T ROZPRAWY INZYNIERSKIE % ENGINEERING TRANSACTIONS * 35, 4, 591-609, 1987
Polska Akademta Nuuk * Instytut Podstawowych Probleméw Techniki

'MODE . INTERACTION IN WIDE PLATE WITH CLOSED SECTION
LONGITUDINAL STIFFENERS UNDER COMPRESSION

Z. KOLAKOWSKI (LODZ)

Interaction of nearly simuitaneous buckling modes in the presence of imperfections is
studied. The investigation is concerned with an infinitely wide plate having thin-walled
longitudinal stiffeners of trapezoid cross-section under uniform compression. In these structures
a few. modes are of particular interest, namely an overall long-wave buckling mode of the
whole structures and local short-waves buckling modes, respectively. The asymptotic expansion
established by Byskov and Hurcumison [1] is also used here. The presenl paper is devoted
to the study of equilibrinm paths in the advanced post-buckling region of an imperfect
stifened plate. The bifurcation stress is determined analytically and the asymptofically exact
expansion is obtained for the initial post-bifurcation behaviour. The calculations are carrled

. out for several types of plates with closed section longitudinal stiffeners.

1. NOTATION

E Young’s modulus,

v Poisson’s ratio,
D, flexural rigidity, N

i length of the stiffened plate,

b, width of wall i of the plate,

fi; thickness of wall i of the plate,

X Vi % local coordinate system for wall i of the plate,
U, U;, w;  displacements of the middle surface,

3,, g;,t%,- prebuckling displacement fields,

H H 4t

u;, Uy, w; buckling displacement fields,
Ny, in-plane stress resultanis for wall i,
M., My, M,,,~ bending moment resultants for wall i,
Qi Eq- (36}’ .
A scalar load parameter,
n number of mode,
Ay value of A at overall mode bifurcation,
iy, Ay values of A at local mode biforcation;
A, maximum valee of 1 for imperfect stiffened plate,
&, amplitude of overall buckling mode,
£y, &3 amplitudes of local buckling modes,



592 Z. XOLAKOWSK]

& imperfection amplitude corresponding to &,
4 measure of the applied pressure,
m number of axial half-waves of mode number n,
a;; postbuckling coefficients (see Appendix),
d,d, postbuckling coefficients {Eq. (4.5)),
zy= —d3 &y,
zy= \/ 2d,d5 &, generalized displacement parameters,
7,,%, generalized imperfection parameters (Bq. @),
o%, o%, ot dimensionless global and local stresses
ain== min (6%, 63),
¢* limit dimensionless stress,
A cross sectional area of the stiffener,
I moment of intertia of the stiffener by the central line of the thin-
-walied plate (skin plate),
ot dimensionless stress obtained in [19].

5= / hi + 1 hy + 4 %u nivalent slcn‘derness ratio
201-v) " (by+hy) (1—v7)  (by+by) “ _ '

2. INTRODUCTION,

In compression members containing thin plates, local buckling of the
plate elements and Fuler type buckling of the whole structure can occur.
Interaction between the independent buckling modes may result in an
imperfection-sensitive structure. In recent years more and more papers are
being devoted to the analysis of the interaction of buckling modes as
a factor that determines the construction sensitivity to imperfections at
nearly the same magnitudes of bifurcational loads corresponding to different -
modes and to the closely related problem of optimum structural design.

The simplest possible model of a column (given from [21]), depicted
in Fig la, consists of a rigid bar supported on an elastic hinge. This
simple model is employed in several elementary text-books. The perfect
column, with zero eccentricity of the applied load (e =%, L= 0), loses its
stability and buckles by bifurcation at the critical load P, = D/L. The
post-buckling behaviour depends on nonlinearities in the spring characteristic.
The three commonly occurring types of buckling behaviour are shown in
Fig. 1b, namely asymmetric, unstable-symmetric and stable-symmetric. Equi-
librium paths in the close neighbourhood of the bifurcation point have
a very distinct form in each case. A small imperfection in such systems
causes a comparatively large change in the critical load. In cases of an
vastable descending post-buckling path (x # 0 or 0 =0, B < —1/6) the column
is sensitive to geometric imperfections or load eccentricity. In the absence
of a descending post-buckling path of the perfect column no loss of stability
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FiG. 1. a Simplest column model eccentricity e = xL, spiral spring M = D [6— 0&32+ﬁ93]
b. Load-deflection curves.

