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‘FIRST AND SECOND ORDER SENSITIVITY DERIVATIVES -
OF MECHANICAL SYSTEMS TRANSFER MATRIX -

JL. WICHER (WARSZAWA) .

. Sensitivity analysis in the frequency domain is considered in the paper. The- first and
second order sensitivity matrices of the mechanical lumped system are. determined utilizing
the transfer matrix partial derivatives, Fxamples presentéd in the _paper ‘show thc effects
of the parameter variatlon on amphtude-frequency character]st:cs

1 INTRODUCTION

‘When the influence of parameter variation on system dynamzc chara-
cterlstlc is considered, parameter sensitivity methods are very useful.

Sensitivity anaIy31s was first appliéd in optimal control and automated
structural optimization where gradient methods were used to find search
directions toward optimum solutions. Less well known is the use of sénsi-
tivity methods to mechanical systems; however, in the last years papers
bave appeared in this area. Hauc and Rousseier [1] and Hauc, Kowmkov
and Cuor [2] use the sens1r1v1ty anaIysrs for the static structural response
of mechanical systems. The adjoint variable method to dynamic proceses
in planar mechanism was used by Haug, WEHAGE ‘and Barman [3]. Also
Ray, Pister - and PoLAk [4] use this” method for the analysis of the
hysteretic damping system. The sensitivity method for cam mechanism has
“been applied by Younc and Smour [5] Sensitivity analysis for vehicle
system dynamics has been performed by Wartart and Iwamoro [6] Also
Mixuicik [7] presents the application of the sensitivity method to car-trajler
stability, 'The-parametric sensitivity analysis of the eigenvalues of a linear
model of a merchandise wagon has been carried.out by KIS!LOWSKI [8].

* Although the first order . sensitivity functions give valuable 1nf0rmat10n
on the influence of parameter, variation on system dynamlc characteristics,
the second and bigher order sensitivity derivatives are requlred if large
parameter variations are involved. On the other hand, the second and higher
order sensitivity derivatives are unfrequently, as yet, applicable, and methods
are much less developed, particularly for mechanical systems. The flutter
eigenvalue problem using second order sensitivity derivatives was studied by
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Rupisii and Bratia [9]. Second order sensitivity analysis was applied by
Have [10] and Havc and Enie [11] where the adjoint variable technique
was proposed. Van BeLie [12] derived also second derivatives of flexibility
matrices. The adjoint variable method has been used by Dems and Mroz
[13] who investigated higher order sensitivity analysis of elastic structures.
The second order sensitivity of eigenvalue has also been considered by
BranpoN [14]. A valuable survey paper in the area of sensitivity analysis
was published by Apsiman and Hartxa [15].- -

Sensitivity analysis of a dynamic system can be considered in the time
domain or in the frequency domain. One of the shortcomings of the
sensitivity functions defined in the time domain is that they depend on
the actual form of the input signal. The sensitivity functions defined as
partial derivatives of the transfer matrix of the system with respect to one
of the parameters are independent of the form of the input signal. This
property is very useful in practice. oy R

A procedure of sensitivity analysis of the 'mechanical lumped system
utilizing the first and second order transfer matrix derivatives is presented
in the paper. The two examples, one for the two-degree-of-freedom model
of front vehicle suspension, and the second for the five-degree-of-freedom
car model, illustrate the practical application of parametrical sensitivity
analysis. The examples shown indicate that the proposed second order
logarithmic - sensitivity functions preserve the qualitative character of first
order sensitivity functions and simultaneously are more “sensitive” to system
parameter changes. ' - ' h

2. SENSITIVITY MATRICES

A ,multi-degreeédf—fréédom-kinematiéally excited mechanical, system_can
be. expressed in the well-known form of the. differential matrix equation:

