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NATURAL CONVECTION BETWEEN TWO NONUNIFORMLY
HEATED COAXIAL CYLINDERS

"

JSKIEPKO and HA NGOCHIEN (WARSZAWA)

The problem of nmatural convection between two coaxial, horizontal cylinders is investi-
gated. One of the cylinders is nonuniformly heated. To find the parameters of the flow,
an approximate method is given. Tt is a peneralization of the Mack’s and Bishop's method.
The method can be applied for not too high Rayleigh numbers and for symmetrically
distributed temperature on cylinders, with respect (0 the vertical plane of symmetry. Two
simple cases are discussed in detail. In the first case, the distribution of temperature on thes
outer cylinder has the form & = cos ¢ (o — angular coordinate) and the temperature of the
inner cylinder is constant. In the second case, the temperature on the outer cylinder is
given by @ = 1--acos ¢ and the inner cylinder is maintained at constant femperature.

1. INTRODUCTION

In all cases where the field of fluid density is nonuniform buoyancy
forces arc present. These forces initiate motion of the fluid, called natural
convection. Due to its wide technological applications, the problem of natural
convection between two coaxial horizontal cylinders and conjugate heat
transfer, has been the subject of intensive research in recent years. Most
studies were performed under the assumption of constant temperature of the
- cylinders. This includes the series of works ranging from experimental ones
by Beckmann [1] and KRAUSSOLD [2] to numerical solutions of high
“accuracy by Kuenn and Goupsteiv [3]. A comprehensive literature survey
of the subject can be found in the paper by Tsuk and TremsLey [4].

“ The assumption of isothermal boundaries is practically eguivalent to the
- assumption of infinite thermal conductivity, but in the majority of applications
the thermal conductivity is finite. The conjugate problem has been studied
by Roten [5] who assumed finite thermal conductivity of the inner cylinder
‘which was heated by a source placed on the cylinder’s axis.
“To solve the equations obtained from the Navier—Stokes system by
applying the Boussinesq approximation, the perturbation method is usually
: i:ised' [3, 6, 7]. In this ‘method, the solutions are expressed as power series
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of the Rayleigh number. The convergence of these series is granted by the
assumption of the small average Nusselt number or small Rayleigh number.

In this paper the generalization of Bishop’s method to the case of
nonuniform distribution of temperature of one of the bounding cylinders is
described and a discussion of possible patterns of flow is included. This
partly makes up for the lack of information about the behaviour of a fluid
bounded by nonuniformly heated surfaces.

Sy
2 FORMULATION OF THE PROBLEM AND BASIC EQUATION

Consider two-dimensional steady laminar convection in an annulus
bounded by two concentric horizontal cylinders. The annulus is filled with
a ‘viscous Newtonian fluid which is set in motion by the difference in
temperature of the cylinders. One of the cylinders is maintained at a uniform
temperature T, = const. The temperature T of the other one is distributed
symmetrically with respect to the horizontal axis of the cylinders, and has

the form

(2.1) Ty = T,+AT 0 (9),

where ¢ is the angular coordinate of the polar coordinate system (see Fig. 1).

F1G. 1. Geometry of the problem and the coordinate system.

- All fluid properties are taken to be const_'an,t',_ except for the density varia-
tion with temperature. Assuming a small ‘difference in temperature between
the cylinders in comparison with 1/B; the state equation takes the following
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form:
2.2) L pr-T
v 0 - _ﬁ ( c)’
0

where T, = constant and f — volumetric coefficient of thermal expansion.

By using Eq. (2.2) and the Boussinesq approximation,. the set of the
continuity, momentum and energy equations can be transformed to the
following system [6]:

" 11 5(V2‘/fﬂ1’)
2.3) Viy =R, L(T)+pr T
2 _L a(Ts l/’)
(2.4) V=
where '

T cosg OT
+
or r B’
o(T.W) _oT oy aT &y
ar,p) v oo o b’
and the operators V* and V? are given by V* = VZ(V?)