occurs in the column with imperfections or a load eccentricity. The presence
of the buckling load P, of the perfect column appears here only in the -
form of a marked increase of the deflection when the load P approaches
and passes the value P;. These results show that the critical load in such
structures may be extremely sensitive to small variations in imperfections,
particularly when these are near zero.

The constructions shaped as an infinitely wide plate and as a closed
cylindrical shell, strengthened by longitudinal stiffeners have been analysed
in a most detailed manner with application of general methods of stability
analysis of constructions, susceptible to imperfections [1,2,3 and 4]. Tver-
GAARD [3] has studied a post-bifurcational equilibrium path of a compressed
wide plate with longitudinal stiffeners of rectangular section. He has modelled
the eccentric stiffeners by beams which, at buckling, turn together with the
plate by the same angle, and in [6] he has analysed the optimum design
of the plates ribbed in this manner. KorTer and PIGNATARO [31, by means
of an approximate energetic approach, observed a high sensitivity of stiffened
plates at small imperfections for simultaneous modes of local and global
buckling,

The authors assumed a simplified expression for skin plate displacements
and neglected the effect of normal stress o, and shear strain Vxy- VAN DER
Neut [7] has performed an analysis of cooperatlon of buckling modes
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of a plate strengthened with tophat stringers. He considered a simplified
model consisting of two load carrying flanges connected by webs rigid
in shear and laterally. The influence of local ad global mode of buckling
_has also been considered. = .

A general theory of interaction of bockling modes of stiffened plates
was developed by Koiter {4], by means of a generalization of the approach,
presented in [3]. This theory is an approximation of strain energy by one-
-dimensional amplitude functions, corresponding to the established defor-
mation modes in the longitudinal direction.” Those approximations enable
a relatively simple consideration of stationarity of the energy functional in
the theory of continuous media. Such an approach made it possible to.
investigate several configurations of plates strengthened with various stiffeners.

Another general approach may be developed using the method of extension
of bifurcational analysis in the post-buckling region [8]. This approach is
advantageous because it applies Kdrmdn’s more general nonlinear theory.
In papers [9] and [10] stiffened plates are considered as plates, connected
elastically along the contact line, simply-supported on loaded edges and free
at the fourth edge. The post-buckling state of plates is described by Kar-
mdn’s nonlinear equation.

On the ground of results of the general, asympiotic stability theory,
a solution of the nonlincar problems of stability of the stiffened plate
with regard to the buckling mode interaction has been achieved by MANEVIC
[11]. Differences have been shown. between the situations, when the besrodf
and plate-model of stiffener has been- assumed. Following the - energefic
‘method, SEbLACEK [12] accomplished an analysis of a local loss of stability
of a compressed plate, strengthened with open and closed stringers.

Paper [13] has been devoted to an analysis of orthotropic stability
of a plate with a longitudinal stiffener, subject to compression. The plate
stability was determined by ‘applying a transition matrix, the beam- (beam
subjected to bending and torsion) and plate- (stiffener modelling by a plate,
elastically connected with skin plate) model of stiffener being assumed.

MANEVIC [14] has determined a post-bifurcational equilibrium path of
a.wide plate, and in [15] of a cylindrical shell strengthened with longitu-
dinal stiffeners of the rectangular section, whereas in [16] he has analysed
the buckling of a plate and cylindrical shell strengthened with stiffeners
of T-bar section. In all these papers a plate-model of stiffeners was assumed.
In [1,2,17] the sensitivity of cylindrical stiffened shells to imperfections
has been determined assuming the beam-model. :

In the present paper the initial post-buckling behaviour of a wide plate
with the thin-walled trapezoidal section longitudinal stiffeners being under
compression is examined in the elastic range on the basis of Byskov and
Hutchinson’s method, taking account of the cooperation between all the
walls of stiffened plate. :
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3. STRUCTURAL PROBLEM

A simply-supported plate of infinite width with longitudinal regularly

arranged closed stiffeners is considered in the present paper.