AV Mz+Ci+Kz= M'ii+Cu+K'u,

where M, C, K are square, n-diménsional, positive definite ‘and symmetric
matrices of inertia, damping and stiffness, respectively;’z is the n-dimensional
displacement vector; M’, C', K" are (% m)-dimensional matrices connected
with ‘the m-dimensional vector of kinematic excitation u. '
Assuming that “all components of the vectors z ‘and i are ‘Fourier
transformable, Eq. (2.1) can be written in the form C :

Q2 ST 2% = Hu¥,
‘where” 0T ' :

23).  HeA"'B= [K—0*M+joC]" [K -0’ M +joC],
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where H is the (nxm)-dimensional transfer matrix; z* and u* are Fourier
transforms of z and u, respectively; « is angular frequency; j=./—1.
Equation (2.1) occurs frequently in modelhng the behaviour of vehicles and-
in vibration isolation problems. ‘
It can be noticed that the r-degree-ef-freedom lumped mechamcal system
is very frequently described by the equation : o o

24) - L Mz+Cz+Kz—‘

where F is the n-dimensional force vector. The transfer matrix of Eq. 24)°
can be obtained from Eq. (2:3) under the assumption that B is the unit
matrix. Thus the model (2.1) and transfer matrix (2.3)_have a more general
form. For this reason Egs. (2.1) and (2.3) will be taken into consideration
in further analysis. .

Let us assume that the each component of the mamces M C, K M,
(', K’ depend on the parameter vector p = (py, P, ... p;} which appears in
a lumped system (2.1). As regards Eq. (2.3} thc transfer matrix depends

on the parameters p, ie. H= H (p).

The first and second order sensitivity matrices W, and W,; can be

written in the form (using the rule of differentiating the inverse matrix)

' ' ol 0*H
2.5) m=L, W=_L
( | i by, T Opidpy |y,

where p, means the nominal parameter vector. The parameter vector after .
variation, called actual parameter vector, is p = py-+Adp, where Ap is a small
parameter variation. Equations (2.5) show that W, and W,; are calculated at
the nominal parameter values. For simplicity this subscript will be neglected
in further considerations.

In accordance with Eq. (2.3) the sensitivity ma’mces given by Egs. (2.5)
can be written in the form (using the rule of differentiating the inverse
matrix)

O 4By = - A M gipypar 2

2. . ;= ——4 Aﬁl .»—A.
6. W= (4 o 5= A Bi- A ),
where ' : _ '

' . a4 2B
@7 . 4 ap; ’ ' a,Pi

A
@28 W,=t= o (B—AH)=
Toep opy

= A VA AT A H-AT VA HA AT VA4, A A AT B
— A4, AT B~ AT A4, AT B+ AT By =
L= 24T AW AT A, HAA” 1 Big s

i G N ey o a LA i 14
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" where o
A @B

29 A:————, I B Barapanlt
29) “ dp; Op; - .ap; Op;

“. 1f the parameters of the system depend linearly on dynamic characteristics,

the matrices A4; and B; have constant componenis and,- in consequence,
the second derivatives A;; and B;; have zero components. In this case
Eq. {2.8) can be simplified: :

(2-10) - ! A R W,J= —ZA_lA;_WE.

The nondimensional logarithmic sénsitivity functions which possess nor-
malizing coefficients are very useful when sensitivity analysis is- carried out
in the frequency domain. If by, represents k, the I-th element of the
transfér matrix H, then the logarithmic sensitivity function is defined as [16]

(3 In hk,l . ‘ ahk.[ _p_; R pir

211 e TR BN
( ) Sy dIn p ap; hk,t Wl(k’” hk,! g

where wiy,y in the k, I-th element” of ‘the ﬁrét order "Ser_l_s:i_tivity matﬁx Wi
In a similar way the second order logarithmic sensitivity function may be
defined as : '

M: Wiy Py Dj

2.12 e = = W .
( ) S"J(k_’l,) . &lnp; opi . Wigny Wijtd)

