 h): —kr Ug (l’, 95 h)s ¥ ?05 0<0<2n.

(iii) For the rigid body rotation about the z-axis : ¢
(3.10) up (r, 0%) = wr, asr<h;
(3.11). 6,0(r,0%)=0, O<r<a, b<r
(3.12) Golr, )= —k ug(r, h). r=0.

(iv) For the rigid body translation along the x-direction
(3.13) w, (7, 0,07)=0, rz=0, 0<8<2n
(3.14) o,; sinf-+ap,c080=90, r=0, 0 <0< 2n;

ur(r; 090+)7A cos 9,

(3.15 . .
up(r,0,0%)= —Asinfl, a<r<b, 0<8<2n;

(3.16) 0, co80—0,,8in0=0, 0<r<a, b<r, 0<6<2n,
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Oz (?‘, _0: h) = ”*kn [273 (]", e! h)!
(3.17) I, k)= —ku(r,0, k), r=0, 0< 9 <27
0o (1,0, 0)= —k,u. (r, 8, h),

The boundary conditions (3.14) and (3.16) relate to the traction vectors
which act on the plane z = 0" along the y and x direction respectively.
In addition there are the equilibrium €quations of the inclusion:

b
P=—d4n |ro,(r,0%)dr,

2z B

= =2 {r*a,(r,0,0%)cos 0 dr dfi,
(3.18) o

b

M, =4n {1 6,4(r,0%) dr,

2z B

Q=21 [rio,(r 0,07 cos8—a.,(r,0,0%)sinb] drdo,
0 a ’

where the resulting forces and the moments, acting on the annulus, are
denoted by P, Q, M, and M,, respectively. .

The modes of deformation of the inclusion considered in this paper can
be induced by the iteraction of the composite and the electromagnetic field.

4. TRIPLE INTEGRAL EQUATION FORMULATIOIE\I

The displacement functions o, {r, 0, z) that represent the- appropriate .
symmetries of the displacement and stress, states, which are bounded at
infinity, are selected in the following représentations by using the techniques
of the Hankel transform as: : '

(i) For the rigid body translatxon in the z-direction

i—1
@1 e, 2= —$J€ LA (&) shos; Ez -+
-I-A(Z) (©) ChS éZ:l Jo (éi)df i=1,2,
(PS (1”, Z) - 0
(ii) For the rigid body rotation about the y-axis
(4.2) @; (r, 0, z)= _'—(ﬂlcos g ( ETHIBM (&) shs, ﬁz.-li—'
A A s
‘ 9 ‘
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+BP (&chs E2) T (EndE, i=1,2.
Pps{r,0,2)=0
(iti) For the rigid body rotation about the z-axis
@;{r,z)=0, i=12 7

43) @30 2z)= - : JC”‘ [CH (£) sh sy E2+CPN (&) ch sy L2] Jo () dE,
0

arg

where G,,, denotes the average shear modulus, namely G, =./GGy; G is
the shear modulus in the isotropic-plane.
(iv) For the rigid body translation along the x-direction

: —k 2-i ? g .
wi(f',ﬂ,z):—é:%cz)_ﬁcosﬂj‘ ETLIDM (&) shs; Ez+
0 .
(44) +D (Eych s; E2] T, (EndE, Q= 1., 2,
@3{r,0,2)= — Gi sinejé"l [F () shsy &z +

+F® (&) ch sy &2] J¢ (&r) dE.

In the above expressions J,(fr} is the Bessel function of the first kind
and nth order and four unknowns A{ (£) in Eqgs. (4.1), four unknowns
BY(8) in Bgs. (4.2), two unknowns C® (£) in Eqgs. (4.3) and six unknowns
DI (&) and F@ (&) in Eqgs. (4.4) arc functions of & By deriving the stresses
and displacements from the displacement functions (4.1}4.4) and relation-
ships {2.3), (2.8) and (2.9) and making use of the conditions (3.2}, (3.5%;
(3.6), (3.9); (3.12); (3.13}, (3.14) and {3.17) respectively, we obtain the homo-
geneous linear equations for the unknow functions in each problem. Their
solution may be written;
{0 For translation in the z-direction

APE) = AP (Ey =1, (9),
(4.5)

(@) ®
AP E= -1t Y ;gﬁ =12,

(i) For rotation about the y-axis

(46) B @©=4P @@, i=12
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(iii) For rotation about the z-axis
CE = —13 (),
CH (&) = [1—H; (Eh)] 13 (9).

