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AXIALLY-SYMMETRIC SQUEEZED FILMS AS VISCOELASTIC
FLOWS WITH DOMINATING EXTENSIONS

S. ZAHORSKI (WARSZAWA)
/

Axially-symmetric continuous squeezing flows- of visco elastic fluids with simulated
approach velocities of the discs are considered as thin-layer flows with dominating exten-
sions [1]. Ceriain approximate solutions are presented and possible effects of the extensional
viscosity function on the load-bearing forces are discussed in greater detail

i. InTRODUCTION

In our previous paper [1], we considered the concept of flows with
dominating extensions (FDE) and its application to plane squeeze-film flows
of viscoelastic fluids. This concept being inspired by the A. B. MEBTzNER'S
idea of the extensional primary field (EPF) approximations {2], has led
to interesting approximate solutions, especially in the case of the so-called
“continuous squeezing flows” invented and studied experimentally by
D. R Ouver and H. SpanmuLLale [3, 4] B

Although plane squeezing flows seem to be more important because
of possible practical applications in various lubricating systems (bearings,
gears, cams, ctc.), axially-symmetric squeeze-film flows, i.e. compressive flows
between two horizontal discs {cf [3, 5]), are much easier for experimental
investigations. This is a reason why in the present paper we briefly develop
similar considerations in the case of axially-symmeiric continuous squeezing
flows. We also try to use certain results on the load- bearmg forces for the
extensional viscosity estimates.

y
2. AXTALLY-SYMMETRIC CONTINUOUS SQUEEZING FLOWS

Consider a test fluid contained between two horizontal ‘disc's of radii R
situated at the distance 2h and loaded with force P {Fig. 1) In the

contmuous squeezmg flow, the ﬂmd ‘moves through a statiomary lower disc,
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* being extruded from numerous holes uniformly distributed over the lower
surface {cf. [3, 4]). The force P is adjusted to a simulated constant approach -
velocity —h and a distance 2h between the discs.

Like in plane squeezing flows, we assume that

h h
2.1) £ =R =1, gq= = const,

i.e. that the fluid layer is sufficiently thin and the flow is a steady one.
The velocity field can be considered in the following form (cf. [1]):

1
ut* = ~2—qr+u {r, z},

2.2
(22) v¥ = —gz+uv(r, z),.

where u and v are additional velocity components in the system of cylmdncal f
coordinates with the z-axis directed upwards (Fig. 1). Denoting

:(23) r = RF, z:hz u="Uu, v=2eUyp,

where U = gh is the characteristic velocity and overbars refer to dimen- .
sionless quantities, we have
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The first parts of the diagonal components (2.4) may be much greater than
the remaining parts if the dimensionless velocity gradients are of order
(1) and the vorticity w (or d4/07) is sufficiently small. It is obvious that
in the case of pure extensions (w=0), all the diagonal components are
proportional to the extension rate q.

On the basis of Eqs. (2.2), we arrive at the following Rivlin-Ericksen
kinematic tensors (cf. [6]}: '

 _ du ou v
2% 0 Tt
g0 0
2.6) [ATI=[A]+[AJ=(0q O+ O 2 0 |
00 —2q
du ov - ov
: g> 0 0
[Af] =[ATI+[ATT=|0 4> O |+
0 0 44°
du 4 au\? [eu dv\? “0 u\/ou oo
Maptiw) &t w \1t @t
2
+ 0 4L val, ,
, " -
\ (ou By ' o v du  av\?
] (q+ )(62 5) 0 Sqﬁ 4(62) +(6z 6:‘)_

and at the invariants

! {r A¥ =0,

Q7 AP Hmﬁﬁwfﬂm@$%}

du u? u ou du  ov\?
+8(6;) +8 2+8 r ar +2(62+ai‘) ¥y
tr AF? = tr Ad+(tr AY) = —6¢° — 18¢ (g§'+%)_
u Ju au 1 \? du i
—24q L2124 (a ’) Y (61‘) ~2
. . ou o
—(3q+4 )(6z+ ar)
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The constitutive equations of an incompressible simple fluid in any
extensional (irrotational) steady flow, treated as a motion with constant
stretch history [6, 7], can be written in the form

(2.8) = —ph+p, (I3, ]5) Ay + P, I, 13} AL,
where p denotes the hydrostatic pressure, and '
(2.9) 12=tI'A%, I3=t1'A?

are the corresponding invariants.