Basic geometrical dimensions of the investigated plate and assumed local

coordinate systems are presented in Fig 2. The materials of the column

e

Xf ..
c.

FiG. 2. Part of wide plate with closed section longitudinal stiffeners.

obey Hooke’s law. When u;, v;, w; are the displacements. of the middle
surface in the x;,y; and z; directions, the membrane strains of the wall i
‘are obtained as:

8ix =l +0,5 (sz,w + U?.J;:):
(3.1 &y = U; ,+0,5 (Wi, +uf ),
Vixy = Uy F Dt W Wy

and the bending strains are given by

(32) Wi = — Wi xx» Hiy = — Wiy Hixy = — Wi, xy
The relationships among stresses and strains for the wall i have the following
forms: ' ' '
' Eh; _
Ny = Ty (i tvey), My = +D; (0, +v2,),
Eh, '
(3.3) N;y = 1o ey tvey), My = +D,;00,+vay),
' Eh |
Ny = m?up My = + Dy (1v) sty

The differential equilibrivin equations resulting from the virtual work
expression for one wall can be written as



596 7. KOLAKOWSKI

: "‘Nix,x—Nixy,yzoz
(34) —(Nix vi.x),waiy,y_Nixy,x:_”Os
—(Nuc Wi,x),x-{Niy Wt,y),y“"Nixy,ywi,x” '
"‘2fo), Wi,xy_Nixy,:‘c Wi’y“" D!' vai = 0.

“In case of a sufficient number of stiffeneis, the condition of geometrical
regularity may be applied and the analysis may be restricted to one,
arbitrarily selected segment ABCD (Fig. 2). Due to a very high torsional
rigidity of closed stiffeners, a vertical symmetry axis has been assumed for
the segment under consideration.

The geometrical and statical continuity conditions at the junctions of

plates may be written as

. b ‘
wy (x, y ﬂ‘jl')r:- wiif =wy{x,y= 0) cos x+ 10z (x,y=0)sinax=
= w,)° cos a+v,|” sin o= Wy (a,c, y= —ﬁi‘_) =wl,
vt = 0]° cos x—w,|° sina = el
—W3 | X,y = —-§—'~ = —walT = wy X,y = by} cos o+
+0,(x,y=by)sina= w,|* cos a+," sina,
vy}~ = wy|* sin a—v,|" cos &, :
:Wl.yli = Wz,yl(:z' Wal s
-Wz,yl = Ws,yi ] .
(35) Dl (wi,yy+vwl.xx)‘+ "_D?. (wz,yy+vwz,xx)i0—'
+" 7 . _ _D4(w4.yy+vw4,xx}l— :09
'Dz (_:_’vz,yy“*“zwz,xx)l “"Ds (W3,yy+‘?w3;xx)l L= 05
31x1+ - Ele = 84::' s
. ‘D’Zx‘ = 83.\:1“* = o .
Ny, |t —Nayl® cos a+ Q5" sin a—Ngyl™ =0,
Nj,l™+ Ny, ™ cos x—Qyl* sina =0, '
Qy|* =Ny Psin 2,10 cos a—Qyyl™ = 0,
Q3,1 + Nyl sina+ Q1" cosa=0,
ley!: "—leylo—NAxyr =0,
NZ_xyl —NSxy‘ =0>

where

(b,-b,
o = arc cos R
2b,

(36) Qiy = Niy Wi,y+ Nixy wi.x'— Di [wl', yyy+(2— V) wi,x:xy] -
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4, METHOD OF SOLUTION

The stiffened plate is loaded by the uniform axial comptession. The
prebuckling solution consists of homogeneous fields and we may take

Eomoge
o
|

~ .