(iv} For translation along the x-direction

(4.7)

D (&)= DY (&) = FE) = —1, (9),
(4.8) FO (&)= [1—H; (Eh)1 14 (&),
2 u, dD (Eh)

DIE) = 14 (&) "ZO oy (R LT 1,2

Hence, ¢; (£), i =1, 2, 3,4 is the only unknown in each problem, respectively,
which can be found from mixed boundary conditions. In above expressions
al® (&), m,, (ER), dP (ER), w, (Eh) and Hs (£h) are functions involving material
and geometrical parameters and x, x, describe the relative rigidity of founda-
tion to layer. Their full expressions are given as:

af? (x) = df (x) = ch ax— (& ch Bx—2ks,),
a? (x) = df (x) = ch ax+p 1 (oxch fx—2k1 s1),
af" (x) = @ (x) = d¥ (x) = d5" (x) = x " * (sh ax+sh fx),

@) af? (x) = @ (x) = d{V (x) = ¥ (x) = x~* (sh ax—sh fx),
aP (x)=dP (x)=x"2 B [(k* s, —s;)chax+
+ (k% 55+ 5,) ch fx~2k?s,],
aP (x) =dP (x) = x 2B [(k% s, ~s5,) ch ax— '
- ' —(k*s;+5,) ch fx+25,],
{mo (x), fitg (x)} = sh axFap ! sh fx,
(4.10) {ml.(x), iy (x)} = x~ ! (ch ax+ch fx),
{mz (x), My (x)} = x~* (ch axFch px), -
{ms (x), my (x)} = x~2 B~ [k? sy —s,) sh ax+(k? s, +35,) sh fx], -
(4.11) =51+, =55,

4.12) Hy ()= —2 (x— ) [e2* (x+ )~ (x—)]"1;  x = Eh,
4.13) w=k hGyl, xo=1, x =k,h(G, Co)™?,
xz=kth(61 Co 51 Sz)_l, %33}‘(" kt hz[_Gl (k+])]l’

where
(4.14) Co=(k+1)k—D""(s7 ' =571,
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is the real-valued function of the material parameters s,, s, and k. There
must be imposed the remaining condition specified on z=0%, inside and
outside the annulus. This requires the only unknown ¢; (€), in each problem,
to satisfy a set of triple integral equations.

~ We find for the following problems:

(i} Translation in the z-direction.
Using the displacement potentials (4.1) it is found that

0ur 0% = = J £ [AP @)= kAP (©)] To (Er)de,
(4.15) d

0,07 = — oy j [s1 AP ()—k? s, A (€)] Jo (&) de.
0

Substituting the constants (4.5) into Eqs. (4.15), the normal stress and
displacement are related to one function ¢, (£} as follows

00 (. 07) = (]f £, (8) To () de,
(4.16)

K2 {
w(r,0%) = — f 1 (@) [1—Hy (€h)] Jo (&) 8,

where the function H, (x) x=Ch, is deflned as

o o
@17 Hl(x).,1—n§;0::m’7"((’3

with h, (x) being defined as

ho (x) = ch ax+[(k%s3—s,) B]7 ¥ [(k2 55+ 5) &t ch Bx—4dks, s5,],
By (x) = x7 ' [shax—(k*s,+5,) (k? 5,—5,) " ! sh fx],
By (x) = x~ ' [shax+(k?sy+5,) (k*s,—s,)" ' sh fx],
hy (x) = x "2 [(k282—31) gt [(szz—u‘h) ch oox -
' —(kZs,+s,)? ch Bx+4k? s s,].
The triple integral equatlons of the problem are

(4.18)

| [ (O (1= H, @] Jo @) dE = —C, G, 8, a<r<b,
@1y 0
[ &0 €raE=0, O<r<a, b<r,
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where C; depends on the material parameters, namely

k2—1

1™ k25, —s

(4.20)

(ii) Rotation about the y-axis
The expressions for the normal stress and d1sp]acement are

0us . 0,0") = 005 0 | &6 (8)J, (€ dE,
4.21) °

s a]

k2
u, (r, 0,07) = e 1) cos j &ty G [L—Hy (&M} T, (Er)de,
6

Gy (K-

where H, (¢h) = H, (¢h). The unknown function t, (£) can be found from
the triple integral equations.