- Wig,n ’

where w; 4, tepresents the k, i-th element of the second order sensitivity
matrix VV;J. Lo = . .s . -_ . RS .
Al elements ‘of the considered sénsitivity matrices are complex functions.
It is difficult to understand what sensitivity means in terms of a complex
function, To charactérize the sensitivity, the real of imaginary part can be
used. But most frequently the sensitivity function of ‘the magnitude of the
transfer matrix clements is utilized, which is considered over the ‘whole
frequency range. These magnitudes are well known as amplitude-frequency
characteristics. The underlying idea is that the variations of magnitude are
large if the values of the sensitivity function are large, and vice versa.
Thus the sensitivity function of the amplitude-frequency characteristic carries
very useful information for the researcher who designs or modifies the system.

3., NUMERICAL EXAMPLES

. According- to definition, the first order sensitivity function (first partial
derivative) is valid for infinitesimal parameter variation, although the variation
in ‘practice is not infinitesithal. The first example shows how the amplitude-
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frequency characteristic changes when the value of the suitable parameter
changes around the nmominal value. To illustrate the problem, the two-
~degree-of-freedom system of simplified front vehicle suspension (Fig. 1) is
considered. : - '

J;ﬂ

. The équation,of Iho_fion- has the form:
ol my 0 TE,0 ey =l e ] 1 Ky —ky 1z |
S R i S E =
0 mg || %] | —cy cober|iZo] [ ki kotki]| 2o

u+ u.
.COJ _kUJ
" The components of the pa.r.ametér vector p = (Mg, My, Cq, C1, ko, ki) have

the nominal values: m = 70 kg, m; = 660 kg, ¢y = 100 Ns/m, ¢; = 2500 Ns/m,
ko = 300000 N/m, k, = 45000 N/m.
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Displacement amplitude-frequency characteristics «', a?, a® of sprung mass
my (nput -— u, output — z,) and appropriate logarithmic sensitivity functions
Sep» 52,5 52, for different values of the damping coefficient: ¢! = 2000 Ns/m,
¢f = 2500 Ns/m, ¢} = 3000 Ns/m are plotted in Fig. 2. The largest changes
of the amplitude-freguency characteristic occur for the frequency range
@ = (5—10) rad/s (the first resonance of the system) In the same range
sensitivity functions bave negative values. It means that amplitude of mass
m; decreases (a” <a®< a')} when the damping coefficient increases (¢} > ¢} > ¢l).
The opposite influence may be observed for w > 10 rad/s where sensitivity
functions have positive values. It means that the increase of the damping
coefficient causes an increase of vibration amplitude of mass m,.

A similar conclusion may be formulated when the curves in Fig. 3 are
analysed. The sensitivity functions show the influence of the damping par-
ameter ¢y on the acceleration amplitude-frequency characteristic of the unsprung
mass mg (4 —input, z, — output). The values of ¢, are the same as in the
sample above. The largest changes of the acceleration amplitude-frequency
characteristic occur about the second resonance range o = (60— 80) rad/s.

Figure 4 shows the influence of the parameters m,, ¢;, and k, on the
displacement amplitude-frequency characteristic of sprung mass m, {coordi-

pate zy; logarithmic sensitivity functions sii, sil, si!) and on the displ-

acement of the amplitude-frequency characteristic of unsprung mass my

(coordinate zy; logarithmic sensitivity functions sZ2, 50, s0). The curves

presented lead to the following conclusions: the value of reduced mass m,,
suspension damping coefficient ¢; and the suspension stiffness coefficient &,
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have the largest influence on the vibration amplitude of both masses m,
and m, in a neighbourhood of the first resonance (w < 10 rad/s). In the
frequency range around the second resonmance (w = (60--80) rad/s) the sus-
pension damping coefficient ¢, is the only important parameter for the
vibration amplitude of mass m, (see the sensitivity function s%9). Also the
parameter m, has a significant influence on the vibration amplitude of sprung
mass m, (see the sensitivity function sj!).