62+1 o 1 @&
F L A i

L(T)=sin ¢

vi—

T, yr denotes the dimensionless temperature of the fluid and the dimensioniess
stream function respectively. ' ‘
All dimensionless quantities are obtained by the following transformations:
rf .lrb’ TJ _ TI

= , =, TZW__C_,
r=as Ve AT

t;— the radius of the inner cylmder v —-the kinematic viscosity, R, =

AT
% the Rayleigh number, Pr = v/a — the Prandtl number, g — the

acceleration of gravity, « — the thermal diffusivity.
For the case of. rigit cylinders and due to the symmetry of the
problem, the boundary conditions can be expressed as -

a
IJI‘——I’b 0 at r=1,R, v
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T=0 at =1,
T=6 (¢ at r=R,

for constant temperature of the inner cylinder, or T=@ at r=1, T=0
at r =R for constant temperature of the outer cylinder. In both cases,
additionally, 6Tfa(p Oatp=0,n holds R = rofr; — being the radius ratio
of the cylinders.

In the next section the case of constant temperature of the inner cylinder
will be considered. The nonlinear system (2.3), {2.4), will be solved for small
values of the Rayleigh number and for such boundary conditions, where

the function @ can bé expressed in the form" of finite Fourier series of
N

cosines, o= Y. a,cos ko. Naturally, the obtained solu'glon will be approxi-
T T &,
mate.

3. THE METHOD OF SOLUTION

For a small value of the Rayleigh number R, one can express the
solutions of the system (2.3), (2.4) m the form of power serics of Ra,
such that:

3.1) -3 R,

m=gq

(3.2) =Y RN

. . mfl
Substituting (3.1) and (3.2) into equations (2.3), (2.4) and equating terms
of the same order in R, one readily obtains the following hierarchy of linear
inhomogencous equations:

) I V2T, =0,
(3.4) LV = LT, .
a(T(), !l’l)
@ M T
11 3V,
(3.6) . Vi, = L(Ts)+$;7—(—5g%a
; 1 8(Ty, ) L O, )
VEET S T e

The corresponding boundary. conditions are
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? |
(3.8) b= 0w r-LR,
or
2y
(3.9) | Yy == 307 0 at ¢=0,m,
310) . To=0 at r=1,
(3.11) T,=@ at r=R,
or, : - )
=0 at ¢=0,n and- T,=0 at r=1,R, m>=1

Usin;g the method separation of variables;: one can sol\_re the system
(3.3)—(3.7) assuming the foltowing form of the solutions:

(3.13) T, = ; T coskp, m=0,1,2,.,

(3.14) , W= Y W ) sinke, m=1,2,3, ..,
Vi

where T, and iy, satisfy the ordinary differential equations:

(3.15) f Dy T = four ),
(316) . ’ DF% [!/m,k = Gm, & (1’),
2 1 d K

S . k—kﬁown functions defined by earlier found Ti(t<m), and v, (I < m),
Qm kT deﬁned by 7;; ‘1’! (I < m)

... The functions T,,, and ,, , must satisfy the foliowmg boundary condi-
tions:

Ta,k-(l) = 0_5 To.x (R} = a,
T (=T, (R)=0 for m>0,
Vi (1) = W (R) = 0

Wi () _ B (R)

dr § dr - 0
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The general solution G (r) of Eq. (3.15) has the foﬁ_n ;. s

’ 1 fm k (?')
321 Gr: L€y U s dr
( ) (Isfm,k Cy Cl) 2k (" J rk..l .’
; 1 . Kkt gn [oF] .: K - .
ik Sua )T dr ‘|"T_k +ey %, for k=0,

and

(322) G (s fonao 10 €)= — T I0T fu () drt
+1n r f N (dr+c Inr+cy, for k=0,

The general solution for ¥, , can be obtained by using twice the formula
(3.21). The functions V,, x> T« satisfying the boundary conditions (3.17)—(3.20)
generally depend on r, R and Pr. Particularly the functions t, i, To.xs Too
depend on r and R only. ' ' . '

As mentioned above, the distribution of temperature on one cylinder
must have the form ' '

N
CH=0(p)= 2, a,C05 Q.
n=0

(In another case our method can not be used). The simplest but still having
practical interest case is '

®=cosqp or ©=I1+acosp.