[ 2 (&) [L—Hy @H)] Jy G dE = —C2 Gy @, a<r<b,
4.22) i
[ eI ¢ de=0, 0<r<a, b<r,
V]

with C, = C, being defined as in Eq. (4.20).
(iti) Rotation about the z-axis normal to the inclusion.
In the middle plane of the layer, where the inclusion exists, we have:

Gao(r, 0%) = | E13 (&) T, () dE,
4.23) o

ug (r, 0"y = — Gl j t3 (&) [1—H; Ch] J, Er) de,

so that the triple integral equations:are.

[ 62 @ [L-Hy (@], @) dE = —C3 Gior, a<r<b,
@24 ’
| 'gtB(é)Jl(ér)d'f;.O'. 0<r<a, b<r,
0

where Ci3 = 83 and C; Gy = Gag; with Hj (éh) bemg deﬁned by Eq. (4. 12).
(iv) Translation along the x-direction
The boundary conditions (3.13), (3.14) and (3.17) are automatically satisfied
under the relations (4.8) and the potentials (4.4) lead to
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(6,2 €08 0— 0, Sin B0+, = | Eta (&) Jo (&) dE,
(4.25) ' ?

cosf ' sin@

G.( r T .ue )( b0ty = $j 54‘(5) {Cy sy s2) L~ Hy (W)t
. S

+Cy ' [1-Hy (ER)]} {Jo (Er), T2 (Er)} dE,
 where the fanction H,(x), x = &h, is defined as

_ 37 h X
(4.26) H(x)=1- "ZO -M’i—m%

with m, (x) and h, (x) being defined as in Egs. (4.10) and (4.18) respectively,
and x, as in Eqs. (4.13).

The mixed boundary conditions (3.15) and (3 16) reduce to set of triple
integral equations for an unknown function t, (&)

[ 4 @U-H, @W1Jo @ de = ~C. G, 4, a<r<b,

4.27) -
| [ a© o)t =0, 0<r<a, b<r
whére : | |
(428)  He(Zhy=Cs H, (Eh)+(1-Cs) Hy (h),
L .
| o (k2—1) 5y 5583 _*' (k? S3—51) S3
429) C,=2 K755 (51 +5a)— 51 (52 +53) " Cs =pz 53 (51 +53)—5; (52 F53)

are the boundary function and the material parargeters, respectively. It can
be shown immediately from Eq. (4.25),, that the second boundary condition,
which corresponds to Egs. (3:15), is automatically satisfied, since if the r.hs -
of Eq. {427), is constant, then '

(4.30) ‘,_[ta,(\f){(CleSz [1 H4(§h)} C3! [1 Hs('fh)]}-fz(cf! yd¢ =0,

in the interval a <r < b.
For convenience, we define the nth order Hankel operator as follows: :

“31) o L )5 r‘]zj"' L) (ér)'

The mixed boundary condltlons reduce to sets of triplc 1ntegra] equatlons
for the unknown functions # (&) (i=1,2,3,4) '
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Two types of the triple integral equations are obtained for the translation
of the inclusion in the z-direction and along the x-axis we have:

(4.32) Hyfe(E);ri=0, 0O0<r<a, b<r,

433) A[E G @OTL-H @Rl r]= —Ci Gy {Sord}, a<r<b,
where i =1 and 4. Both sets of the rotation problems are also similar:
434) K (©;r] =0, O0<r<a, b<r,

(435) H[E 4@ —H Elir]= ~C G r{Qorw); a<r<b,

where i =2 and 3. '

This completes the formulation of the annular disc inclusion probiem
for the elastically supported ‘transversely isotropic layer.

The sets of the triple mtegral equations

HLEOiA=0, O<r<a; b<r,
HLEe© fl“H(ﬁ”HiT]-—ff(r), a<r<b,

can be solved by employing a variety of approximate techniques. Detailed
expo’éitions of these methods are given by Wiriams [11], Cooxke [12],
TrantER [13], CoLrins [14] and Jain and Kanwar [15]. Complete accounts
of these methods are also given by SNEDDONW [16] and Kanwar [17].-

" Two types of the solutions are presented below. In one method consi-
dering the singularities of the distribution: of the contact stresses at the:
inner and outer edges of the inclusion, we use a series representation and .
reduce the problem to the one of finding the solution of an infinite system
of algebraic equations [19-21]. The second method of solution is based
on an iterative scheme proposed by GUBENKO and Mossakovski-[18] and-
WrLLianms [11].

(4.36)

4

5. THE SERIES SOLUTION

It is convenient' to make the variables and parameters dimensionless
so that the contact interval is A <<¢ <1 and corresponds to 0 < ¢ <7,
such that ¢ = A is equal to ¢ =0 and ¢ =1 is ¢ = n. Write

. ?::-“:Qb, .x:-éb, 2.= a/b, y = hfb,

51 .
G1) 20% =14+ A2~ (1—2% cos .

