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A NOTE ON AVERAGING OF STIFFNESSES OF THIN
ELASTIC PERIODIC PLATES(Y)

T.LEWINSKI (WARSZAWA)

The homogenization problem for a nonhomogeneous plate of doubly periodic siructure
is discussed. It has been proved that an effective plate with constant effective homogenized
stiffnesses is {in -a certain meaning) energy equivalent to the considered heterogeneous plate
of & Y-periodic stiffnesses. Moreover, the corrector of the homogenized solution is defined
and then its elementary derivation is presented, emphasis being puf on the physical clearness
of the procedure. In the last section a particular case of a plate with the thickness periodic
in one {x!) direction is examined. A comparison is made of two sets of formulas for
effective stiffnesses proposed by Duvavt and Kaczkowski, respectively. It is noted thai the
two formulae for D;;, and D,;,, do not coincide.

1. TNTRODUCTION

In the last years new mathematical methods of averaging of properties
of heterogeneous solids and structures have been proposed. For the origins
:of these new methods the reader should refer to the book by Bensoussan,
‘Lions and Papawicovaou [17] and the review papers [2, 3]. The so-called
homogenization approach has been applied to classical as well as nonclassical
problems of various fields of physics and mechanics {1—107. The homo-
genization problems of plates were studied in Refs. [6, 9, 10].

" On the other hand, the problem of computing effective stiffnesses for
heterogeneous plates has a long history, the origin of which can be seen
‘in early engineering papers on reinforced concrete plates. The results well
‘known for engineers and regarded as original, were obtained by Huber
{see [11] where an account of the origins of these problems can be found).
The averaging methods related to Huber’s approach are given in Ref [12].
-Although these techniques are more intuitive than rigorous, .they have been
.'accepted because of their simplicity and clear mechanical sense. The new

- The paper was writen during the author’s stay at the Instituie of Fundamental
: Technoioglcal Research, Polish Academy of Sciences.
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neering practice. Thus it seems reasonable to bring them forward by
disclosing (wherever possible) their mechanical sense. _

The present paper deals with periodic plates with slowly varying elastic
properties or thickness. Thus the characteristic cell of the considered
structure is assumed to be a plate itsclf, ie. its in-plane dimensions are -
assumed .to be much greater than its average thickness. Such plates were
considered in Refs. [6, 12] and. also the present paper will be confined
to this case. Thus the problem of averaging of periodic plates with the
period of comparable (or much less) size to the average thickpess exceeds
the scope of this note; therefore the recent results due to CaiLLERIE [9]
and Konn and VogeLius [10] will not be reviewed.

The plan of the paper is as follows. First we recall the formulae for
the homogenized stiffnesses for the periodic plate. Then we show that the
same formulae can be derived from a certain energy equality. In the subsequent
section the theorem on the. correctors is recalled and then their simplified
derivation is given. In Sect. 5 two formulae for computing the effective
stiffnesses tensor (due to Duvaut and Kaczkowski) in the particular case
of isotropic plate with the thickness varying periodically in one direction
are set up and compared.

2. BENDING OF PLATES WITH PERIODIC STRUCTURE
HOMOGENIZATION FORMULAE

Effective stiffnesses for plates with periodic structure as well as the -
fundamental homogenization theorems are formulated in Ref [6]. In this
section we state the bending problem for periodit plates and recall briefly
the mentioned homogenization results.

2.1. Basic assumptions. Fornwlation of the boundary value problem

Consider an elastic thin plate symmetrical with respect to its mid-surface.
Assume that the plate behaviour can be described by means of the classical
KirchhofP’s theory. The mid-surface n is parametrized by the Cartesian
coordinate system x% o= 1,2 and is referred to the domain Q< R%
Assume for simplicity that the plate is clamped along the edge 0£2. Let
the stiffnesses Djp,s(x) be & Y-periodic functions, &Y= [0,¢Y1]x [0, Y2,
hence one can write D¢(x) =D (y), y=x/e where D (y) is an Y-periodic
tensor. The parameter & has been introduced in order to examine a sequence
of boundary value problems of plates of different, highly oscillating stiffnesses.
The plate deflection is described by the function u:x-»u(x) standing lor
the transverse displacements of the 7= surface. Assume that the plate is
initially stressed by the moments M. Thus the changes of curvature
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oy ()= — 05 Ggu, 0O;=0/0x", a,p=1,2,
and the moments M = (M,;) are interrelated by
]V'[aﬂ=D§ﬂ‘y§ %:ﬁ-'_Mc?ﬁ: o, B, '}7,5= 1, 2.