@.1) J
, i=1,2,3,4.

i
e

The boundary conditions permit the first order solution that determines the-
initial post-bifurcation behaviour to be written as

n L n oA " L 1 .
w; = (Cy; chry; p+Cysh 7y, i+ Cyp 008 7y yy+

noo . WmX
+Cy8in ¥y yy) sin ;T

4.2) = (65:' ch 7y y,+ Cﬂ'&i sh 7, .Vi+é‘n ch ¥, y;+

) +Cnsf Sh ;'.4 yl) COS m;tx N
'5i=(—65i£l ShFaJ?i‘"Cnﬁfgt Ch""sl’i“éwbﬂz Sh'ﬁl’r‘*
| —-C'fsigzch*"ly,-)sin_"i?x—,
where
] _\/mn mn+\/12(1—v2)ld
,,.._\/_ m mn_\/12(l-—v2)ld
.P.Zi"_"“' T "l_ htz - )
5 1—v
1= 2 L]
u mr \2 [ 1—v?
ezﬂ(l“‘V}(—T ( 2 ld—l),
mu V|1
4.3) 33=(1—V2)2 —r leﬁz(i"“"z)"i‘.)nd »
’n _ _32'{"\/;:
3 zéi [
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Since the perpendicular axis of symmetry of the cross-section is assumed,

‘the coefficients C”'zi: 64;', ési, (:"81- at i=1,3 in Eqs. (42) vanish. For some
values of load parameter the trigonometric functions (4.2); have to be
transformed into suitable hyperbolic functions. The bifurcation buckling
~ load A, is the smallest value of the parameter for any integral value of m
“for which the determinant of the conditions (3.5) vanishes The overall

o ;'bucklmg mode, occurring at m =1, is denoted by w,, i, D : and the local

n

_buckhng mode, occurring at m # 1, is denoted by W, &, ¥, where n> 1.
~."All the buckling modes are normalized so that the maximum normal
_"dlsplacement of the first wall is equal to the plate thickness h;. In the
*: case when the value of A, and A, are close for two local buckling modes

* at different numbers of half-waves m, a set of three nonlinear equations

‘has been solved. However, in this instance the interaction of both local
modes is very weak or does not even occur. Therefore the interaction of
the global mode and each of the local modes may be considered separately.
According to the assumptions made in Byskov and Hurcamnsons theory [1],
local buckling modes do not interact explicitely. Flowever, the interaction
occurs through the interaction of each of them with the global mode.
The formulas for the post-buckling coefficients g; ;s (see Appendix) involve
‘only buckling modes. After neglecting the values vanishingly small, the
equilibrium path is governed by

(1”‘—)51‘?‘52 d, =T§1a
(4.4) !

A _
(1 —T) fz+§: $ady= “};‘fz,

2
where dz =131,

4.5 _ d3=9122+a212~

i the points where the scalar load parameter A, reaches the maximum
value for the lmperfect structure (bifurcation or limit pomts) the Jacobian:
of the system (4.4) is equal to zero
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AN A A A~ A
46 = 1+52+7 41—
@9 (A) L7, ( WL

where

Z—I = _Ei dSs

Zy= + 2d, dy 5—2-

The expression {4.6) is an lmpllClt equation of surface 4, = f (,, 62) (surface

of imperfection sensxtmty) The parameters Zy, Z, may be called generalized--
imperfection parameters. N
"~ Equation (4.6) takes the same form as in [11] where a more detalled
analysis of the discussed equation has been given.

