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SLOW NONISOTHERMIC GAS FLOW IN A PLANE CHANNEL
WITH POROUS WALLS

S. MAY (WARSZAWA)}

A slow flow of viscous and heat conducting gas in a plane channel with porous walls
maintained at different temperatures is considered. The flow is generated by a uniform
motion of a wall, and by uniform injection of gas at one wall and uniform removal at the
other. The flow equations are simplified by neglecting compressibility of gas but not thermal
expansion. In the general case, a solution is found in an integral form but for the special
case of viscosity and heai conductivity coefficients proportional to a power of temperature,
the closed form of solution is found. For large Peclet numbers corresponding to transversal
gas motion, a large gradient layer appears at the wall where the gas is removed.

1. INTRODUCTION

One of the simplest solutions of Navier-Stokes equations is the well-
-known Couette solution describing a flow with a linear velocity profile.
There are many inferesting generalizations of the Couette solution in which
compressibilify of a fluid, thermal effects, and-injection as well as removal
of the [luid through porous walls are considered. Thermal effects in an
inviscid fluid were considered by ScuricHTNG [1] and Grorp [2]. The
compressible fluid flow was studied by TLLINGWORTH [3], TAiAPOV 3L
and Morcan [5]. The temperature distribution in inviscid fluid flow was
examined by Eckert [6]. The more general case of flow of compressible,
viscous, and heat conducting fluid in a channel with porous walls at
different temperatures was analysed by Bansat and Jamn [7]. However, due
to the complex form of the equations involved, the method of successive
approximations was applied and only the first-approximation was found.
In this paper a similar problem as in [7] is considered, but the assumption
is made that the flow velocity is much lower than the velocity of sound.
In such conditions the fluid is almost incompréssible, and the only facior
responsible for variations of density is the thermal expansion due to the
temperature difference between the channel walls. The assumption of small
velocity simplifies the equations and allows to obtain the solution of the
problem in a closed form.- - :



198 5. MAY
2. EQUATIONS

We consider a stationary flow of a viscous and heat conducting gas
in a plane infinite channel whose porous walls 00 and 1 are at distance d
apart (Fig. 1). The coordinates x, y and the corresponding velocity compo-
nents u, v are shown in the figure. The indices 0 and 1 refer to the flow
parameters at the corresponding walls. The flow is generated by a uniform
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motion of the wall 0 in the x-direction with the velocity uy, and the gas
injection at one wall and removal at the other, with the constant mass
flux “intensity [ = g, vy = @, v4; ¢ being the gas density. The temperatures
of both walls are different, and T, > Ty, It is assumed that the specific
heat of gas is constant, and gas obeys the Clapeyron equation '

(2.1) - p=ReT,

~ where p is the pressure an@R — the gas constant. The.coefficients of visco-
sity u and heat conductivity A are power functions of temperature with an
" exponent # : * '
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* The flow of gas is governed by the Navier—Stokes equations (2.3):
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The system (2.3) may be essentially Sll‘ﬂpllfled when the pressure variations

*are small. Two following assumptions about the pressure field are made:
1) the amplitude of pressure variations is small as compared with the
value of pressure ' ‘

A
(2.4) P,

‘ p \

2) the relative variations of pressure are small with regard to the relative
variations of temperature
A AT

2.5) el

r T
The assumption (2.4) is valid for slow flows when the flow velocity is much
lower than the velocity of sound. Due to the mequahty (2.5) the density
variations are caused by nonisothermal effects but not by compressibility

of gas. In such a case the density is inversely proportional to the tempera-
ture. The assumptions (24) and (2.5) make possible to neglect two terms
in the energy equation: the term proportional to the pressure derivative
and the term of viscous dissipation.
Let us consider the dimensionless parameters
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where Pe and Pr are the Peclet number and the Prandtl number. Making
use of the above simplifying assumptions and introducing the dimensionless
parameters (2.6), we transform Eqgs. (2.3) into the following form:

V=20,
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In Egs. (2.7) the assumption (2.2) about the form of dissipative coefficients-
has not been employed as yet. The boundary conditions for Eqgs. (2.7) are

UO)=1,

| - U(1)=0
2.8) 00) =1,
g(1)=10,,

P(0) =

3. SOLUTION

While discussing the solution of the system (2.7) it is convenient to
introduce the Stanton number St, defined here as the ratio of the total
energy flux Q to its convective component Q.o at the wall 0

g _ Qno+Qeo
QcO QCO ’
where (0, is the part of the energy flux due to the molecular heat conduction.
Both components of energy flux at the wall 0 are glven by Egs. (3.2)
Ao Ty Byo
d

Gy St =

Qh() = 3
(3.2) .
- Qoo =¢, Tol,

where o is a dimensionless temperature derivative at the wall 0. The heat
fux -Q,, is always megative because the wall 1 is assumed to have a higher

‘temperature than the wall 0; however, the sign of Q. depends on the

direction of transversal flow. For i> 0 there is Q. > 0, hence the Stanton
number (3.1) is less than 1 '

(3.3) St < 1.