We assume series expansions wfth unknown paramecters aq, a4, .. for the‘
functions t; (x) in. Eqgs. (4.32), 4. 33) and bo,bl,.‘ for the functions:; (x)
in Egs. (434) and (4.35) as : EETRETEER
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(5.2) t(x)= —C; Gy {Sor AV b i an Z,(x) (=14,

AZ © a7 (x)

53)  Hx)=CG, {Qorm} b Y b (=23,
where
x x )

The serics tepresentations (5.2) and (5.3) satisfy two of the three equations
exactly, namely equations for stresses (4.32} and {4.34) respectively, according
to the identities . :

o ‘ 0, O<p<i, 1<y,
JXJO (XQ) Zn (x)dx= 4 oS HY
— . A 1,
§ n{l—A% sineg = <e<
(5.5) L
7 0, 0<p<d, l<g,
1 —odx = '
49 COS i<o<l,

b T r{(1=3%) sing’
while the third equations, for displacements, lead to infinite systems of
simultangous equations with respect to the coefficients a, and b, introduced
in the representations [20, 21]

“«0 o]

(56 Y an ] L= (o] Z () Z () dx = Som (1= 1,4),

n=

o0 [ a a : '
579 3 by f [1—H; ()] [Z (9] 5 [Z0 (9] dx =

1 1-22

50:1! 2 1_'_1'{2, 51:14 (l = 2> 3):
where m=0;1,2,.. and Jg,, 6, are K.ronecker s deltas. The’ matrix in-
the system (5.6) is different in both translational problems, because of the
dissimilar forms of the boundary functions H (xx) and H, (x#), so that the
parameters a, are different in both problems. A similar situation exists in
the system (5.7). Using a, and b, and the results {5.2) and (5.3} all components- -
of displacement and stress can be found: In particular, when the appropriate
expression (5.2) or (5:3) is substituted into the first’ equations (4.16), {4.21},

(4.23) and (4.25) and the results into equations (3.18) we find the’ series



432 B. RGGOWSK |

solutions for contact stresses and the load-displacement relationships for the
following problems:
(1) Translation normal to the plane

4G, C, 8 1
Yy
(5.8) 0, (eb,07) = T (=27 b Slnq) nz a, COS ny;

A<p=<l, O<eq<m,
(5.9 _ P=4znbG, Cyay. -
(ii) Rotation about an axis parallel to the plane

(510) 0., {(gh, 0,0%) = — 2G1 C2 Q(1+2%) gcosf

> b,cosng,

n(l—2%) sing &
A<g<l, O<g¢<n,
1 : 1 1=
(511) My = 7 TCQbs (1+/12)2 Gl Cz (50—? *my bl)

(ii) Rotation about an axis normal to the plane

. Co 20 G (1437 0 &,
+y « o ‘
{512) Gz? (bQ: 0 ) - T (1 _,12) sin @ Ir;ZO bn 903 he,

A<o<l, O<ep<nm,
(5‘13} + iy .Mz = T Garg' b3 (I+lz)2( 0" 2 Wb ) AR o
(iv) Translatlon along the plane

{0, 0,0 )} 4G, C, A {—'cos 9} 1

(>.14) {23(95,9,0) = 295 ) sin0 { snp, Z fy €08 10,

A<po<1, 0<(p<n,
(515) Q:4T5AbG] C4 dg.

The compliances of the annular inclusion, ie the ratio of a static
displacement to a static force, are .determined by means of the first para-
meter dao in the set g, made by solution of system of algebraic equations
(5.6) for. trans}atmnal problems and by means of the first and second
parameters by, b,, which are the solutions of the system (5.7) for rotational
problems,

. The contact stresses are. obtained in the form of the Fourier. cosine
series; are. continuous at all inner points. of the contact area and have-
a square..root singularity at the ends of the contact region.: :
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6. ITERATIVE SOLUTION OF THE INTEGRAL EQUATION

To solve the triple integral equations (4.32), (4.33) and (4.34), (4.35),
note that -

6.1) (&)= -G, C{s or Q or w or A} jPr‘qi. NJ,Edr (m=0,1)y

satisfies (4.32) and (4.34) identically and determines the contact stresses as
proportional to the unknown function g; (r)

(62) : git.-nnt;u:{ ~ i (r)q a<r<bh.