4.7)

5. RESULTS OF NUMERICAL CALCULATIONS

The detailed numerical calculations for several different wide plates with
thin-walled\frapezoidal section longitudinal stiffeners the geometry of which
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is known from literature [12, 19 and 207] have been performed. The assumed

- geometrical parameters and obtained results of calculations are presented
-in Table 1. _

The length of the stiffened plate ! has been chosen so that local and

global buckling occurs nearly simultaneously. The nondimensional stress

oFf = In 103 A, A10% atn=1,2,3,v=0, 3 instead of the local parameter

A, the number of half-waves m for local modes, coefficients d,,dy of a non-
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FIG. 4. Load versus uverall mode displacement ¢, for wide plate -
: b2/b1 =0.7166, by /by = 04933, b,y/b, = 1.0, I/b; = 12, ha/hy = 0.6, hy/hy = 0.6, by/hy = 30, m = 15
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"; 'hnear system of equatlons 4. 4) and”dlmensmn]ess stress o%~ obtained from

- the_technical theory in [19] are shown in Table 1. Tnitial tmperfections
are considered in the shape of the wide plate buckling mode and the local
buckling mode, and their amplitudes are denoted by &, and &,, respectively.
In the following ¢, and &, denote the additional growth of these two modes.
In the next three figures the relationship between ¢, and the load
parameter A is shown. For the plates in Figs. 3,4 and 5, the post-bifurcation
h_avmur is symmetric. with respect to the mode amplitude £, and asym-
metric with respect to the amplitude ¢, as predicted by. the asymptotic
ana]ys1s
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The local mode imperfections (positive or negative) promote an inter-
action between the local and the global mode. The local mode imperfections
promote failure by causing a rapid growth of ;. In Figs 3 and 5 a load
carrying capacity with imperfections &, and &, is marked by a crosslet.

al
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‘ FIG. 5. Load versus overall mode dispiaccment &, for wide plate
bo/b, = 0.7166, byfby = 04933, by/by =10, Ifby = 12, hy/hy = 0.6, ha/hy = 0.6, byfhy = 30, m =20,

In the other cases the maximum carrying capacity is mot reached in the
considered range. The influence of the overall buckling mode is defined by
the generalized displacement parameter z; = —dy &4 (z, = 1=~ Af4,) of which
the positive growth of z, accompanies the growth of the imperfection-
-sensitivity. In the cases shown in Figs. 3 and 4 the post-buckling coefficients
d, and d, are greater than zero (d; >0,d; > 0) and in Fig. S the coefficients
are less than zero {(d, <0,d; <0).

Figures 3 and 4 show the strong sensitivity to the negative overall
mode imperfections &, explained by the asymmetric post-bifurcation behaviour
z, 20 and the sensitivity to positive imperfections £, mainly due to the
interaction with the local mode. :

Figure 5 shows the strong sensitivity to positive imperfections £, and
the sensitivity to negative &,. -
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The post-bifurcation behaviour of the wide plate with 1mperfect10ns E =
= 0.05,&, =005, =0585=025and £, =20,5,=10is shown in Figs 3
and 4.

The bifurcation mode amphtude C, initially . grows in the direction of
&y (posxtwe ¢,) but finally is forced by the local imperfections to change
the sign in the direction of posmve z; (€ < 0) just before the maximum
~ load is reached. The same effect is seen from the curves for &, = —0.05,
E;=005; £, = —05, £,=025 and &, = 20, 62— 1.0 in Figs. 5 as it has
" been already mentioned above (initially grows in the negative &, and ﬁnally
changes in the positive &, (z, > 0)). Initial imperfections lower the maximum
_‘carrying capacity in all the considered cases.
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: FIG._ 6. Relationship between of/o¥in and eigenvalent slenderness ratio s for several values
: of £, and £,

bafby = 1, hyfhy = hsfhy = 0.6, by /hy = 30, a = arc cos (b—lz;;kzu) 2 70°,
. . 2
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FiG. 7. Relationship between o*/okin and s for several values of &, and &,
by/by =0.7166, byfby = 04933, hy/hy' = h3/hy = 0.6, by/hy = 30.