Taking into account the order arguments following Eq. (24), we can
define the axially-symmetric “flows with dominating extensions” (FDE) as
such thin-layer flows in which the constitutive equation (2.8), valid for pure
extensional flows, may be used in a form linearly perturbed with respect
to the extension rate ¢. This means that

df df,

2.10) T*=—pl+f, A +f; Aj+ B A1+ 5, (Af)'+—d;rq’A1+-‘Eq’A§,

where the linear increment of g, denoted by ¢, reads
211) o w2 (N 2w 2 wdu 1 (0u D0\
- ¢ =5t t5\ar) Vg2 T3 ar Teg\& A )

when determined on the basis of Eq. (2.7),.
Thus we have the following non-vanishing stress components:

du du o2
w1l __ ve 2
T#1 = —p+ 8, q+28; ar+ﬂzq +4ﬁ;».£1—6r+4¢82 (_ar) +
' ou 0Nt df, . dBs , ,

U u 74
rest o gy ga 2 A g () 4

dﬁl ' dﬁz ¢ 2

212) : 2
dv , ov ov
T*3 = _P:—231 q+28; 'E‘*"“ﬁz q* -8B, QE+4I32 (EE) +

o dBy . dBs .,
+ﬁz(—a—z+~3;) —2—4q'qt+4—5-4'q -

dg dg
: éu ov u fou ov
%13 __ _ —_ — | —4—=
. T =(p.— 8. Q)(az‘?‘ar) B2 ; (524_6:‘)"
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The above components introduced into the dynamic equations of equili-
brium in the form

1 i3
dp 0T ‘+ l (11— 7y S aT*
F

o gz
2.13)

op_ a1y 1 T*13+6T*13

oz iz ar

where the subscript E denotes the extra-stress components (Tg" = T*i 4 P,
=1, 2, 3) and the inertia terms have been disregarded™, lead to equations
involving terms of different orders of magnitude with respect to = hA/R.
Expressing these equations in a dlmensmniess form by means of Egs. (2.3)
and

UnR _ v _ - - h -
QU p="pr R g=10 Bi=uh, =1 B

where overbars denote dimensionless quantities, and # has the dimension
of viscosity, we may retain only terms of the highest order of magnitude
__wlth respect to &= /R (eg O (¢72)). Such a procedure gives

op' ﬁ2 21 dp, 0 [ éu\?
or = (- ‘BZQ) 62 r(_a?)*l_? dg or \ 5z |’

p, _ i % u dﬁl ou idﬁz 7 a_u 2
oz = ﬁzq)é’z(ér+7) 3%5}_(62 +2 Eqaz dz)’

where we have denoted

2
2.16) B = ~p+Br g+ (‘3”‘) tg o q(az) .

dg

Eliminating pressure p’ from Egs. (2.15) by consecutive differentiation with
respect to z and r, we obtain

d, dp, \ @ (@ | ?ul
(217 E[ ({ﬁi +ﬁ2—~(%q)ar(“) +(Bi— quJgg]:o

An alternative system of Egs. (2.15) can be derived introducing the
notation ' '

1 dp, 2
-(2.218) pr=p—f1~Ba) (%"":)'5'(3 (ﬁlm% dﬁ; q) (%) )

Thus we arrive at

(') The fluid inertia effects, which may be of importance in wscoelastlc squeezing flows
{cf [51), can be taken into account in an approximate way (Sect. 4).
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Cdp* o {ou u ?u
- —(B1— B2 Q)g;(bj‘l‘j)“'(ﬁi*ﬁz q) -(37-%
Bo(0u\2 1 (dpy _dBx O (2uY’
\az) T2\ e " ag U)o \E)
(2.19)
op* —0
9z

