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A NEW METHOD CALCULATING STRESSES
AND DISPLACEMENTS IN ELASTIC BARS

Z. GORECKI and J. RYBICKI (GDANSK)

A new method is presented enabling rapid numerical evaluation of stresses and displace-
ments of orthotropic, linear-elastic thin-wailed bars of polygonal cross-sections, The algorithm
is based on Vlasovs shell theory. The differential equations derived are solved numerically
by means of the method of splines. -Examples of numerical results prove the possibility
of application of the existing FORTRAN programs, The paper contains a novel formulation
of the boundary conditions. '

1. InTRODUCTION

One - of the first steps in construction design is an overall estimation
of displacerents and stresses, which appear under the action of given
external forces. The finite element method is the most wid_eiy nsed tool for
such calculations. This method, however; often demands very much computer
time, especially for large and complicated constructions. In the present’ paper
we propose a new  method of computation of stresses and displacements
which — at least in some cases-—is much faster than the finite element
method. Our work concerns thin-walled prismatic bars with cross-sections
consisting of arbitrary arranged polygons. We consider only orthotropic and
linear-clastic materials. The Vlasov general theory of prismatic and cylindrical
constructions [1, 2, 3, 4] was the starting point for our study. Under the
assumptions of the Vlasov theory the general equilibrium equations of
considered bars were obtained and adopted for bulkheadless ships '[5, 6].
The resulting system of linear ordinary differential equations with constant
coefficients was solved numerically. The algorithm was based on the spline
representation of the unknown functions. The existing FORTRAN program
makes possible the integration of differential systems corresponding to the
constructions with 60—70 joints in their cross-section” (100 equations).
We bave not made tests with greater systems, but permanent high stability
of the method allows to. predict the possibility of solving larger systems.
The authors claim that such models cover all technically important types
of constructions applied in ship-building. The present paper: contains. also
a new general formulation of the boundary conditions. D i
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2. TOTAL ENERGY OF A BAR

Consider thin-walled bars with constant profile, consisting of an arbitrary
arrangement of polygons (one can approximate a hull of a ship with such

- a bar). The profile is completely determined by the Cartesian coordinates

OXY of its joints, provided that it is known how these joints are connected
(Fig. 1). Each polygon K, has its curvilinear coordinate s. The direction -
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FIG. 1. An example of a thin-walted bar with malticircuit cross-scction.longitudinal coordinate
perpendicular fo the figure.

of this coordinate may be chosen arbitrarily. Let us construct for each

'K, the local system of orthonormal versors l;, m;, b; where L agrees with

the s-direction, m, is the normal external versor, b; is orthogonal to both
I, n, and points in the z-direction (longitudinal coordinate). Loadings are
given as a vector function p(z, s), which we decompose in the local basis
L a b _
@1) P (z.5) = P, (2, )+, (2, ) 1+py (2, 5} b

Displaéements of the points of the shell are represented by a vector
function R (z, 5), which we decompose in the local basis L, m, b:

(2.2) _ Rz, s)=ulz,s)b+v(z, ) H+w(z, sin
Let us introduce such constraints that the coordinates of the displacement
vector may be written as

u@ﬂéi%w@m,

m

(2:3) BEERTCE B WACTACE

~wiz,s) = 1:21 m (z) XI (S)e

where the functions U;(z), V,(z), W;(z) are to be found, and the giveﬁ
functions ¢, (s), ¥, (s), 3, (s} constitute the basis for u, v, w.
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The eclastic material is assumed to be orthotropic with the orthotropy
axes b, |, n. Using the semi-momentless model of the bar [1, 5], we get the
following expression for the total energy of the bar deformation:

, 1 -« {ouV* ~ [ov\: . v du
o &
«{0u v\ w2
+G (é;-ka) +D (T‘sz ) }ds] dz,

5 « - E.§
D= __u&ﬁ___ G = Gé, E=—"—
i I=vy3 vy

12(1-vi5vy)"

where

i=1,2,

E,, E;— Young’s moduli, v,,, v, — Poisson constants, G — Kirchhoff
modulus, 6 — shell thickness (constant in ‘the interjoint  segments), K —
contour of the cross-section, L— the length of the bar.