The components of the stiffness tensor D® are assumed to satisly the
following conditions:

(21) ’ D;,{f}'é = Dzayﬁ = D;&uﬁ = Dg}'aﬁa D;ﬁyéELm (Q)a

3’]? > 0, ngg—y,j g Hys = Y Hap Hags Yy = {Kaﬁ)'

Assume that the plate is subjected to external vertical load p and surface
couples m,, « = 1, 2. Under the above assurptions the virtual work principle
can be formulated as a variational problem: find w®ec HZ (2) such that

(2.2) a®(wh, o) = f(v), VYveH:(Q),

where the bilinear form « (...) and linear form f (.) are defined as follows:
at (“s U) = j D;ﬂ}rﬁ %;:cﬂ (H) %;’cé (U) dx»

(2.3)

f(v): j ( a,ﬂ %aﬂ ( ) i, a; {U)-f'p[)) dx

The Sobolev space HZ (2) stands here for the set of admissible deflections.

Let the initial moments and external loads be square integrable i.e.: Myy,
t,, pel?(). Then by virtue of these assumptions and the conditions (2.1),
and according to the Lax-Milgram lemma [5], the problem (2.2} is well posed,
w® exists and is unique; here ¢ is held fixed.

2.2. Homogenization: effective stiffnesses

Let us recall the fundamental results of the homogenization of the linear
theory of plates [6]. First, define the space

W(Y)= {vh)eHz(Y) v and aac, . o=1,2, are equal at the

opposite sides of Y}

and formulate the boundary value problems in the basic cell Y: find
¥ e W(Y), o, p=1,2 such that

(2.4) ay (—yeP 1y ) =0, VeeW(Y), o,u=1,2,

where

(2.5) a (s ) = [ Dogys () 2y ()24 (0) 3,
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_ {
(2.6) Yo = P W=y =yt e =12

Obviously the functions y®* are determined up to an additive constant.
In the case considered the linear form f(.) (see Eq. (2.3),) has a more
general form than the form which was considered in Ref. [6]. Nevertheless
one can prove that the foliowing theorem remains valid:

THEOREM 2.1. Under the mentioned assumptions concerning the stiffness
tensor and the loads the solution w® of the problem (2.2) converges in a weak
sense to an element we HZ (Q) being a solution of the following homogenized
boundary value problem: find we H3 (Q) such that

2.7 aw,0)=f©), VYveH3 @),
where _
(2.8) a{u, v) = Dy yj} wg (1) 3655 (0) dx.

The effective stiffnesses read

(29) Do‘p}.n = T:}T J[Dspkn_Day)'é K;,\j (X(Au) (J’))] dy! in = meas (Y)

¢
From now on the denotation w will be preserved for the homogenized
solution. :

Prior to explaining the mechanical sense of the formulae (2.9) it is worth
considering the strong formulation of the auxiliary boundary value problem -
(2.4); in particular it is appropriate to reveal the natural boundary condi-
tions resulting from the weak formulation (2.4). By virtue of Egs. (2.0)
and (2.6) the moments read

M, (M} = Dyypys () %38 ("N 4+ Dypiy (¥)-

Assume the Cartesian coordinate system )i, i=1,2,3, to be right-handed.
Denote the sides and vertices of the rectangle Y by I3 and Oy, i= 1,2,3,4,
respectively, ie. I; = 0; 04y for i=1,2, 3 and I, = 0,.0,, see Fig. 1. The
length paramcters are assumed to go round @Y accordingly to the order
0,, 0,03, 0,4; s determines the unit tangent vector 7, so that ds = v, dy"
The unit vector n is normal outward to @Y.