It is also noteworthy that Egs. (2.15) or (2.19) can be obtained directly
from the following simplified constitutive equations: '

| 1 dp, [ou\?
x11 . 4 — —_
T = —pBiate o (62)’
1 df, fouy au\?
%22 gt i - J— ——
T** = —p'+ B4+ w (az) B2 az),
- 1 dp, fou\> 1 df, [ou\’
%33 2_ il . _
T '7 p 2B1q+3ﬂ2q 3 dq (52) +2 dq q az 1’

du
T*!? = (ﬁr*ﬁz Q)_gga

{2.20)

taking into account that g’ = 1/6q (ufdz)® (cf. Eq. (2.11))

It can easily be observed that the function fB,—pf,q is simply related
to the elongational viscosity function n* (q) widely used in theoretical consi-
derations and studied experimentally {cf. 2, 6]). For one-dimensional extension
{(or compression) in the direction of the z-axis, we have

T*33 T*‘ll__T:k33 3 .

221 ®lg) = — =
(2.21) 11(6(1)- p .

since then du/dz = 0. In our further considerations we s_hall' call fB (g) — the
extensional viscosity function.

(1 —B24)= 38 ().

3. CERTAIN APPROXIMATE SOLUTIONS

Equation (2.17) is a third-order nonlinear partial differential equation,
an analytical solution of which, even for the simplest boundary conditions,.
is not known at all _

Bearing in mind a possibility of approximate solutions valid for thin::
layers, we assume '

(3.1 _ u = 1rw(2),
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where w(z) is a function of z only. Introducing the above velocity into
Eq. (2.17), and taking into account Eq. (2.19);, we arrive at

(32) . [ﬁw”(z)+.(%€—+2ﬁ2) w’Z(z)] LA,

di

.where primes denote differentiation with respect to z, and f{g) is defined
by Eq. (2.21). It is qui;e clear that any solution of the equation

(3.3) pw” (z}+ (jﬁ +2p 2) w2 (z) = C = const,

also satisfies Eq. (3.2), when dp*/dr = Cr, ie: for a parabolic dependence
of p* on r. Other nonparabolic distributions of the thrust p* can be
approximated under the assumption that C depends on v treated as some
parameter in solutions of Eq. (3(3)

The simplified Eq. (3.3) is a special Riccati equation for w'(z), and
its solution satisfying the condition w'{0) = 0, can be presented as

B
wi(z)= ——t —AB fo AB <0,
W= Joap BB for

(3.4 ‘_
| w{z) = \/% th(\/AB z) for AB>0,
where
' g L(dB _¢&_1a®
(3.5) {1_— ; (dq+2Bz), B= B

"This leads to

w(z} =

' 1.1 cos (/ —AB z) 1
In g for AB<O,
cos ,/—ABh 2
w(z)=fln—-m-0h("ABz)\—iq CAB>0,
A ch(/ABR 2

if the following boundary condition is assumed:

(3-6)

(3.7) W (£H)=0 or w(ih):-_%q,

The positive sign of 4 corresponds, in principle, to an increasing function
B (g) = B1— B2 q, while the negative one — to a decreasing f (g) if, moreover,
~dfi/dg > 2f,. The sign of B depends on the sign of C, ie. on whether
-the thrust p* is an increasing or decreasing function of r. Symmetry of the
‘problem considered implies that p* should attain its maximum at r=0;
-therefore p* is a decreasing function of », and thus C<0 or B<0. =~
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Tt s noteworthy that for Newtonian fluids (8 = f, = const), we arrive at .

_ G o gy L _
{3.8) w(z) = -m—(z —h)— 5 d for lA- 0,
" where Cy depotes the Newtonian quantity.
The ‘continuity equation or the requirement that volume discharge Q is
~ preserved during the flow considered, leads to

h h
(39) Q= -nR*h=2{[u¥,-g2nRdz= gR+2 { w(z) 2nR* dz,
0 4]
from which, in the Newtonian case, we obtain
-3 B h dp*
(3.10) CN———Z“T<O or dar = CNF|

Tt is quite reasonable to assume that in general

_H f@4q
2 h?

3.1 C = < 0,
where H denotes a dimensionless number (3/2 for Newtonian fluids).

Thus, for viscoelastic fluids, Eqgs. (3.6) introduced into Eq. (3.9) lead to
the relationships

2 Jmeos i+ — LD for 4> 0

(3.12) o :

i—«[lnch = L/ |

= 7] —L{/I)]. for A<0,

M N{

where :
1 L [dp

and
(3.14) . L{x)= | Incostdi, L{x)= j Inchrde,
‘ b 0

are the Lobachevsky and modified Lobachevsky functions, respectively. These [

functions can easily be tabelarised (cf. [8]); their diagrams have been shown
in our previous paper [1].