On the other side, for i < 0 there is Q/Qc 1, everywhere in the channel

cross-section, and in particular at the wall 1. Hence the Stanton number =

is in this case larger than 8,

Q 9
@;# ch 61>91.

As a consequence of the inequalities (3.3) and (3.4) the Stanton number lies.
outside the interval (1, 0,), whatever the mass flux may be.

To obtain the solution of the system (2.7) in an integral form, ‘one does
not need to specyfy the functlons L{f) and M (9) The energy equation (2.7),

(34) _ St =
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can be integrated independently of the other equations {2.7). Upon the first
" integration one gets

' dd  Pe(@—1)+0y

dy Le

('3.5)'

where the dimensionless temperature derivative Oy, 18 a constant of integra-
tion. From Eqs. (3.1), (3.2) and (3.5) the temperature derivatives Oyq, Oy, at
both walls can be expressed by the Stanton number

Byo = Pe (L—S0),

Pe (0, —St)
L@©)

(3.6)

¥y =

To solve the system (2.7) it is convenient to consider  as an i'ndependent
variable, and Y, UJ, P as unknown functions. Instead of Eqs. (2.7), the
system (3.7) of linear equations is then obtained (for Pe 3 0):

dy L{®)
‘ Pe = a_s1
dU M (0) dU
(3.7) | e =Pr—o [L(G) (- St) dﬁ}
s
P4 M (8)
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in which the energy equation is already once integrated. The solution
of Eqgs. (3.7) for arbitrary L(0) and M (#) is
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If Eq. (2.2) is valid, then L(8) = M () = 8". For this special case the solution
(3.8) becomes .

.Y,ZW,
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Integrating by parts, one can express integral I by an integral K with the
denominators exponent larger by one

Lfet 1 St
G1D "f?(.a—_sT”t“éT)*"?Ks
0 —_
' 6" do
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1

An integral like K can be expressed by the hypergeometric functions if its
denominators cxponent is larger than n+1 and the Stanton number lies -
outside the interval of integration. The second condition is fullfilled in our
problem, while the first is generally valid for gases. If it is not, integrating
by parts can be performed over again until the denominator’s exponent
becomes larger than n+ 1. The corresponding formulas for K are (see [9, 107)

' ' sty ]
613) K- ﬁ[zﬂ @ 1=m2=m; S0 0" 1o, (z, 1"“2“”;*@‘)}‘

for St <1 and

. 1 1+n » - ., . 0
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for St> 8, and St < 0. For negative St the formulas (3.13) and (3.14) are
equivalent, each beeing an analytical continuation of the other (see [81)
For rational n the integral I can be expressed by elementary functions,
although in most cases the corresponding formulas are rather complicated [9].
However, for some values of n simple formulas for I are obtained. For
example, for n =1 one gets

. 9“‘_5‘
(3.15) | I=6-1+StIn §
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The Stanton number is an important overall characteristic of the solution. '
1t is a fanction of the Peclet number Pe, the viscosity expoment n, and
the temperature ratio 6,. The implicit formula for St may be obtained by
inserting Y=1, 6 =0, to (3.9),

(316} 1{0,,n,St)= Pe.
The solution {3.9) is valid for Pe # 0. In the opposite case Pe =0 the

. solution can be obtained directly from Eqs. (2.7). It has a simple known
form (3.17)

¢ +f1__1
Y=
9: +nﬁ1 ?
: 66,
3.17 U= -
G17 1-6,
P=0

" 4. ANALYSIS OF THE CASE n= Pr=1

For the sake of simplicity, a more detailed analysis of the solution (3.9)
is given for the special case n="Pr=1 For real gases the values of n
and Pr differ not very much from 1, and one may expect that these results
should be representative at least in a qualitative sense. Besides n and Pr
the solution (3.9) depends on 2 other independent parameters. We choose Pe
and A0 =0,—1 as these parameters. Then St is given by the implicit
relation (3.16) shown graphically in Fig. 2. The Peclet number is a dimen-
sionless measure of an injected mass flux. Tt is positive if gas is injected
at the cold wall, and negative in the reverse case. For Pe—» —co St— 1,
and for Pe » oo St 0,, ie. the heat flux at the wall where gas is removed
tends to 0, and the whole energy is there transmitted by convective way.
On the other side, for Pe— 0 when the flow pattern is very close to that
with impermeable walls, the convective component of the energy flux tends
to 0, and consequently the Stanton number tends fo +co. There is a parti-
cular intermediate case Pe = Af. In this case St'= 0, so that the convective
energy flux and the heat flux counterbalance cach to another, and the
resulting. energy flux is O. '