In the considered case of the rectangle domain Green's identity reads

ay (0 =y, v) = JMuﬂ (") sy (W) dy = — Jai Of Mg (X") vdy+

e

-+

i

@m (op oo | : (o)
Vi, (x*) v— M, (x ﬂ)%ld’HZ‘, R, (x “)U(Oi)_,

i

1
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where the effective (Kirchhoff's) transverse force ¥,, the normal moment
M, and the concentrated forces R; are expressed by the formulae

oM,
V, =05 M,p ng+ , M,=Mygn,t;,  M,= Myn,ng,

0t

R;= [[Mz]]o(-
The adjoining sides [}, [;., are orthogonal, hence
(2.10) Ry= My n, 1o = —(M 3o + M:zio;)-

By taking vez (Y), one arrives at equilibrium equations:

.11 3 My (1) = 0.

On taking ve W(Y) such that p=0 at I and I3 and dv/0n=0 at JY
one has

(2.12) Vo N, = =V e

Similarly one [inds

(2.13) Vo (e, = = Va ey

By assuming ve W(Y), v=0 at dY and dv/on=0 at I, I onec arrives at
(2.14) M, (N, = Mo (0N,

and in a similar manner one finds

(2.15) ' M, (17N = My (7.

Finally the variation of equation (2.4) reduces to

4 4
Y. R () 0 (0) = (L RiG) 0 (00, Vo W (Y).

i=1
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" On taking into account Eq. (2.10) we find
4
(2.16) 3 IM 5 (0 or + Mz (o] = 0.
& A

If My, is a continuous function of y then '

i 4
(217) ¥ Mz (4o, = 0.

Thus all the natyral boundary conditions (2.12—2.15) and (2.16) or (2.17)
have been cstablished. Now we observe that by assembling the rectangles Y
one to another in two directions y', y* an infinite self-equilibrated plate
is constituted. "Due to the natural boundary conditions, the equilibrium .
conditions along the joining lines nY* = const, neZ, and at the nodes
‘ (nY?, mY?), n,meZ are fulfilled. Thus we conclude that the problem (2.4)
defined: at the basic cell ¥ can be interpreted as a statical problem for the -
infinite Y-periodic plate subjected to Y-periodic distortions (= Dagog (V)

3. MECHANICAL INTERPRETATION OF THE HOMOGENIZATION FORMULAE (2.9}

The formulae (2.9) have been derived in a mathematical manner based
on the concept of the G-{or I'-) convergence of functionals [1]. The latter
idea is not easily interpretable from the mechanical point of view and that
is why it is reasonable to interpret the final results by means of commonly
known mechanical ideas. For this purpose we shall deal with an infinite
plate with & Y-periodic structure and the parameter ¢ will be fixed. We
show that the effective homogenization formulae (29) can be derived by
postulating a certain energy equality for the cell. ¢ Y, without examining the
behaviour of w* when & tends to zero.

3.1. Equilibrium of the infinite periodic plate

Consider the case Q = R? and additionally assume the initial moments
and external loads to be &Y-periodic

(M, mt, p°) (x) = (Nap, L, D) (x/e),
0

where N9, I,. b are Y-periodic. The problem is correctly posed provided the
loads p° are self-equilibrated in the cells ¢ Y :

(3.1) fpr(x)dx=0.
&Y

The considered infinite plate will be in an equilibrium state if the principle
of virtual work for every cut out cell ¢Y is satisfied. The right-hand side
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of this principle will include an influence of the moments and the effective
shear forces prescribed at @ (sY). If one confines now the space of virtual
displacements to W (zY}) (periodic functions with periodic derivatives), then
the variational equilibrium condition reduces to

ute WieY),

(3.2)
oy (0 ) = [ (= MG 5y ()= 2% (09)+ p° 07 dx,
for every v®e W(eY).
Changing the coordinates we arrive at

ue W(v),

(3.3) :
ay (u, v) = j (—&® Nop 18y (0)— €1, 85 v-+e* b) dy,
for every ve W(Y).