By way of illustration, in Fig. 2 we show the relation between \/m
and H (or C), resulting from Egs. (3.12). It is seen that for positive as

well as negative parameters 4; the number H does not differ significantly

from 3/2, when /[yl is not too large. This fact can be ‘used in further
numerical calculations. . : :




AXIALLY-SYMMETRIC SQUEEZED FILMS AS VISCOELASTIC FLOWS 189

0 02 04 06 08
v' kil

F1aG. 2.

4. LOAD-BEARING FORCES AND BOUNDARY CONDITIONS AT THE FREE SURFACE

For any successful determination of the total force acting on the top disc,
or the corresponding load-bearing force, one should assume something more
on the boundary conditions at the frec surface or at the edge. The problem
would become very complex, if we wanted to take into account an unknown
shape of the frec surface, full surface tension effects and relations between
the outer pressure and the wetting angle at the edge (cf. [9]). On the other
hand, the obtained solutions are very sensitive to the boundary conditions
considered at the free surface, as it will be seen below.

For sake of simplicity, we assume that the condition of vanishing total
tension vector at the free surface, may be replaced either by

(41) ’ T*lllfjﬂjo(: #pﬂ):
or by (cf. [51) '

h [
(4.2) § T ogdz = [ (=p'+ TF' —rdz =0(= —pa);
o .0 0 )
if p, denotes an atmospheric pressure, and the wetting angle at the wedge
is assumed close to 90°. An effect of the surface tension can be taken into
account by means of the following modification:

@3 T - HS

where S denotes the surface-tension coefficient.
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An effect of fluid inertia can be jntroduced into the problem, considering '
a force resulting from the total mass balance. The value obtained by
D. R Ouver [10] amounts to

gh® R®
h2 ’

(4.4) o Fr=0048

where g is a density of the fluid. Thus the load-bearing force P can be
expressed as

4.5 P=F+F;,

where F denotes the force exerted by the fluid on the top disc, calculated
without taking into account inertia cffects.

In our further considerations, we first apply the condition (4.1), which,
- on the basis of Eqs. (2.20), leads to

dg dg

. d d
(4.6) T**¥, g = —3(ﬁ1 B q— 2( b Bz )R w2,

The force exerted by the fluid on the upper disc can be calculated from
| £ 33
oT*
RZ
z= :th +J or
0

where 1ntegrat10n by parts has been used. Bearing in mind Eqgs. (4. 6)7
and (2.13), we arrive at

@1 Fe- I T4, 2rdr = (= 1729 -

0

dp, _ dp,

dg dyg

; 4.8) = 3pqrR*++ p ( q) aR* w2 (h)+

. .

. %13 ‘

N .[ [_ "”;) L (T*U—T*?z)—ail(T*“—T*”)] wdr,
P ¥ ¥ z=1Th

¢

and, after introducing Eqgs. (2.20) émd (3.11), at

. -
(49) F= ~T CnR* (1
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for dfjdq+2f8, > 0. Disregarding the last term on the right-hand side
of Eq. (49), since & = h/R < 1, we finally obtain

(4.10) F=—g~ﬁ“—§3ﬁ[1+2(1 dﬂﬁz )tgz\/;ﬁ(dﬁﬂﬁz)qH]
26,

for Eﬁ%&ﬁé >0,
. dq

“and

@iy e LRI [1—2 - thz\/ 5 (dﬁ+2ﬁz)Q‘H}
'7 Fq—'*'zﬁz

h . d
for —£+2ﬁ2 < (.
dq

“In the case of Newtonian fluids, a similar proccdure leads to the well- know )
relationship, viz
3 ﬁo TCR4 h

1t is easily seen from Eqs. (4.9) and (4.10) that an increasing extensional
viscosity function f(g), if moreover df/dq+2f, >0, may lead to apparcnt
load-enhancement effects as compared with the Newtonian case. This fact
is in a qualitative agreement with the experimental observanons made by
D. R Ouver and M, SHanipULLAH [3] _

Tn many practical sitvations, .in. which the extension rdte g is small
enough and the extensional viscosity B (g) does not increase too fast with g,
we may use the following simplified expression:

H nR* ! ;
(4.13) F=- ﬁ%[ﬁ+(%+ ﬁz) qH}.

valid for df/dg > 0 and df/dg < O as well.