Substituting (6.1) into (4.33) or (4.35), we obtain the standard Fredholm
integral equation with respect to the function g; (1)

B
63) Ja@ K@, du=f@), a<r<b,
with the kernel

64) . K@= u’f[l—-‘H@(éh)] 1o (@0 T, € e (n=0,1),

and the right-hand side f(r)=1 for n=0 and i=1,4; f(r)=7r for n=1
and i= 2,3, respectively. The Fredholm integral equation of the first kind
(6.3) can be reduced to the solutioii of a system of four Fredholm integral
equations of the second kind, with respect to four unknown functions, which
determine ¢ (r). An iterative solution of these mtegral equations, which
focusses on the asymptotic expansion techniqye, has been obtamed for a small
non-dimensional geometric parameter 1 = a/b and a thick layer, ie. for a large
valuc of parameter # = h/b. _
In both' translational problems and in both rotational problems the
solutions ¢, (bg) assume the form [22, 23], respectively:
65 o e lb0) 2{(1w%ro+m%fo)x

X [;+£ ( A —arc sin AV
NV A\ ¢
12 . Q 2 . ,'{ 3Q2LAZ . 2/13 .
5 I, [3 (T) arc sin - -~ /l\/m]ﬁ 30
X 1—3 ‘Q—zw +arcsin g 2 1
T 1m92 "}ﬂ;n /1 2
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. L — 2
6.5) XLLZ%@__MI Io}ow)} I<g<l (i=1,4),
[uont.]} X

(©6) gi(bg)=%{ : [1— zsfﬁ)—%*s( é)"ﬁ

M 3nn

4 32
gy g 15(1+——lz)1;]+

5 2 : '3— .
B[R
N 31* ( 15—-5¢ "“29 ﬁalc smgk_i
149° J1-o? @ )J
2 3 2 |‘2
i(_uL) 3—arcsm )
Q\/Qz—)t ¢
2 2
x(l" S 10T 45mp 2D 2 ! )+
+-542 07— 22t :
fg (15@ i ‘21 15iarc31nA>X
T 1) ¢ —A Q .

X(l“ T T 12)5 i35y *fo
2_ g2 ‘ . L " a g
x(*——sg A 45-3£arc005—l~")+0 (19)},_ A<g<l (i=2,3),

0 /02— iZ A e ) PR ' B

where O (4") is the Landau symbol and | o

©n . L= —{ x*H (x) dx (n=0:1',2).

The improper integrals (6.7) involved in the expressions (6.5) and (6. 6) are
difficult to evaluate analytically, but these can be evaluated either numeri-
cally or approximately. The functions H;(x) tend exponenna}ly to zero
as x tends to infinity, are contmuous for any xe(0, o¢). and are bounded
as ‘x tends to zero.

"The contact stresses are proportional to g, (bg), namely:

(6.8) 0. (b0, 0")= —G, C, b g (bg), A<po<l;

o fa, (be, 6,0%)) . {—cos@
(6.9) {O'zg (bo. 9,0+) =G, Cy Ab7 ! ¢in 0 }g4 ho), i<pg<l;

(6.10) a.; (b, 8, 0+)I= ~Gy C, Qcos Bg, (ho), 1< e<1;
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(6.11) 02 (b2, 07) = Gy g3 (b)), A<g<1;

for the translation of the inclusion in the z-direction and along the x-axis
and when the rigid rotation is about the y-axis and z-axis, respectively.
In all the problems there are stress singularitics at the boundaries of the
contact region. Integrating Eqs. (6.8)-(6.11) respectively to Eqs. (3.18), the
load-displacement relationships are found to be:

P 0 4 8
(6.12) {5bG1 C,’ 4bG, 04} - 8{1_ 3n® 1527
2 2 4 L\ 82,
“_";‘I“I?_IG [(1""?{1"10\) (1+ ﬂ:znz IQ)_ 3752]'{"

M, - M, 16 1647 : 6447
(6.13) {Qbf’Gl C, 2wb? Garg} 3{1 15z  105n*

2 (28 AN, L e a2
T T Yo s\ T16) T g
C3ar A, 5 . a h

x(l——4 - 16)11+WI:|+0(’1_) ) l'}»*?,- =73

for translational and rotational problems, respectively. The r.hs. in Egs. (6.12)
is different in both translational problems, because of the dissimilar values
of the mtegrals Iy, Iy 1n those problems. ‘A similar Sltuatlon ex1sts in
Eqs. (6.13). The ratios Q/4 and M,jw are of practlcai inferest to engineering
applications and determine the translational and rotational stiffnesses for the
embedded annular dis¢ inclusion. The ratios P/é and My/Q, obtained under
artificial assumption of a rigid thin inclusion for the bending loads, are
interest from a theoretical viewpoint, although they represent the upper
bounds of the axial stiffnesses of the elastic inclusion,

by

7. SPECIAL AND LIMITING CASES

7.1, An infinite medium

In this case the parameter # tends to infinity and all the functions
H;(xn)} vanish. The normal and tangential translational and rotational
stxffnesses for. the:. embedded annular disc 1nclu51on are” given by the’
expressions e S o A
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P Q