According to the Lax-Milgram lemma the solutions of (3.2) or (3.3) exist
and are determlned up to an additive constant.

3.2. The elementary. states of deformation of the infinite periodic plate

Congider the infinite & Y-periodic plate Joaded at infinity in such a manner
that the deformations of the plate % = (35) are eY-periodic. The internal
forces and forces “prescribed at inlinity™ relevant to eY-periodic changes
of curvature will be discussed later. Due to &Y-periodicity of » the function
u which stands for the plate’s transverse deflection can be composed of three
elementary states

(3.4) u P (x) = ug? ()= 1P xfe), o, B=1,2, (af)=(pa),
{the rigid motions of the plate being disregarded), where

ufh = yeb (5 /e),

0

7" (x/e) are &Y-periodic states standing for the deflections of this
inlinite plate subjected to initial & Y-periodic moments M9™ = ¢ ~? Digoy-
If stiffnesses are differentiable, —»"“*) can be regarded as deﬂecuons of the
plate subjected to surface couples m{* =¢"285D%; , or to vertical loads
ph — g7 29% 0 Diy.. Let us prove these facts. :

As the deformations s, (u) are supposed to be & Y—periodic',) the deflection
- u can be decomposed into a sum of periodic and aperiodic displacements.
However, by disregarding rigid motions one can notice that this latter term
is at the most a polynomial of degree two. Hence the constants ¢;
J=1,2,3, exist such that u = ¢, u§'V+c; uf?+c; uf ¥ + ¢ (x), where y* (x
is ¢ Y-periodic: " (x) = ¥ (y), y = x/s; ¢ is a Y-periodic function. The principle
of virtual work (3.2) reduces to
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asl'(u’v)zoa VUG]/V(SY),
and will be satisfied provided
w=c, Ve, u?P ey u'?,

where 4 (x) = 1 (x)+ e (x) and the functions yen satisfy the variational
equation
(3.5) ag (renv) = — [ &7 % D (x) 555 (0) dx, vYoe W (eY).

£}
Thus the functions yew are solutions to the distortion problem of the infinite
e Y-periodic plate subjected to initial moments M =¢"2 D¢, In the case
when the coefficients Dg,,5 are differentiable, one can carry out an integration
by parts and on taking into account the Y-periodicity of the integrands
one arrives at

dpy (Wm0 = | mi® (=85 vydx = | p v dx,
3 4 34

where

mgt = 67205 Doyyas pr =& 287 85 Dy

Note that if gY-periodic stiffnesses are twice differentiable, then their first
derivatives are also &Y-periodic so that the condition (3.1) is satisfied. Finally
we note that Eg. (3.5) is equivalent to the variational equation

ay (PP +y @ 0) =0, Voe W(Y),

hence by comparing the obtained formula with Eq. (24) we see that
!'h{cm) - __x(rm)‘ )

By wirtue of ¢Y-periodicity of the functions ¥ (x/e) and the stiffnesses
Digs. the moments and shear forces associated with the deflections (3.4)
are #Y-periodic. Thus the internal forces do not converge to a limit when
x{— oo or x;— too. But we sec that it is not necessary to deal with
an infinite plate loaded at infinity. It is sufficient to consider an arbitrary
rectangular domain: 0 < x; < N 8, 0 <x, <n, Y, & The moments M,
and effective transverse forces V, are prescribed at the lines x, = 0,
x, = 1, £Y,. Appropriate linear combinations of these boundary forces produce
the eY-periodic states of deformation postulated at the beginning of this
section.