For further comparisons, we shall apply the 1ntegra1 condition {4. 2)
On using Bgs. (2.18) and (2.20), and bearing in mind that the thrust p*
does not depend on z, we arrive at

(4.14)  pHox=— %[‘“ cos /17l +~i/‘ﬁ1;(\/lvl )]+
dﬁ 5,
1 dq i ‘
+B1g—— CR? ' (tg,/lylf\/hTI), for A>0,
. 1 2 ﬁ+2ﬂ2 ~ ;'Yl _ :

dq
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where the same notations ‘as those used in Eqs. (3.12) have been applied

On the other hand, integration of Eq. (2.19), leads to the following expressmn
for p*

(4.15) p*= % Bw" (h) (% — RZ)+i Baw? () (2 —R*)+ -

+—2—(?Tg~+ﬂ2) w2 (h) (2 R”‘)————[lncos\r —\—/-: f:\+
o fii-l-ﬁz '
+ 81 q_-jCRZ dﬁq ( ) A>0.
—+2p,
dg

Thus the force exerted by the fluid on the top disc can be calculated from
R

(416) F=-— j (—p'+ T2 oy 2nr dr =

0

c | .
1 df, 1 dBs \ . 3
= #__| — - — 4 2 . .
j( (3 i 2 da q)w (h) r* | 2zr dr
o]

Introducing Eq. (4.15) into Eq. (4.16) and perforiming necessary integra-
 tions, we arrive at : . ‘

: |
(17)  F =7 CaR* | 142

y (tgﬁ 1)' for A>0,
£+2ﬁ )

where the terms proportional to & = h*/R* have been disregarded.
Repeating the above procedure also for A < 0, and takmg into account

Eq. {3.11), we obtain finally
dﬁ
i
H prR*h g\/Zﬂ( 2ﬁ2)qH

ﬁZ .
. (4.18 =—0—= |1+ — -
R 8 h [1 : (1 d——ﬁ-I-Zﬁ ) \/ df +2f, JqH 1 ]
. dq A 28\ dq z)q ' .

b —+28,>0,
dq

for
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and

H BnR*h
4.19) F=——8—ﬁ%h—[1—21 dﬁﬁz x
—+28,
dq

NPT
th\/ ( +2ﬁz)qH

2ﬁ 7 } for
\/ 2ﬁ( +26z)qH

The above expressions differ essentially from those described by Egs. (4.10)
and (4.11). Although an increasing viscosity function f({g), if moreover
dpfdg+28, > 0, leads to apparent load-enhancement effects, they are less
pronounced. This fact is also seen from the following simplified equation:

ap +2ﬁ2 < 0.
dg.

1-—-

H zR* d
(4.20) F:—S—T‘g—[m : ( p +ﬁz)qH} .
E B
18 -?; 6 18 -

. ———— - 4
08 4 Hop
Y A< 0B

04 y v r . v y y r 04
05 04 03 02 O 0 01 02 03 04 05
v _ ‘ W
FiG. 3.

valid for sufficiently small extension rates q and not too fast varying
-extensional viscosities f (g). .
By way of illustration, Fig. 3 shows the dependence of FBo/Fy B on .

\/}7 or /-~y under the assumption that ff, = 0, and the extensiona} viscosity -

is a linear function of extension rate g, viz.

(4.21) B@) = f1=Bo+BPorq, Po=const, Py, =const.

The solid line (I) corresponds to the force described by Eq. (4.10), while
the broken line (2) —to that described by Eq. (4.18). It is also quite clear
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that a load-enhancement effect is much weaker in the second case, ie. for
the integral boundary condition (4.2) at the free surface.