O Sp6,¢ = M6, T,

= 4nay,

443 84> - .
= 8[1 T3 T O ("f’)}-

1 142
(1) e = (A (bo— bl),

QB G, C,  20b°Gy 2 1+A%
' 16 162° 6447 o |-
=?[ ~se? T Tose O

as determined from the two schemes, where ay is the first parameter in
- the set a, made by the solution of infinite set of the equations

oo

13 i, a,,é' Ly (X) Zy(x)dx = 8g,, (m=0,1,2,.),

while b, and b; are the first and second parameter in the set b, made
by solution of the equations. .

(74) "ZO b, A [Z. (x)]a [Zu (JC)] dx = 50"{——2" 1332 ) 5lm
4] ) (m:O, 1,2, )

For the disc inclusion problem (A=0) in an ‘infinite medium from the
above mentioned results we obtain the exact solutions, namely:

4 - s S
- = = 2, .0
TI(4P‘12—1) (1_1_50”) L] bn 4(1,, R (n ‘0’ 1) 1-. )7

Ca,=

2 sinx’
p ;

1(x)= —C; Gy {sor A} b (=14,

(75 5(x)=C G, {@or w) bzi-i-(f%i) (i=2,3),

7 odx
|
gi(be>=%5\/—(l—__;£} (=1,9),

4 oH(1—
)= 7 TR0 (1=2,9),

where H {1 —Q) is the Heaviside’s function. Both mathematical methods used_
here give the exact solutions. We find for the following problems:
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(i) Translation normal to the plane

5.0 (eh,0") = — G, ¢, 5 FLUZ0

b /1—g? ’

(7.6) u, (oh, 0%) = 5{ ' [u-i arc sm( ):lH(Q 1)}.

P= stbGl Cl'

(ii) Rotation about an axis parallel to the plane

, .
0.0 (b, 0,07) = —% G, C, Qcos BM

J1=g?

(17 u,(eb,8,0%) = Qgb cos 0 {1 —[1 _;_'(arc sin (é)-
7 \/92—1)] H(@—l)},

16
M, == @b G, C,.

(iii) Rotation about an axis normal to the plane

0,0 (Qb’0+)=_- __iG (DM,
o 1—o?

7.8)  up (0], 0%) = wob {1 —[1 —% (arc sin (—é—)— | |
_J —1)] H (9—1)},

M, = ?;—20)1)3 Garg
{(iv) Translation along the pldne ,
Oy (va 930+) _ —COSB 2 G C 4 H(l—g)
a.(0b, 0,00 sin 8 L \/—2 ’
P A
o..(gh, 6,0") = G, Csl b M

cos A,
o*—1
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u, (b, 8,0™) cos ¢ _ 3 Jer-1 —1
T i 0 o = S 9} a1 ixe

———arc sin %):' Hig— 1)},
Q = SAbGl C4,
C. =1 (k1) (ksy—s1) 83 _ k? 55 (81— 53) 51 (52— 83)
¢ T K sy (s +53)—§1 (s2+53)° Tk sy (514 53)— 5 (S2ts3)

where H (1—p) and H (e—1) are the step functions.

7.2. A transversely isotropic medium with an array of annular disc inclusion

An infinite row of parallel, periodic annular disc inclusions in the elastic
transversely isotropic medium under combinated loads can also be considered
on the basis of the above mentioned results. If equal and opposite loads
are applied to the two neighbouring inclusions located in the planes z = 2sh
the problems are symmetrical or asymmetrical with respect to the planes
z=(2s+1)h, (s=0,+1, +2,..). Then, taking %, >c0 and x, =0 in
Ea. (4.17), we have