Figures 6 and 7 show graphs of the ratio o} /o, (Where o = min (a1, 63))

‘as a function of the equivalent slenderness s of the ABCD segment (Fig. 2)
~at different imperfection amplitudes £, and &,, referred to the skin-plate
thickness h,. The impefection amplitude &, has been selected so that the
value of z, should not be less than zero (z; = —&;,d; >0) because in
this case the interaction of the local and global buckling modes will resuit
in a decrease of limit stress o%. In Figs. 6 and 7 full lines show the results
obtained for the first local buckling mode corresponding to o3, the number
of half-waves being m = 13, while the broken lines refer to the results of
the other local mode, which cotresponds to o} at m=20. Then the inter-
action of the global mode with each of the local modes separately has been
considered. In this way a nondimensional limit stress oy has been obtained
as a function of the number of half-waves m for the different imperfection
amplitudes &, and &,, which is shown in Fig 8. Furthermore, in each case
a set- of three nonlinear equations (4.4) have been solved for two tocal.
modes at different half-waves number m and for the global buckling mode
with the. application of the condition that the Jacobian of this set of
equations must be zero. Numerical calculations have proved that the infer-
action of local modes is very weak or absent.
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FiG, 8. Relationship between limit dimensionless stress of and nomber of half-waves m for
: plate’s geometry
“ bafby = 07166, by/b; = 0.4933, by/by = 1.0, Ifby = 12, hy/hy = hy/hy = 0.6, by/h, = 30.

For the number of half-waves m < 15 the obtained coefficients d, and
have been positive, and for m 3> 16 negative, which causes a significant
se in' the. sensitivity to imperfections. The coefficients d, and d, of
stem (4.4) are the sums of integrals of different’ signs and they depend
¢ ratios of displacement amplitudes of particular plates. The selection
he’ mperfection ‘amplitude has been similar to the previous one, ie it
eent done so that z; 0. Moreover, a comparison has been made

the_ ‘obtained results from Table 1 and the results obiained on
se ol TVERGAARD’S work [5]
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‘However, even in the linear analysis the significant differences have
been found when beam- and plate-models of stiffeners were assumed.

It can easily be noticed that the maximum value of jds| and minimom
of g% is in the general case achieved at different values of m. The complex
nature of dependence of ¢* on the number of half-waves m causes that
the most dangerous local modes in linear and nonlinear analysis may be
. different. The conclusions reported here are convergent with those obtained -
by Mangvic [14, 15 and 16] for cylindrical shells and plate strengthened
with stiffeners of the rectangular and T-bar section. '

6. CONCLUSIONS

The initial post-buckling behaviour of the infinitely wide plate with
thin-walled longitudina! stiffeners of trapezoidal cross-section has been de-
termined. The solutions given here are valid in cases of uniform COmPpression.
In the case when a few buckling modes are comparable, disregarding mode
interaction may lead to overestimating the useful load capacity. On the
ground of nonlinear analysis, reduction of the imperfection-sensitivity of the
plate can be reached by a selection of the geometric parameters.

© " -AppENDIX. THE ASYMPTOTIC METHOD

The method outlined in the following was developed by Byskov and
Hutcamson in [1] where a complete derivation is given. This method is
suitable for structures with M simultaneous or nearly simultaneous buckling
modes. ’ ' '

Assume that the structure is perfect and that the prebuckling state is
linear with respect to the scalar load parameter 4. The displacement field
is expanded in the following fashion:

(Al) u= lu(,—l—fi ul-"i“é; éj uij+‘“9

where the prebuckling displacement field is described by: Aug, the amplitude -
¢, measures the influence of the buckling mode u;, and u; is the second
order field associated with u; and u; Summation from 1 to M is implied

for repeated Latin lower-case indices. %
The stress and strain fields are expanded in a fashion similar to (A.l).

Lo =Acg+&ioitE oyt

(A.2') g = Agg+ & 8+ & &y eyt
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' The strain-displacement relation can be written in the form-
(A 3) &= !1 (u)+1/2 12 (u),

where I, and I, are linear and quadratlc operators, respectively. A bilinear
operator I, is defined by : .

A4 L{u+v)=1 @)+2,, (u, )+, (v)

The lincar of the prebuckling state is charactcnzed by

(A.3) by (g, ) =0

for any v which in turn implies

(A6) | ¢ = 1y (o).