To examine the temperature profiles across the channel, let us introduce,
besides #, another dimensionless temperature f, varying in the interval (0, 1):
T-T, 6-1

- Ti—T, A0

_ i

The temperature profiles corresponding to some values of Aﬂ'and: Pe are
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shown in Fig. 3: In Fig. 3a the asymptotic case 40 -0 is presented. In this
case the formula (3.8), takes a simple form (for Pe # 0)

erer—1.
err—1"

(41 t =
given by Ecxert [6]. For Pe=0 there is a simple heat conduction, and
the temperature profile for small temperature variations is, of course, linear.
The positive and negative values of Pe correspond to gas motion against and
" accordingly to the temperature gradient respectively. In this case the tempera-
ture profiles arc symmetrical with respect to the change of direction of
transversal flow: the formula {4.1) preserves validity upon transformation

Pe — —Pe,
Y—»1=Y,
{-1—t.

This symmetry, - however, vanishes for finite 46 (Fig. 3b, ¢). The larger A8 is,
the more pronounced the influence of transversal flow direction on the shape
of profile. ' .

In the specific case of flow with no energy exchange between walls,
when the convective and the heat conductive components of energy flux
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conterbalance one another (St=0 or Pe=A6), the viscosity and heat
conductivity coefficients depend linearly on Y (as it follows from Egs. (3.7;)
and (22)). If n = 1, this linear dependence is also valid for the temperature.
On the other side, for intensive transversal flow (|Pe| > 1} the temperature
gradient becomes very nonuniform across the channel In the greater part
of the channel cross-section the temperature sltghﬂy differs from the tempera-
ture of oncoming gas, and almost the whole temperature jump is realized
in a thin temperature layer which appears at the wall where gas is
removed.

The velocity profiles are simply related with the temperature profiles.
Both velocity components are lincar functions of temperature: V= 1+ A0r,
and U=1-t (for Pr=1) The conclusions drawn for the temperature
profiles .may be ecasily extended to the velocity profiles. In particular; the
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layer of large temperature gradients is accompanied by the analogous layer
for the both velocity components.

The pressure field is described by Eq. (3.8); or by Eq. 3.9 if M=1L.
In the last case the dimensionless pressure P is proportional to the tempera-
ture with the coefficient of proportionality depending on Pr. Some interesting
consequences follow from this formula. In the inviscid case, the gas that
moves in direction of increasing pressure decelerates, while the gas moving
in direction of decreasing pressure accelerates. However, this feature not
necessarily occurs for viscous gas motion when the viscous strain may play
an important role. In particular, from the solution (3.9) it follows that
pas injected at the cold wall moves in the direction of increasing pressure
with deceleration for Pr < 3/4, and with acceleration for Pr> 3/4. On the
other side, gas injected at the hot wall moves in a direction of decreasing
pressure with acceleration for Pr < 3/4, and with deceleration for Pr> 3/4.
For Pr = 3/4 the pressure remains constant in the flow field. The situation
is associated with the fact that the transversal component of gas motion
is fully determined by the energy equation (2.7), (beecause V= #6). For the
known temperature field, the momentum equation (2.7); determines the
pressure field. In Eq. {2.7); the" pressure derivative is an algebraic sum of
inertial and viscous terms. Due to the energy equation (2.7), both these
terms have the same structure and differ only by a constant factor depending
on Pr. The signs of both terms are opposite; for Pr > 3/4 the viscous term
prevails, and the qualitative flow pattern becomes opposite to that for
inviscid gas. : '

In the assumed flow model a decisive role is played by the thermal
effecis which predominate over the dynamic effects. It does not exclude,
however, the asymptotic case 40— 0. In this case the pressure variations
tend to 0, too, and the inequalities (2.4) and (2.5) are fullfilled. Tn fact
from Egs. (3.9) it follows that Eqgs. (2.4) and (2.5) are equivalent to

A 4 v
_i:(g?)—Prm‘l)Aﬁ 0 o1,

P RTO .
T Ap (4, B

Both these inequalities are satisfied if injection velocities are much less than
the velocity of sound (if Pr and 0 are of order 1). - '
. 5. FINAL REMARKS