" In the next sections we restrict our discussion to those fwo cases.

4. NEGLIGENCE OF HIGHER ORDER TERMS IN THE SOLUTION

Before discussing the result obtained from the solutions it should be
noted that these expansions in power series of R, do not converge uniformly
with respect to R. In fact, it can be checked numerically that when R
tends to infinity, they will diverge even for very small Rayleigh numbers.
For finite values of ‘the radiuis ratio R, one can except that the series
converge in a certain tange of the Rayleigh numbers. For given boundary
conditions ‘it was observed that the ratio of j +1-th term in either the
expansion (3.1) or (3.2) to the j-th term is approximately independent of j,

thus, if this ratio is less than unity, then the series converge. On the basis .

of this observation the upper limit of the Rayleigh number R, for which
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the series solutions converge is defined:

_ ‘/’j (r, @)
Ro=sup H Vi1 @)

Using the first two terms of expansions for T and the values of R, for
radius ratios from 1.2 to 2.8 and the Prandtl numbers Pr =002, Pr= 07,

T, 9)
T;‘+1 (i', (f))

4

H, 1<r<R,' 0<op<nm

log Ry

g
5

M W

12 16 2.0 24 23 f;'
Fig. 2. R, in dependence of R; — - for case @ =cosgp, — — — — — for case
& =1+dcosgp.

numerical calculation has been done and the results are presented in
Fig. 2. For the case ® =coso, R, is a decreasing function of R and
when @ = 1+a cos ¢, R, increases rapidly with increasing R to maximum
value, then decreases with further increase in R. Similar results were also
obtained by Mack and Bishop for the problem of uniformly-heated cylinders.
It may be shown from the form of the expansions (3.1) and (3.2), and
from the above considérations that the validity of series solution depends
on the ratio R,/R4 For R,/R,=04 the ratio of the third term to the
lirst one in the expansions (3.1) and (3.2) is about 0.19. It indicates that
the earliest term neglected in our two-term solutions is roughly 19 percent
‘of the first term. Thus, when the condition R,/R, =04 is satisfied, one
can reasonably expect that the truncated solution

(41) - T= TD+Rn T!:
@2 ¥ =R,y +R2y, ‘

“will approximate the solution to within several percent.

5. RESULTS AND DISCUSSION

-~ The series expansions (4.1) and (4.2) have been evaluated numerically
“for various values of the parameters R, R, Pr and a. Tt was found necessary
to.perform the numerical calculations with double precision.
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For the case @ = cos @, it can be shown that

|  T(@)=—T(r—9)
and

¥ (@)= —y (n—@).

As a consequence of the above and due to the symmetry of the problem
with respect to the vertical axis, it is convenient to represent the numerical
results in a single graph with the streamline pattern in the right part of the
cavity and the isothermals in the left one. In the second case @ = 1+acos ¢
the streamline pattern will be represented in the right half of the cavity
and the isothermals in the left one. Figure 3 presents the streamlines and

FI1G. 3. Streamlines and isothermals for R, = 1500, Pr =07, R= 185 ~———— isothermals i
" . for pure conduction (T'= Ty). ‘

the isothermals for the case with higher perturbation of temperature on the
outer cylinder @ = cos ¢ for R, = 1500, Pr = 0.7 and R = 1.85. It is observed
that the flow pattern forms a single cell of the “crescent-eddy” type. The
flow is upward along the oufer cylinder and downward along the inner
cylinder. The centre of the eddy, where i has its maximum value, is in the
lower half of the flow region. A change of the Rayleigh number causes
a little fluctuation of the centre of the eddy between the radius ¢ =45°
and ¢ = 35°. Multicellular flow is not observed in this case. A change in '
the Prandtl number and; the Rayleigh number has very little qualitative
effect upon the streamlines. For comparison, the isothermals for pure con- .
duction (T'=Tp) and for the case when R, = 1500, Pr=0.7 and R = 1.85 -
are shown on the left half of Fig. 3. It is seen that the flow region is -
divided into fwo parts. At a typical location, in the right part T> T, and
in the left one T < T,. This indicates that the ratio of heat transfer due fo .
convection is directed from right to left in the flow region. ;