The work of external forces is

I L .
(25 A=[[ép s)R(z,s) ds}dz = || § (up,+op,+wp,) ds}|dz,
o K ok

and the total energy of the shell
26 Q=n-A.

The functions‘w (z,s) may be expressed by the functions » {z,s) [5] and
the total energy is

L
I - au 2 b av 2 ~ 61} au
2.7 Q= 5 J‘[Cf{Ea (E) +E, (‘a—s) +2E1 Vay 5.;672“4‘
. 0

K
< (ou dv\* M: 2Mp M, :
+G(as+—az) +TD-+—~—-—D ds |dz—

L . i
- J [‘f {upy+op+(wy+w,) p,) ds] dz,
0 K

where M, — the total bending moment arising from the displacements of the
joints in the planc of the cross-section, M, —the bending moment which
originates from external loadings p, (z, s), acting on the cross-section frame
with joints that are immovable, but can rotate freely about their axes,
w; — displacement in the direction n that arises from displacements of the
joints, w, — bending of the bar when the joints are immovable but can
rotate. . ) :




732 Z. GORECKI AND 1. RYBICKI

3. EQUILIBRIUM EQUATIONS

Let us accept the shape functions of the first order [5] (Fig.: 2). The
functions ¢, (s) determine the displacements orthogonal to the plain of the
contour, thus they must be continuous all over K. They have the valuc 1
in a Jomt and decrease linearly towards zero in the neighbouring joints.

a 1
{ dﬂﬂﬂﬂﬂm 1
K] J
@;t5)
b k
@i(5) .
i s J

FiG. 2. Shape functions which constitute the basis for deformation. a) ¢ (s) describes binormal
displacement, b} ¥ (s) describes tangent displacement.

The functions W« (s) determine displacements tangent to the contour, and
thus must be continuous on each 1nter_|omt segment of the cross-section of
the shell.

As an example we shall consider one of the components of 2.7):

§E, (g—g) ds.
K

With the aid of Eq. (2.3) we get

oy g (@ -] vane]an

~ QB [, Vi@ ds = (W M) (U1

K

where [M,,] is a matrix of infegrals «_f)Ei P, @ ds. Treating ail the

components in the quadratic form (2.7) analogically, we get the following
matrix representation of the total bar energy

6D n=o J({U'}_T [M,,] (U} + (V'Y [Myd (V) +
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62 - o +{VIT([Myy ]+ DM g} {V} 4+ {U}T [Mypy} {U} +
+2 {V}T[Mm {U}+2 {V’}’"[M¢ 1 {U}) dz=

j({b} {Ub+{d}” {V}) dz.

The details of the coefficient calculations are given in {5]
From the existence condition of the extremum of the total-enmgy
functional we get —

[MW?] i 0 ) [Mww']T*[M'p%]T:] i -
o | ™ WJ]{T}*[tMm-d%MWJ I L

- [Mcp‘q;'] 0 '_-
[ (M2 ] i =ta,

where {T} = {Uy, .., U, Vi, ., Y} " is the vector of the unknown functions,
{q} = {b1, ... by dy, .., d,}7 is the vector of the generalized forces, denotes
differentiation of U (z), ¥{(z), ¢ (s) and  (s) with respect to their arguments.

The derivatives of y (s) with respect to s equal zero, and all the
matrices whose clements have y/'(s) under the integration sign become zero
- matrices. Thus we have

M 0 T o M,,,
(34 [[ '3?] [Mw]:l (T} +[[M¢'w] —1M,y] ]{T}

—[[M*z)“ e |17 = 0

This is the system of the second-order equations for U and ¥ which is to
be solved. Let us formulate the boundary conditions for Eq. (3.4).

4. BOUNDARY CONDITIONS

Let us add the work of the external forces acting on the bar ends to
the energy @ given by Eq. (2.6). The works of the external forces acting
on the bar ends are .