3.3. Physical sense of effective stiffnesses

Let {a;;) be a family of nodes which generate the mesh of &Y rectangles.
Note that the (af)-statc can be treated as a superposition of u§#-functions
of constant curvatures and nonzero values in g points and of e
deflections which which take zero values in-these nodes. hence uH (a;,) =
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= uf(a, ;). Apart from the & Y-periodic plate let us consider its homogeneous
counterpart of stiffnesses D,z (defined by Eqs. (2.9)) in the following state
of deformation *™" = () =4,, 6;;) produced by appropriate moments
prescribed at infinity, The points a;;, of this plate displace by the same
values ui® (a;;) as in the case of the & Y-periodic plate. Let us calculate
the reciprocal works of moments in the (cu)-state on changes of curvature
in the (in)-state (for all combinations of (op), (i) referved to the arbitrary
unit cells eY of both plates (the problem considered is ¢Y-periodic with
respect to deformations hence the choice of the umit cell is unimportant).
The reciprocal work stored in the eY-rectangle reads

{3.6) aty (U, Tl E j Diipys (X) ¥ap (u'*) Kys (4} dx =
gY

=87 J Dugya (0) 2 (=2 W25 57 =20 (1) dy.

The above expression can be simplified to the form

1 [
(37} ag}’ (u(ﬁ.l!), U(M)) = F_z JLDaplwp_Dauyé %&5 (X{m (J’))] dy:
¥

by virtue of the equality
,[ D gys (¥) %3 (™ dy = )j Dypys ) #%p (X(“") (J’)) "hs (Xu") (J’)) dy,
§ )

which follows from the principle of virtual work (2.4) in the case when as
virtual displacements the functions y“* are taken.

On the other hand the reciprocal work stored in the gY-rectangle of the
homuogeneous effective plate reads

ey (", uf) = Dygys | 2655 (™) 2655 (™) dx = 72 |Y] Dy
¥

Comparing the above result with Eq. (3.7) and bearing in mind the definitions
(2.9) we conclude that

(3.8) aly (@, ¥y = agy (uE", w0y,

Thus we arrive at the simple interpretation of the formulae (2.9); we see
that the effective plate with constant stiffnesses is in the above meaning
energy-equivalent to the e Y-periodic plate.

In order to avoid possible misunderstadings, let us emphasize here that
the presented interpretation of the formulae (2.9) is not in conflict with the
definition of the homogenization process given in Ref. {6]. In our considera-
tion the period Y is fixed but both plates are infinite. The energy equivalence
of both plates is required for the ¢Y-periodic states of deformation only.
In the paper [6] both plates are finite. The essence of the homogenization
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consists in the convergence of the energy of the periodic plate to the energy
of the effective homogeneous plate:

J£=—;—a5(wﬁ,w5)m-;—a(w,w)zl
Note that if ¢ tends to zero, the domain Q occupied by the plate becomes
infinite in comparison to the period Y and hence the formulac (2.9} are
independent of £. Moreover, the external loads do not intervene to the
homogenization process and that is why the resulting formulae are independent
of the type of loads to which the plate is subjected. These two facts
explain why the requirement (3.8) of the energy equivalence of both periodic
and homogeneous infinite plates results in the same effective stiffnesses as
those found in Ref [6]}

4. CORRECTORS AND THEIR PHYSICAL INTERPRETATION

The homogenized formulae (2.9) allow us to obtain the zero-order
approximate solution w. However, the moments relevanf to this solution
do not describe variations of moments yielding from the periodical variation
of stiffnesses. In order to achieve a deeper insight to the behaviour of mo-
ments, an improvement of the solution w is necessary. From the mathematical
point view the improved solution w8 (where ¢ is called the corrector)
is required to converge strongly to w’. The formal construction of this
solution is formulated in the Theorem 4.1 presented in Sect. 4.1. This
theorem has not been given explicitly in the literature available to the
author: however, the general results obtained in Refll [1] make it possible
to formulate the theorem and to carry over the proof, thus the proof will
not be given. In the next part of this section we endeavour to clarify
a mechanical sense of the corrector defined in Theorem 4.1

4.1. Theorem on the corrector

The weak convergence of w* to w (pointed out in Theorem 2.1) can be
improved by introducing the corrector as it follows from

THEOREM 4.1. Let we H* ()N H3 (Q) and y** e W>(Q). Introduce cut-off
functions m*e % () such that

mi(x)=0 i dist(x, Q) <e,
mix)=1 if dist(x, Q)= 2e,
for every 8=1(B, ) &P m(x)| < Cy,
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where il = f,+ B, and Cy does not depend of e Let us define the function

(4.1) . | 05 = —e? m*(x) y*7 (x/e) uip (w).