Figures 4a and 4b show the streamline and isothermals for the case *
@ = 1+acos ¢, R =185 and few sets of R,, Pr, a. For a=01, Pr=07,"
R = 1.85, R, = 3000, as it is shown in Fig 4a, the flow has. the form of ’ra__:
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FiG, 4. Streamlines and isothermals a) for a =01, R,=3000, Pr=07, R=185; b) for -
a= 10, R, = 1500, Pr=0.7, R =185

single cell. The centre of the cell is placed below the horizontal plane of
. symmetry and its location does not depend very much on the Rayleigh
number. A similar situation takes place for all sufficiently small a (a <0.2)
002 <Pr<6, 1.2<R <28 and Ra < 3000. With increasing value of a, the
multicellar flow pattern is observed (see Fig. 4b). In the left half of Figs. 4a
.and 4b, the isothermal patterns are shown. The isothermal started from the
point (R, m} separates the cavity into two regions (heavy dashed line in
Figs. 4a). The inner region includes the concentric isothermals and the outer
one includes isothermals starting from some point of the outer cylinder.
The outer region increases with-increasing Rayleigh number or the para-
meter a. It enables to observe that the heat transfer in some way depends
on the area of this region. It should be noted that by letting a tend to
zero and keeping R fixed, one can obtain results approaching the results
.of Mack and Bisnor [6]. :

The local heat transfer rates at the inner and outer cylinders can be
expressed in terms of the corresponding local Nusseit numbers Nu; and

Nu, defined by
Nuy;=InR [:%J r=1,

-
. ;

Nug=InR [r —%——], r=R.
"

~TFor @ = cos ¢ both local Nusselt numbers Nu; _rcmd Nu, arc decreasing
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2

functions of ¢ (0 Sp s m?i) and Nuy; (%) = Nuy (%) =0 (sec Fig. 5a,
heavy dashed line). In the case when @ = 1+a cos ¢, the behaviour of Nusselt

§ Nu;, Nuy

F16. 5. a) Local Nusselt numbers Nu; and Nug

-~ @ =1+01cose, R=1, 85 Pr =07, R, = 3000,

—————8®=cos ¢, R R = 1.85, =07, R, = 1500;
b) Nu as a function of a for R = 1500, R = 1.85.

numbers depends significantly on a. Of course, for all values of R, Ra, and
Pr the maximum of the value of Nug is located in ¢ = 0. Such regularity
is not observed for Nu;, whose behaviour depends on a. For a =101, Ny,

is an increasing function of @ (see Fig. 5a) but with a increasing from 0. i} N

to 1, the location of the maximum value of Nu; changes from the top
of the cylinder to the bottom. For a = 1, Nu; is decreasing function of ¢.
While the local Nusselt numbers indicate the distribution of the heat
flow across a given surface, the total heat flow across that surface is given
by the average Nusselt number as defined by
1T k(3
— 1 J | - 1 J’ B
Nu=— | Nu;dp or Nu=—| Nuydgp,
] . 0 - " 0
(where, by virtue of the balance of energy, the integration over. the inner
and outer surfaces must be the same). _
'Tn both cases @ =cos ¢ and @ = 1+acos @, for our apprommdtlon
Nu does not depend on Pr. It follows from the fact that the integrals
of the terms depending on Pr vanish. This indicates that the influence of |
Pr on Nu is the higher order effect. In the case when & = 1+acos ¢,
Nu decreases with increasing a(a € 1), (see Fig. 5b). It is interesting to
. note that the effect of convection causes a decrcase of the heat transfer.
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6. FINAL REMARK

The method of the solution presented in this paper can be applied to
a limited range of Rayleigh numbers, and for some class, quite wide, but
also a limited range of boundary conditions. This method gives approximate
solutions and requires computer calculations. In spite of this, in many cases
it is more convenient to use it than to perform direct computer calculations.
First of all, when this method is applied, the numerical calculations are
very simple and they are limited only to the determination of some constant
coefficients, from the boundary conditions. When these coefficients are known,
the solutions can be expressed by analytical formulas. Having such expressions

is very useful, especially for the investigation of the problem of stability of
the obtained solution,