@1, A= ‘f’[u(o S)pb (0 8)+00, 8) p, (0, 5)+w (0, S)P.,(O S)] ds,

.for z=={ and

@1, A,= ;@ [u(L, 5) py (L, )+ v (L, 5) p. (L, )+ w (L, 8) p, (L, s)] ds,
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for z= L. Under the assumptlons of the semi-momentless theory Egs. (4.1)
simplify to '

u

{4.2), - A= i bileot Z Vi did:=0>
and
@.2), A= 3 Uiblewit 3 Ve

The total energy of the shell is now
{4.3) 2, =0—-A,—A4,,

where Q is given by Eq (2 7). Equation (4.3) is a special case of the
functional

(44) . J D’] = jz F (xi’ Yis J/'f) dx'”.;] Vi (yil)'—l”i;i ﬁi (yiz),

where Viz» Vi, are the values of the functions y; in the ends of the domain,

V> Bi— any functions of their arguments. The variation of the functional
J [y] given by Eq. (4.4)_ is

(4.5 &J j( ) x)dx-!-z ( o - M+E)5y,.2
| ZH: ( —:‘L ay{ \\ 53’;’ +(F|x=xz_ i y; Fy:lx=x2;
1 5%/ 17 " i
i‘ gﬂ!) _(.F1x=x1_i-ys )5x' )
i=1

Using Eq (4 5) for ﬁndmg the extremum of the functional (4. 3) we get
~equilibrium equations which contain the dependence on the fastening of the
bar. In the case of free ends, the boundary conditions are

. 7,[Mo:1 (M, [M,,] '[MO} .
™, 0 0 vl
O R I [
0 0 0

0

0 .

[ o o 0 0 :

0 0o 0 0 .{T A ={le=0}

+[ -0 [Mrp\b'] [M(P(p] 0 AT !z:L qiz'_‘() )
M,y] O 0 [Myl
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In the case when one end is fastened and one free, the boundary
condifions are '

E0 0 0] o 0 0 0
10 EQ 0} )T 0 0 0 0
4.7 0t : -
( ) 0 0 E 0 {T}ztﬂ 0 [Mcplll'] [Mqﬂ_q;] 0 X
000E [M,y1 0 0 [My,]

SN

where E denotes a unit matrix. Similarly we can write the boundary
conditions for all technically important situations.

The solution of Eq. (3.3) or Eq. {3.4) with the boundary condltmns (4.6),
(4.7) or others resulting from Eq. (4.3), gives us the functions U,(z) and
Vi (2) which, in accordance with the accepted hypothesis, allow us to find
displacements in any point of the shell Eq. (2.3). The stresses may be found
" on the basis of the following equations:

. 8) , o (2,5 = E, i; U, (@) 9, (9),
and _ .
“9) (z,8) = (2 U, (@) @} (s)+ z V(D) W (5),

where o (z, s) — normal stresses, 1(z, s) — tangent stresses,

5. NUMERICAL RESULTS

. The equilibrium equations are the system of the second-order ordinary
differential equations, linear, with constant coefficients. These equations,
however, turned to be numerically troublesome. All standard numerical . -
methods for such equations were ineffective (long- computation time, low
accuracy even in the double precision calculations with .the aid of ‘the.
ICL-4-70 -computer). In order- to achieve satisfactory numierical -results,
the resolution of the unknown functions in the Tchebyshev series was
applied (matrix generalisation of the method worked out in [7] for one
equation with two-point boundary conditions}. The Tchebyshev series method
was numerically effective for constructions described by no more than 20
- equations of the second order, what corresponds to bars with 10—20 joints
in their cross-section. Contemporary bulkheadless ships (eg. RO-RO ships),
however, should by approximated with a bar of 30 or more joints
in their cross-section. This leads to the systems of about 50 differential’
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equations of the second order with two-point boundary conditions. The
proper algorithm - based on the spline representation — has been worked
out. This algorithm makes it possible to integrate differential systems
- corresponding to the constructions with 60—70 joints in their cross-section
(100 equations). The general idea is as follows. The equations to be solved
(3.3) and (3.4) are of the form -

2Ly =oay"(x)+ By ()+yy (x)=f(x), O0<x<L,"
6.1 a; y 0)+a; y'(0) = aq,
byy(L)+by y(Ly=b,,

where o, 8, v, a,, a5, by, b, are matrices and ¥, f(x), ay; by are vectors.
The cardinal splines for- the problem (5.1) are a set of N+3 independent
cubic splines forming a basis for all cubic splines on the mesh 4:0=
= Xo <X <..<xy=L. These are defined by the following relations [8]:

A ()=5yy j=0,1,.,N; k=01, N;

Ay x)=0, | i=0,N; k=0,1,..,N;
(5'2) A,k( ) i

Bd,k(xj)=0, j=0, 1,...,N; ) kZO,N;

B:_I,k (xi) = 51«,;', i=0,N; k=0,N,

where &, ; is the Kronecker delta.
Let

N

S4(y;x)= _;0 Ay (x}y (xp+¥ (0) B0 (x)+y (L) B,y (x),

be the spline satisfying the proper end conditions and interpolating on the

mesh A the solution of Egs. (5.1). The convergence properties of cubic

splines allow-us to represent the solution of the differential system in the
. following matrix form: ‘

HiY,=R,, .
where o T
as a 0 0. 0 .
'ff’f)Ba,o {xo) -ff-’AA,o (xo) LAysq(xg) . & Agn (Xp) fde.N {xo) |
H,; = . i . i SE s
2L BA,O (xn) & Agoxny) £ Agy (xn) . L A5 (%) ngA,N (xw)
-0 -0 -0 by - by

n = (y,OQ }’o: yls sery yNs y;V)Ts
st = (at)af(xo): ey S {xn), bo)"‘,
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FiG, 3. Prismatic bar with multicircuit cross-section, restrained on both ends, submitted to
continuous bending force. Displacements and stresses calculated with the aid. of the presented '
theory are pictured in Figs. 4 and 5. :
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FIG. 4. a) lbng.itﬁ'diﬁ'al' 'disl.')lace'ments u (2), b) tangent displacements v(z), ¢) normal stresses
e (z), d) tangent s(resses t(z} calculated for the joimt 1 and the segment 1—3 for the bar
Arom Fig, 3.
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FIG. 5. a) normal stresses @ (40, 5) and tangent stresses T40, 5). b) longitudinal displacements
u {40, 5) and tangent displacements v (40, 5) calcalated in z =40 m for the bar from Fig 3.
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-FiG. 6. Prismatic bar with multicircuit cross-section approximating a bulk cargo ship, strain-
ed on both ends and submitted to continuous torsional force. Displacements- and stresses
are pictured in Figs. 7 and 8.
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FiG. 7. a) longitudinal displacements u (z), b) tangent displaéements ‘v (z), ¢} normal stresses
o {z), d) tangent stresses 7{z) calculated for joimt 1 and on the segment 1—2 for the bar
from Fig 6,

i, f(x;) being n-dimensional vector of solutions and the right-hand sides of
the system in the mesh point x;, n is the number of equations in the
system. The matrix H,, which is to be inversed, is—in- view of the
definition of the cardinal splines — a band matrix. '

On the basis of the above theory, the FORTRAN-program “CEZAR”

~ has been prepared. This program can be used for calculating displacements

and stresses at an arbitrary point of any prismatic thin-walled bar of a.

considered class. The preparation of the input data is extremely simple.
One has only to give the coordinates of the joints in the cross-section
in the arbitrary Cartesian system, and the “coupling matrix”, containing
information about connections of joints. Also the thicknessess of the plates,
material constants and external loadings arc necessary. It proves possible
to prepare the input data for the construction with 10—12 joints in
15--20 minutes, and for the construction with 3050 joints — in 2—3 hours
{no more than 30 cards), -

We enclose two examples of numerical results (Fig. 3—8). The calcula-
tions have been performed for the bars with cross-sections of 30 joints,
which are sketched in Figs. 3 and 6, for material constants, dimensions
of the bar, directions and values of external forces as indicated in the
figures. The bar from Fig. 6 may be treated as a mode! of the hull of
a bulk cargo ship, with sides approximated by cuboids (our theory deals
only closed cross-sections). ‘The displacements u(z) and the stresses o (z)

duz)107%m] a \o@/MPa] c
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. 428 x’4 -2, 5}’°~x~x 2453 -
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VPTG 8. ) normal stresses o (60, 5) and tangent strésses (60, 5) b) long:tudmal dlspldcements
u (60 5} and tangent displacements v (60, 5) calculated in z=60m for the bar from Fig. 6.

for the joint 1, and the displacements v (z) and the stresses 7 (z) for the
_mter -joint segment 1—3 are given for both constructions in Fig. 4 and
in Fig. 7, all the" quantities being the functions of the longitudinal co-
- ordinate z Figures 5 and 8 illustrate the distributions of the displacements
u (2o, 8}, v(zo,5) and stresses o (2, 5), t(2p,s) in a chosen distance from
the end of the bar (here z, = 40 meters for the construction from Fig, 5,
and z = 60 meters for the ‘construction from Fig. 8).