(7.10) Hl (x) == Hz (x) = {Ch ﬁX‘{‘(kZ Sz"Jr"S]) (kZ Szmsl)f 1 Sh ﬁx+e—"] X
x [ch ox+ch fx] L
Substituting these functions into the appropriate expressions corresponding
to transiation and rotation normal to the plane z = 0 we obtain the solutions
of an array of the annular disc inclusions in the elastic medium located

in the planes z = 2sh.
Similarly, takmg x = oo in Egq. (4.12), we get

AT I Hy () = 2 [146>%] 7,

and the solution for the corresponding rotation problem about the z-axis.
On the other hand, if we take %, — oo, ¥ = co and x; =0 in Egs. (4.12)
and (4.26) then the function in Eq. (4.28) takes the form

(7.12) H, (x) = Cs [ch Bx+(k?s5+57) (kz.sz—sl)‘1 sh fix+e ] [ch ax-+
+ch Bx] 1 42(1—Cs) [1 +25]7 1,

and determines the solution for the rigid body translation along the
x-direction, when two of the array inclusion in the ¢lastic medium translate
in the opposite directions but parallel to its planes.
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7.3. Isotropic medium

All the results obtained in this paper can also be applied for comple-
tely isotropic bodies, provided that s, -1, s;=1, ie. =2, §>0 and
s3 = 1, k= 1. By the evaluation of the limits by means of the de L'Hospital’s
rule in the above mentioned expressions and making use of the limiting
identities '
dk (sq)

dSi

dsy(s)) = 1—v . shfx
&, 2= AR T

(7.13) =2(1—v),
we can obtain without any difficulties all the functions m, (x), m, (x), h, (x),
which in the isotropic case are independent of the material properties of the
medium, the relative rigidities of foundation to layer » and x, (n=1, 2, 3)
and the material parameters C; (i=0, 1, 2, 3, 4, 5, 6, 7), which assume the
values -

1 1—v I—v

- Gy G=G=dgrgs Ge=l Co=8+5n
(7.14) - 3-4 12 | 1
— 4V — 2V
Cs=7g Co=47g> Cr=7_g>

when the layer is an isotropic medium with the Poisson’s ratio v

7.4. Related problems

The presented results may be applied to some bonded contact problems
with the annulus and layer elastically supported on the lower surface,
provided that outside the contact region elastic layer is bonded to a rigid
diaphragm for translation and rotation normal to the plane and is stress
free for rotation about an axis perpendicular to the plane. In these cases
the load-displacement relationships may be obtained immediately, by mul-
tiplying the right-hand sides of obtained results by one half.

8. NUMERICAL RESULTS

The translational and rotational. stiffnesses: P/bd, Q/bA, M/ Q and
M,/b*w will be presented numerically in this section for- the three cases
of 1=1025 A1=050, 1=0.75 and for five different materials such as
cadmium (dendted symbolically as C) and magnesium (M) crystals, fiber- -
-reinforced composite materials with the fiber direction normal to the
inclusion, E glass-epoxy -(E G-E), . graphite-cpoxy (G-E), and comparative
isotropic material (I). The values of the teusorial elastic constants of the
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materials used in the numerical computations are shown in Table 1. The
results for an infinite medium are shown in Table 2 and Figs. 2 and 3.
From these numerical results it is seen that:

Table 1. Values of the elastic constants c;; in units of 10°M Pa

Cy1 €12 C13 C33 Caq
Cadmium 11.00 404 383 469 156
Magnesium 597 262 217 617 164
E glass-epoxy 151 061 052 468 047
Graphite-epoxy 082 026 032 868 041
Isotropy (v = 0.30} 350 150 150 350 100

Table 2. Values of roots of equations (7.3) (a,} and (7.4)

{bo and b,).
A=0.25 A=050 A=075
dg 0.6353805 0.624 6702 0.586 6283
bg 23454933 1.856 8859 1.2676783
b, —1.5027170 ~1.0256329 ~0.4899800
—pp A
f——— Q/Ab 24
f10°MPa]
2 TN
ey
N M
N
18
e
151 S~ c
\‘\
1 ~M
2 __\
: “ N O-E
I
- g —-"-—-—-..____-
~ EG-E
™~
6 i
3 SN rnap
: Ty EGE
Ne-E
1 | N IR
0.25 050 - 075 100 -
Lo Lt et SaE A:a/b

FiG: 2. The force-displacemént rélationships for the*-émbédﬁéd_ag"ri'h'u‘i'af inclusion in different
' E ' o materials, -y i .
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—My/Rb? &
o Mz fi0b?