'One-d_imens_ional ga's‘ﬂow in a_channel with.pdrous ‘walls maintained..
at. different - temperatures was considered, Gas motion . is generated by a
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constant motion of one wall within its plane, and by uniform injection
of gas at one wall and uniform removing of equal intensity at the other.
To simplify the problem, the flow velocity is assumed very small with
respect to the velocity of sound, and consequently compressibility of gas
is neglected so that the variations of gas density are only due to thermal
expansion. For such conditions the energy equation can be integrated
independently of the momentum equations. Because the small pressure
variations are neglected in the equation of state, the temperature remains
the unique factor determining the density and, due to the continuity equation,
the transversal component of velocity. The longitudinal component of velocity
is determined as a function of temperature from the corresponding momentum
equation. The other momentum equation determines the small pressure
variations, proportional to the square of Mach number which may be
considered as a small parameter of the problem. :

For the viscosity and heat conductivity coefficients given as power functions
of temperature, the temperature can be expressed by hypergeometric functions,
and for rational power exponent - by elementary functions. For intensive
transversal flow (Pe = 1) the flow parameters vary strongly nonuniformly
across the channel, thus producing a layer of large gradients at the wall
where gas is removed. '
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STRESZCZENTE

POWOLNY NIEIZOTERMICZNY PRZEPLYW GAZU W KANALE PLASKIM
O SCIANKACH POROWATYCH

Rozwazany jest powolny przeplyw gazu lepkiego i przewodzacego cieplo w kanale plaskim
o sc1ankdch porowatych z réznica.temperatur migdzy Sciankami. Ruch gazu generowany jest
przez jednostajny ruch $cianki a takie przez Jednorodny nadmuch wzdiuz jednej ze Scianek
i jednorodne odsysanie wzdluz Scianki przeciwleglej. Pomijajac wskutek malej predkosci
§cigliwosé gazu, ale uwzgledniajac zmiennod¢ gestosel wywolang nieizotermicznodcia ‘przeplywu,
‘mozna uprodcié rownania i uzyskaé rozwiazanie w kwadraturach. Przyjmujyc potggows: zalez-
noéé od temperatury wspoOlczynnikéw lepkosci i przewodnictwa ciepla uzyskano 1ozw1z12ame
w jawnej postaci. Dla duzych wartodci liczby Pecleta, odpowiadajgcej ruchowi poprzecznemu,
stwierdzono przy Sciance z odsysamem wystepowanie war stwy duzych gradientow predkosce
i temperatury

PE3IOME

MEJIEHHOE HEM30TEPMHUYECKOE TEYUEHUE TA3A
B TIOCKOM KAHAJIE C [HOPMCTBIMH CTEHKAM

PAcCMATPHBAETCA ME[UIEHHOE TeueHHe BA3IKOTO H TENAOHPOBONAMICTO Ta3d B [JOCKOM
XaHAgE ¢ NMOPHCTLIMH CTEHKAMM ¢ DAsHUHell TemmepaTyp Mexay cTenkamm. [lpmkenwe rasa
{EHCPHPYETCA PABHOMEPILIM ABIOKEHUEM CTEHKH, 4 TAKKE OZHOPOTHON HAAYBKOH BJOJIE OJHOM
H3 CTEHOK W OJHQPONHEIM 0TCOCOM BAONS npoTasonexamei crenxu. TpeneGperas, BCneicTeue
MAJIOH  CKOPOCTH, CRHMAEMOCTBIO TA3d, HO YYHTHIBASN NEPEMEHHYIO IUTOTHOCT, SLI3BAHHYIO
HEH3OTEPMEUHOCTELIO TEUeHHs, MOXHO YIOPOCTHTE YPaBHEHHs i nony'mTL pelenne B KARIpL-
Typax. IIpuHiMAag CTENCHHYIO 3aBHCHMOCTE KOMP(HIEENTOR BAKOCTN K TCILICIPOBGIHOCTH
OT TCMHAEPATYPHI, ﬂohyl;gﬁo peiieiine B ABHOM BiJie. Hna ﬁo'm,umx spavenuil umciaa Ilexne,
OTREYATOLIETD TONEPEYHOMY ABHKEHHIO, KOHCTATHPOBARO, TIPH CTEHEKE ¢ OTCOCOM 1O BHCTyTlaBT
crnoil 0oARMUX TPAJTHEHTOB cxopocm 1 TeMnepaTypEL

POLISH ACADEMY OF SCIENCES _
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH "

" Received February 7, 1985.