The computer calculation times for the constructions from Figs. 3 and 6
were 67 and 71 min, respectively (ICL-4-70). An overall estimation of stresses
~and displacement for the same constructions with accuracy less than that
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obtained with the aid of our program demands at least ~ 1000 finite
elements. The computer time of such finite element calculations was ~35 hours.

In order to obtain an accuracy comparable with that obtained by our

method, one should use ~ 10000 f{inite elements. The computer tnne should
_ be ~50 hours. The first practical applications of our program in ship
designing completely support the opinion that for great constructions our
_ program gives the distribution of stresses and displacements in the structures

of the considered class, within computer times tens times shorter than the

~ finite element method.

6. POSSIBLE EXTENSIONS OF THE RESULTS

The authors are interested mainly in calculations concerning ship design
and thus ship-building terminology appears several times in the above paper.
However, the applicability of our model is of course not confined to
ship-bulding. Every construction which may be approximated by a prismatic
thin-walled bar with a cross-section consisting of arbitrarily arranged polygons
- may be investigated with the aid of the described program.

The assumption of a constant cross-section may be easily relaxed. For
constructions with dimensions. of the cross-section continuously 'changing
along z we simply have to calculate the matrix coefficients of Eq. (3.4)
in each point along z which appears in the integration procedure. It is the
only change, and it is sufficient for including streamline constructions into
the consideration.

Another possible extension is to supplement the present theory with the

inclusion of prismatic bars with a cross-section constant on segments and -

changing in several points on the bar length (eg bulkhead ships). Both

theoretical -and numerical resuits cofncerning bars with a noncontinuous.

cross-sectlon ‘will be published so0.
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STRESZCZENIE

NOWA METODA OBLICZANIA NAPREZEN 1 PRZEMIESZCZEN
W PRETACH SPREZYSTYCH

Opracowano nowa metode szybkiego NUMEryCczRego wyznaczania naprezen i przemieszezen
w cienkosciennych, liniowo-sprezystych pretach o przekrojach zlozonych z dowolnych wielo-
" katow. Algorytm obliczedi oparto pa teorii powlok Wiasowa. Otrzymane rdéwnania réznicz-
‘kowe rozwigzano numerycznie aproksymujac niewiadome funkcje splajnami kubicznymi.
Przedstawiono przyklady wynikow liczbowych wykazujgcych modliwoéé praktycznego wyko-
rzystania istnicjacego programu w jezyku FORTRAN, Praca zawiera “nowe sformnlowame
warunkow brzegowych :

“PEzoME

HOBEIH METO,[[ PACYETA HATIPSXEHWA ¥ TEPEMEIREHHN
B VIIPYTHX CTEPXHHAX :

PazpaGoran Honuﬁ 'METO {BICTPOTO, YHCIEHHOTO PACYETA HALUPSKCHHA M Hepememenuit

B TO]IKOCTBHHHX, IHBCHHO YHPYFWX CTEPAHAK O TONENETHOM CEMEHHH B BHAC NPOH3IBOILHOTO

MHOI'OYFOTBHAKA. ANIOPATM pacyéTa HCXONHT B3 TCOPHE 06GONOYEK Biacosa. HNonyvenrnie

IDudupepeAnHanbible ypasuenus ORUIM PeleHt! ¢ HCIOAL3OBANHEM ANNPOKCHMANHE HEHIBECT-

HEIX cpymcunﬁ cmnalitamu, Tlpusengansie npAMEpPH YMCNICHAIX PacuéTon JOKa3HIBAIOT TPaK-

_ THYCCKYIO BPHMEHHOCTD  CYIUECTBYIOMEH TPOTPaMMEL, coc'ram;ennon BHa sIvke doprpas:
PaboTa coacpxur HOBYIO (GOPMYIMPOBKY KPAEBBIX YCIIOBUE.
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