- [10* MPa]

21—
18—

15— ~

42—_\[‘4

] L ] I

25 0.50 078 100
' A=alh

FiG. 3. The moment-rotation relationships for the embedded annular inclusion in different

materials,

(a) The isotropic values lie between those of typical glass-epoxy and
graphite-cpoxy composites for translation and rotation normal to the
inclusion. - '

(b) The stiffnesses for translation and rotation of the annulus in the
direction normal to the fibres of the composite materials are considerably
smaller than those in the fiber direction. : '

{c) Almost all stiffnesses for metallic substances C and M are considerably
larger than those for the other presented materials. Here the effect of material
dissimilarity is also apparent.

.(d) The stiffness of the system is nearly constant when a/b < 0.25, decreases
slowly when 0.25 < a/b < 0.5 and quickly when a/b > 0.5,

The stiffnesses in all cases A =025, 0.50, 0.75 agreed almost exactly
in the approximate and series solufions.
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STRESZCZENIE

ZAGADNIENIE SZTYWNEGO PIERSCIENIOWEGO WTRACENIA
Z UWZGLEDNIENIEM PRZESUNIECIA T OBROTU

Rozpatrzono zagadnienie sziywnego wiracenia © ksztaicie . piericienia, umieszczonego

w plaszczyinie érodkowej warstwy poprzecznie izotropowej. i: pelaczonego z nia. Warstwa
jest . podparta sprezyscie na obu plaszczyznach. Do analizy uiyto potencialy przemieszczenia.
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W wyniku dzialania na pierfciefi ukladu sit i momeniéw doznaje. on przesumigeia i obrotu
w kierunku prostopadtym do jege podstawy oraz obrotu i przesunigcia w kierunku réwno-
leglym. Potrdjne réwnania calkowe zagadnied rozwigzano za pomocy dwdch metod; itera-
cyjnej, opartej na technice asymptotycznego rozkladu wzgledemn malego parametru —- stosunku
promieni pier§cienia i analitycznej, prowadzqcej do rozwigzania nieskdficzonego ukiadu
rownan algebraicznych liniowych. Okredlono sztywnosei piercienia umieszczonego w sprezystej
warstwic odpowiadajace analizowanym czierem przypadkom przemieszezen i obrotow. Poka-
zano tak?e rozwiazania przypadkéw szczegdinych i granicznych. Wyniki obliczed numerycz-
nych odniesione sg do pewnych praktycznych materialow.

PE3HOME

JAAYA XKECTKOTO KOABLLEBOI'O BKIIOUEHHA C YUETOM
TIEPEMEIEHWS W BPAHIEHMA

PaccMOTpERZ 33Aa4a JKECTKOTO BKJLOWEHHA O (OPME KOMLUR, MOMELISHHOTO B CPeRIMH-
HOH MJOCKOCTH TONEPEuHO M3OTPONHOIO CHOS, # COCHHHEHHOTO C HHM. Croit onupaetcs
yupyro ma obomnx miockocTax. s apany3a WCHONB30BAHLL NOTCHIHATEL NEPCMCINEHEN. B pe-
3yIbTATE HCHCTBHS HA KOILIO CHCTEMEI CHN H MOMEHTOB, OHO HCIBITHIBAET TEPEMEIIeHHAC
d BPAMICHAE B HANPABJICHWH NEPNCHAMKYIIPHOM K ero OCHOBE, a Takie BpAlliEHHe W Hepe-
MEIIGHHE B NApajUlelibHOM HanpasxeHwd. TpoiiHbie HITGrPAnbHBIE YPABHEHHA 3a/Mad PElICHB!
OpH NIGMONIM ABYX METOJOB. HTEPANMOHHOTO, OIMPAIOUIETOCH HA TeXHWKY ACHMITOTHHECKOTO
PABJIOKENTS 0 OTHOIICHHIO K MANOMY NAPAMETPY — OTHOINCHAS PAZAHYCOB KOJIbIA ¥ SHAAM-
THYECKOTO, NPHBOAAIIErO K pemreniio GecKOHSHON CHCTeMBI NHHCHHRX anrebpamueckyx ypas-
penmil, OTpefersensl XeCTKOCTE KOIbIE, TOMEUIEHHOTO B YIPYTOM Cliog, OTBEYAIOIIKE AHAIH-
SHpPOBAHEEIM HeTEIPAM CIy4asM nepememenuii u ppamenai. [Toxasansl TOXE PCIICHHA ACTHBIX
¥ TIPEAEHLHLIX CT1y4aeB. Pe3ynsTaThl 4#CHEHHLIX PACYSTOB OTHECEHB! X HEKOTODHM TPAKTHYSCKEM
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