REFERENCES

. BECKMANN, Forsch. Geb. ing. Wes, 2, 1931

- KraussoLp, Forsch. Geb. Ing. Wes, §, 1934,

H. Kueun and R. §. GoLnsteN, J. Fluid Mech,, 74, 197¢.

T. Tsul and B. TreMBLAY, Int. J. Heat Mass Transfer, 27, 1984,

RoteM, Int. J. Heat Mass Transfer, 15, 1972

R Mack and E. H. Bisnor, Q. J. Mech Appl. Math,, 2, 1968,

. H. NGuveEN, P. Vassgur and L. RopiLiarp, Int. T Heat Mass Transfer, 25, 1982.

A L
MrN<=SIzD g

STRESZCZENIE

NATURALNA KONWEKCIA MIEDZY DWOMA NIEJEDNOSTAINIE
NAGRZANYMI, WSPOLOSIOWYMI CYLINDRAMI

W pracy badany jest problem naturalnej konwekeji miedzy .dwoma wspolosiowymi,
poziomymi cylindrami. Temperatura jednego cylindra jest stala. a temperatura drugiego zalezy
i od wspolrzednej katowej. W celu znalezienia parametréw przeplywu podana zostala przyblizona
metoda. Jest ona uogdlnieniem mefody zaproponowunej przez Macka | Bishopa dia prz¥padku
stalych temperatur na cylindrach. Podana metoda moge byé stosowana dla niezbyt duzych
iczb Rayleigha i przy symetrycznym, wzglgdem pionowej plaszczyzny symetrii, rozkladzie
Cmperatur na cylindrach. Dokladnie przeanalizowano dwa przypadki warunkéw na tempera-
urg. Pierwszy dotyczy rozkladu temperatury na zewngtrznym cylindrze danego wzorem
6=cos¢((p—katowa wspotrzedna), podczas gdy temperatura wewnetrznego cylindra jest
tala. W drugim przypadky @ = cos ¢ zastapionc przez @ = 1-1¢ cos @, a — const.
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PE3mME

HATYPANBHAA KOHBEKLIMST MEXY IBYMS HEPABHOMEPHQ HATPETHIMH
COOCHBIMM IUJIMHIPAMHU

B paGore nccnemyerca npobrema HATYPANbHOH KOHBEKIMH MEXJY HBYMS ' COOCHBIMIT,
TOPH3OHTAMLHBIMA HUIHHAPAMY. TeMIepaTypa OJHOTO IMIMHAPA NOCTOAHIAN, & TeMIepaTypa
BTOPOTO 3aBHCAT OT Yriosod koopmunaTil. C UGALI0 HAXOKACHUA NAPAMETPOB TEUCHWA IIDH-
pefled TpubmmxeHHbt MeTon. fApnserca oH obobulennem metona npepfoxeHHoro Makom
¥ Bumonom mns cilysas TOCTOSHHBIK TeMIEpaTyp Ha [GDmHApax. [IpuBeneHHBIH METOX
MOMET APHMEHATLCH ANA ME CHMINKOM GOJBIIHX dHcest Pajies H TPH CUMMETDHYIHOM, IO
OTHOIEHHIO X BEPTHEATRHON HF0CKOCTH CHMMETDHN, PECITPEISeHHY TEMNIEDATY]D HA ITLTHR/APAX.
Meransuo npoasaTnsuposausl ABa Ciyyad Yonobuii Ams Temmepatypsi. leppoii Kacaercs
DACTIDEJIE/ICHHS TEMISPATYPEl HA BHEUIHEM Huanuppe AaHsoro dQopMynolt ¢ =cos v (p—
YII0BaA KOOPAWHATA), B TO BPeMsA KaK TeMOCPATYPa BHYTPEHHOTO IMUIMEADA NBJISETCHA
nocrosHuoi. Bo BTOpoM ciywae ¢ = cos i, 3aMeHeH +i = 14¢ cos ¢, a-const.
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