Then the difference w*—(w+0%) converges strongly to zero in Hj (Q).

4.2. Simplified derivation and mechanical interpretation of the corrector

We show a simplified derivation of the formula (4.1) and in this manner
exhibit its mechanical mterpreta’non Let us start with some auxiliary
approximations.

Let ®*e@},.(R*) be zY-periodic function, ®*(x)= @ (x/c} where & is
Y-periodic. Let nel?(€2), # does not depend of & Then [1, 5]

1
42)  lim Jcpﬂ (x) 7 (x} dx = My (P) jn (xydx, My()= a J( ) dy
;

Thus if ¢ is sufficiently small, the following approximation is justified:

43 [ @*(x) 1 (x) dx =~ My (B) [ () dx.
0 . 2

Assume now that the domain € is a sum of the rectangles ¢Y; each equal
to Y and 5 is a piece-wise constant function with constant values n; at
these rectangles. Then

j@a(\)n(r)d\c—Zm j &t ( x)dx—ZnJ—chD(y)dy=

el K
= Z 0 leY| My (@) = My () 3 7, e ¥} = My (D) | 7 (x) dx.
J 2

If the function 5 is fixed, onc can choose a value & sufficiently small
for the approximation (4.3) to be justified. On the other hand, if the
quantity « is fixed, one can find a function x lying in an arbitrarily small
neighbourhood of the graph of a certain picce-wise constant function #°;
if one disregards a boundary layer, the approximation (4.3) will hold good.
We shall forther say that this approximation is good when the function
i is e-regular, ie slowly varying with respect to the eY-mesh.

Let us assume additionally that ®@e%2(Y), ne%?(Q). There exist the
constants C;, D, Dj;; such that

W <Co, ZPM<C,  yey,

|ain(x)|gDrI) ;az Jﬂcrnr(x)lgDaﬁ: XEQ, asﬁ:]-:z“
Let us define ‘

(4.4)

Ly(x,8) = 35 (D°(x) 5 (x))— 3} @ () 1 (x),

4.5
) M,p(x, &) = &2 85 85 (° (x) 5 (x))— 3% 3% @ (¥) n (x).
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Taking into account that
L, (x, ) = e® (y) 05 1 (x),
M,y (x,8) = (8 @ (v) 5 n () +35 () & n (X)) +e* P (y) &3 5 1 (%),

and bearing in mind the estimates (4.4), we arrive at '

L, (x, )| <eCo Dy 520,

Mg (x, 6)] <&e(C, Dp+Cy D)+&*Cy Dyg :50‘
Thus for the small ¢ the following approximations can be writien
a5 (@ () (x)) = n (x) 0% P°(x),
3 35 (@ () 1 () =~ 0 (5) 5 05 @),

Assime now that the homogenized solution w has been found and let us
try to find the corrector 6°=w*—w. As it is easy to note, the function
0° ought to satisfy the following distorsion problem: find 6°¢ Hj (2) such that

(4.7 o (6, v) = F* (), YoeHE (O),

where

(4.6)

F*(v) = A (M2 (x) 55 (0) dx,

(4.8)

Mz (x) = (Daﬂ}rﬁ—D;ﬂyﬁ (X)) 15 (W).
For the fixed ¢ v and w let us define
D (%) = Dogys (x/5) = Dipya (x)— D% 5 5, (X)),
Hupys (X) = Xap (v) %33 (w),

and assume that the functions 7,4 are sufficiently e-regular and independent
of ¢ (or the parameter ¢ is small enough) for the approximation (4.3) to
hold, hence

“.9)

f q)gﬂ'yaﬁa,ﬂy& dx = ‘:DEY (éuﬂy&) lj‘ naﬁyé dxn
2

and accordingly to the relations (2.9) is

EUEY (cpexﬂyﬁ) = Dazﬂ}'é-
By virtue of the above one obtains

Fo(v)~ —!j; D25 25, (1°P) 255 (W) 5635 (0) dx.