The material is assumed to be linearly elastic so that the stress o is
given by :

A7) a = H (g},

where H designates a linear operator.
The dot notation used in- thc follovmg denotes m!egtat:on over the
entire structure

(A.8) ¢r-s=_[crue,j-dl/

The eigenvalue problems determining the buckling modes and their associated
eigenvalues A, are found the variational equation
(A9) el A 001y (0, 0)=0, J=1,., M,

where Ju denotes all kinematically admissible variations of u.- Thé buckling
modes are taken to be mutually orthogonal in the following sense:

(AIO) : ] . 60 lll(uh J)— s l#.’

The second order and all possible lugher order fields may be shown to
be orthogonal to all buckling modes in the sense of Eq (A.10). For a dis-

placement field u the amplitude £, of its component in the shape of u ;o
: lS deﬁned by

ool (4, up) = &, a0 by ().
A variational statement of the second order bButidary “value problem is
) @yl (5u}+ﬂ.o'0 lu (g, ou) = = 1/2(g;-L;y (1, Suy+ 05+ 1y 5 (s O, -

'.u,, and 5“ are orthcgonal to each u; in the sense of Eq. (A.10),
A.=min (4,).
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The right hand side of this expression is symmetric in the indices. If
the structure suffers geometric imperfections & given by '

(A13) T=&"

. the following M nonlinear equations determine the ecjui_librium pﬁths -

Al14) & (l—_j—)"i"éifjaiu‘?'fi tfjfkbfjkiﬁ"jl—g.n_ J=1,., M.
| Ay A

The formulas for the coefficients are S
Ui = [o; 11 (s, ﬁj)+2di'li1 (_I{j, “;)] /(2‘71' £)
and , Do :
_(A,lS) bijrs = {05111 (uy, w )+ O-ij'Ii_.l (uk.‘, UJ)_;*'UJ'Ii_i (s, uzd+
77 :Fo‘i i (qurl.‘jk)“Fz:Gi.'Ill (145, )]/ 20 3.1):.
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STRESZCZENIE

WZAJEMNE ODDZIALYWANIE POSTACI WYBOCZENIA SZEROKIEF PLYTY
WZMOCNIONEJ WZDLUZNYMI ZEBRAMI ZAMKNIETYMI,
PODDANE] SCISKANIU

W pracy przeanalizowano wyboczenie Sciskanej nieskoficzenie szerokiej plyty WZMOCnio-
nej wzdtuinymi Zebrami zamkniglymi przy uwzglednieniu wzajemnego oddziatywania prawie
réwnoczesnych postaci wyboczenia. Zebra modeluje si¢ plytami. Uwzgledniono wplyw nie-
dokladnoéci na wartoi¢ obcigienia granicznego. Zagadnienie rozwiazano na podstawie asymp-
totycznej teorii pobifurkacyjnege wyboczenia konstrukcji sprezystych.

PE3OME

B3AMMHOE BO3JIEFICTBHME BUIOB MPOJOJBHOIO WITHEA
IMPOKOM OIIKTHI, VIIPOYUHEHHOY NPOJOJILHBIMK
3AMKHYTBIMH PEEPAMH, TTOABEPI'HYTONM CWATHIO

7 B paboTe NPOARATH3KHPOBAR MPOIONBHOR HITHE CRMMAEMON GECKORSUHO BIHPOXOH [T,
| YAPOWHERNOH NPONONBHBLIMA SAMKHYTEIME pebpaMu, npu yueTe B3AMMHEOTO BO3ASHCTRUA HOYTH
NHOBPCMENHEIX. BHZIOB NPOJONEHOTC u3rkba. Pebpa Momeaupylorcs nmuramm. VuTeso nims-
HE: HETOMHOCTH HA 3HAYCHHE NPEASALHOH HArpy3xn. 3ajiaua pemicua, OIHPANCh HA ACHMIITO-
CKYI0 TEOpPHIO NOCHeOH(YPKAUMORHOI0 NPORONBLHOTO MIFUOA YIPYTHX XOHCTDYKIMi.

CAL UNIWERSTFY OF LODZ, LODE.
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