In our previous paper [1], we expressed some doubts whether, in more
general cases, any measurement of the load-bearing forces may be useful for
determination of the extensional viscosity function f (g} since these forces
"depend not only on f (g) itself, but also on its derivatives df/dg. In certain
particular cases; however, some very crude estimates can be made.

FiN .
15 :
. D/
a ‘/
e
10 5 oy
o
v
L s
o
-9
05 -/-
v
s
7
g r , .
0 005 60 W5 yymeh
FIG. 4.

Figure 4 shows the experimental data obtained by D. R. Ourver and

M. SpanipuLLapg [3] for the Esso motor oil thickened with a vinyl ace-

tate/N-vinylpyrrolidone/Cs—Cy3 alkyl fumarate (VAVPAT). At 75°C its visco-

sity at shear rate 10* ™! was 0.0263 Pas, density — 0.846 g/cm®, and flow

behaviour index 0.886. The experimental points were measured in the conti-

nuous squeczing flow system without any distributor (circles) and with

a distributor (triangles). The radius of the upper disc was 5.5mm and the

true corrected gaps (2h) between the discs varied from 240 to 240.5 pm.

- The above experimental results can also be interpreted according to
Eq. (4.13) under the assumption that H = 3/2 and B, q~0 as compared

with 8, described by the linear relationship (4.21). This can be done singe -

| for the maximum g = 1.25-10% s~ ', the parameter y = %AqH (cf. Bq. (3.13))
is really very small. Under such conditions Egs. (4.5) and (4.13) lead to '

Boh

" where the fluid inertia force Fy is defined by Eq. (44), and V= — I denotes
‘the simulated approach velocity of the discs. In Fig. 4, the broken line

(4.22) P=F +Fy (1+2.5 fox V),
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corresponds to purely Newtonian behaviour with fg = 2.56 x 10~ Pas, while
the solid one is adjusted to the experimental points obtained with a distributor
(triangles), by means of Eq. (4.22) with Bo1/Bo = 576 x107°s. The experi-
mental points obtained without any distributor (circles) describe approximately
the case of purely viscous fluid with inertia effects, like in the paper [3] -

- Thus we may conclude that the behaviour of the VAVPAF thickened
oil in the continuous squeezing flow considered could be described, in an
approximate way, by the relation (4.22), if the elongational viscosity #*{(q)
increased linearly in agreement with the formula

(4.23) 7*(q) = 3B (g) = 7.68 x 10~ 2 (1+5.76 x 10~ 5 q) Pas.

It can easily be deduced from Eq. (4.20) that, in the case of the integral
boundary condition (4.2), the resulting value of f,,/f¢ is 5/3 times higher.
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STRESZCZENIE

OSIOWO-SYMETRYCZNE WYCISKANIE WARSTWY JAKO LEPKOSPREZYSTY
PRZEPLYW Z DOMINUJACYM ROZCIAGANIEM

Osiowo-symetryczne, ciagle przeplywy wyciskajace cieczy lepkosprezystych, z symulowa-
nymi predkosciami zblizania si¢ tarcz, rozwazomo jako przeplywy w cienkich warstwach
z dominujacym rozcigganiem [1]. Przedstawiono niektore przyblizone rozwiazania oraz prze-
dyskutowano szezegdlowo moiliwy wplyw funkeji lepkodci przy rozciaganiu na sily nosne.”
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OCECHMMETPUUYECKOE BLIJIABJIMBAHMUE CJIOA
KAK BA3KOVIIPYTOE TEUEHHME C JOMHHUPYIOIEMM PACTSAXEHUEM

OcecuMMEeTPHYABE CIHIONAbIE BEIAARINBAOIME TEHCHHS BATKOYIDYTHR WHOKOCTSH, © HMH-
THPYIOIMMH CKOPOCTAMH cOnuxeHns JUCKOB, PACCMATPHBAIOTCA KaK TEUEHHA B TOHKHX CNOfAX
C AOMHNUDYIONMM pPACTHAKEGHHEM [1] IlpencTapieHEl HEKOTOPbIE NPUOMLKEHHBIE DPEIlCHNs,
a Tawxe oBCyxeHO NOAPOOHO BO3MONIOE BIMAHME (YHKUMH BA3KOCTH ITPH PAacTHOKCHAH HA
HECYILIS CHJIBL, : ’
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