Thus we arrive at the equation

g D gy %55 (0) [0 (09)+ w35 ((1) 365, W) dx = 0,
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which is satisfied provided

@10) - g (0 = — i (1) w5, (W) = — % w3 (X5 a5, ().
On applying the approximation (4.6), we can write
(4.11) 6° = —g? yfom 1%, (w)+p,

where p is a polynomial of degree one. Note that 6* violates the boundary
conditions: ie.: w'=w+0°¢ H} (Q). In order to make this function belonj
to H () the cut off functions have been introduced, see Eq. (4.1).

The correctness of Eq. (4.10) directly depends on s-regularity o the
functions 4,5 Once the homogenized solution w is given the characier
of these functions is determined by the virtual deflections. Therofore the
approximate character of the formula (4.10) is closely relevant to approximate
satisfaction of the virtual work principle (4.7) being now fulfilled only by
the trial functions which are taken from a subset of sregular functions
belonging to the space H3 () of admissible deflections.

Moreover, our intuitive derivation suggests that Eq. (4.10) is better
justified than the formula (4.11), hence improving the moments seems to be
more natural than to correct the deflections.

5. COMPARISON OF DUVAUTS EFFECTIVE STIFFNESSES WITIL K ACZKOWSKYS .
FORMULAE IN THE CASE OF THE PLATE WITH xl-PERIODIC THICKNESS

Consider now an isotropic, ¢Y-periodic plate whose thickness h*(x) ==
= B (x}) = h(y"), y' = x%/s, is a periodic function of x' with a period &;
h is a l-periodic function in y'; Y=1[0, 1]x[0, 1]. The variation of h is
such that the plate is symmetric with respect to its mid-surface.

The Young modulus E and Poisson’s ratio v are assumed to be constant.
The bending stiffness reads

E

D? (X) :. Em h3 (xI/s).

The effective stiffnesses D, can be found by means of Duvaut’s formulae [6]

_ Ehi 5. . bh
Duuzm: 1212 24T y)

. vER3

(5.1) Dy1ay = A=y’
. Eha EVZ 3 3
D2222 = 12 (1_v2) + 12 (1 _v2) (hl ’12)9
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where

1 1
d 1 - 143 /3
(5.2) hy = U F{?‘)’] , h= U r (") dyl} -

0

On the other hand the same problem was considered by KACZKOWSKI [12}.
We shall not recall here this derivation, for details the reader should refer
to [12]. Tt is worth noting that Kaczkowski did not examine the behaviour
of w* when §—0, but he directly showed how to replace a plate with
periodic thickness by an effective plate of constant thickness. Taking into
account the fact that the classical plate theory is based on Kirchoffs
hypotheses which are applicable for plates of slowly varying thickness only,
the author of [12] recommends his formulae only for plates whose thickness
varies slowly with a small amplitude. The effective stiffnesses derived in [12]
read

51111551111, 51122.=D1122:
3 ) E 3 3
(5.3) Dyyyp= D1z1z+m(h1 —h3),
v2

D222 = Doz =7 —é"(h?—h%)-

*Tn the case of k= const, h; = h; and D =D. The difference 132222—152223
is proportional to v*> so that the modification of D;,,, ought not to be
essential. The difference between the torsional stiffnesses Pis12 and Dyaig
seems to be greater. Thus the homogenisation method shows formulae (5.3); 4
to be incorrect. In particular, evaluation of the torsional stiffness can evade
our intuition.

6. CONCLUDING REMARKS

In the last section an interesting fact has come out. On the one hand the
effective stiffnesses (5.1) are arrived at as a result of the passage to the Himit
(¢ — 0) what apparently suggests that the smaller ¢ the more accurate should
be the formulae (5.1). On the other hand one can apply the classical
Kirchhoffs model for plates with nonconstant thickness only when this
thickness varies slowly. If not, the equilibrium conditions of some parts of the
plate (considered as a three-dimensional body) could be badly violated.

Nevertheless, as it has alrcady been pointed out in Sect. 3, the formulae
(2.9) can be obtained without passing fto the zero limit with s Thus the
homogenization procedure being based on the analysis of the sequence w*
should be treated as a process which exceeds the frames of the Kirchhoff’s
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assumptions and we can regard it as a “transcendental” procedure. In
mechanics, at certain stages of the analysis, we are often compelled to handle
physical quantities of such magnitudes that they cannot be physically inter-
preted. Nomne the less, the mathematically confirmed correctness of the consi-
derations as well as the firm physical foundations of the theory ensure the
final results to be physically correct provided a return passage to the initial
range where the assumptions hold good is carried out. In view of the above
in the considered plate problem the formulae (5.1) are valid in the range
of slowly varying thickness.

In the case when the latter assumption is not satisfied one sbhuild
apply another model wseful for the considered case, eg. VEKuas .hecry
{13] or a new model due to Koun and VocEerius [10]. However. as to the
present author’s opinion, the problem of averaging of stiffnesses of plates
with rapidly varying thickness is not closed and requires further studies
including of mathematical investigations as well as numerical and physical
experiments.
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STRESZCZENIE

NOTA NA TEMAT OBLICZANIA ZASTEPCZYCH SZTYWNO@CI CIENKICH PLYT
SPREZYSTYCH O PERIODYCZNE] STRUKTURZE

W pracy omowiono problem homogenizacii plyt nicjednorodnych o strukturze dwu-
okresowej. Wykazano, Ze przyjecie sztywnoici zastgpczych wg wrzordéw teorii homogenizacji
jest réwnowazne odpowiednio rozumiane] energetyczng] rownowaznoscl rozwazanej plyty nie-
jednorodnej i zastepczej plyty jednorodnej. Ponadto podano wzory definivjace korektor
rozwigzania zhomogenizowanego a nastgpnie przedstawiono jego elementarne wyprowadzenie
kadac nacisk na sens [izyezny wywodu. W osfatnim punkcie pracy rozpatrzono szczeghiny
przypadek plyty o wysokosci zmiennej w jednym kierunku x! i poréwnano wzory ma
zastgpcze sztywnodcl znalezione przez Duvaut z wynikami Kaczkowskiego. Stwierdzone nie-
rgodnodc w definiciach zastepezych sztywnoscl Diaiz i Dagzz.

PeE3iOME

JAMETKA HA TEMY PACUETA 3PPEKTHBHBIX WECTKOCTENR
TOHEMX YIPYTUX TIIUT C MEPROTUYECKON CTPYKTYPOU

jleMa TOMOTEHH3ATIHN HEOAHOPOAHBIX IUIAT & JBOSKOTIEPHOIM-
4TO BpUESTHE JPPEKTHBHBIX swecTKocTel Mo (hopMy1aM TEOPHH
COMOTENM3ANAH FKBABANEHTHO COOTBETCTBEHHO [OHMMACMOR HEPTETHHECKOH IKBUBANCHTHOCTY
paccMaTpHBaeMoi HEONHOPOEHOH TUTHTEE M SRBEBAJCHTHOH OfHOponEoi mwmmTsl. Kpome 3Toro
NpHBEEHb (BOPMYJIBL OIPE/EIIOMNE KOPPEXTOP IOMOTEHM30BAHHOTC PELICHEH, 2 3ATEM
IpPEenCTaBieH ero ANEMEHTAPHETA BEIBOJ, JIOMMEPKABAL dy3uuccrail cMBICT BRIBOJA. B nocien:
pem TIyHKTe pafoTsl paccMOTPEH yaCTHEI CAYYal [IUTH © nepeMenHoH BRICOTOH . B OXNHOM
panpasieHud X! W CpaBHEHBL dopMynbl AN 3(hpeXTHBHBSX KECTKOCTEH, naiinensse JL0BO,:
¢ pesyapTaraMi KOHYOBCROIC KoHCTATHPORAHO HECOBIANIEHHE B OUPENSNCHAAX aheRTHE=

B paBore obcyxieHa 11pod
yeckoll cTpykTypoil. Tlokasano,

HEIX KecTKOCTeH Dyoyn ¥ Danas-
TECHNICAL UNIVERSITY OF WARSZAWA.
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