The inflnence of the parameters mg, ¢g, ky on the amplitude-frequency
characteristic of sprung mass m, is shown in Fig. 5 where the first order
fogarithmic sensitivity functions s3!, sit. sit and the second order logarithmic
sensitivity-functions sit,, . sql., and s@éko and plotted. From the comparison
of both types of the sensitivity function it can be seen that the second
order sensitivity functions are more “sensitive” than the first order. The
example shown also indicates that the proposed definition (2.12) of the
second order sensitivity function preserves the qualitative character of the
first order logarithmic sensitivity function.

FIG. 6.

It can be noticed that the influence of tire damping ¢, on the vibration
amplitude of sprung mass m, is small, what confirms that tire damping
may be neglected in vehicle vibration modelling. 7

The second example of sensitivity analysis is a five-degree-of-freedom
model of vehicle shown in Fig. 6. The equation of motion has matrix form:

MEZ4+Cz4+Kz= K'u.

Matrices M, C, K, and K’ are given in Table L
Computation has been carried out for the frequency range w=(0-50)rad/s
which includes the resonances of the reduced masses M; and M, and the
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range when the effect of acceleration is most significant for the car driver
body represented by mass m;. :
‘The following values have been assumed into computation:

M=1150kg, M, =660kg, M,=49%kg, m, =70kg,
- my=110kg, my;=80keg, c¢;= 5000 Ns/m, ¢, = 2500 Ns/m,
¢s = 3700 Ns/m,  k; = 300000 N/m, &, = 350000 N/m,
ks = 20000 N/m, &, =45000 N/m, ks = 35000 N/m,
a=115m, b=15m d=04m, ¢?=182m2
The influence of the stiffness and damping coefficients of the seat driver
(ky and ¢;) and front and rear suspensions (ky, ks, ¢,, ¢s) have been
investigated when the vehicle is moving at a spped » = 20 m/s (72 km/h).

- The logarithmic sensitivity functions plotted in Fig. 7 yield the following
conclusions: '
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1. The front suspension stiffness coefficient k, and damping coefficient
¢4 as well as the damping coefficient ¢, of the seat driver have significant
influence in the frequency range w = (3 — 10) rad/s, ie. in the neighbourhood
of the reduced masses M, M, rcsonances. The sensitivity functions 533 and
s¢; of the damping coefficients ¢; and ¢, have negative values, what means
that the increase of the damping parameters decrease the vibration amplitude
in the considered frequency range.

2. The only damping coefficient ¢, of the seat driver has a significant

influence in the frequency range o = (25—350) rad/s (this is the frequency
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range where the human- body is most sensitive to vertical accéler'ation)
The sensitivity function si¢ has positive values. This means that the increase
of this parameter increases the vibration amplitude of mass’ ma “which
represents the driver body.

3. Tt can be seen that the stiffness coefficient k; of the seat driver,
and the coefficients ks and c¢; of the rear suspension have a very small
influence on the vibration amplitude of mass m; in the whole considered
frequency range.

4. CONCLUDING REMARKS

The method presented. in the paper for sensitivity analysis in the frequency
domain provides useful design information to. the designers of mechanical
systems in order to achieve the most efficient modification. Particularly it -
15 useful for reducing the vibration amplitude of the system when the effect
of many parameters have to be examined.

The sensitivity procedure has been brought to simple matrix operations
which can easily be handled numerically.
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STRESZCZENIE

WRAZLIWOSC PIERWSZEGO 1 DRUGIEGO RZEDU MACIERZY
TRANSMITANCT UKELADU MECHANICZNEGO

W artykule przedstawiono analize wrazliwosci w przestrzeni czgstotliwodci. Macierze
wrazliwosci pierwszego i drugiego rzédu otrzymano dla dyskrétnego uldadu mechanicznego
wykorzystujac pochodne czastkowe macierzy . ‘transmitancji. Zaprezentowane przyklady po-
kazuja wplyw zmian parametrow na charakterystyki amplitudowo-czestotliwodciowe. -

PEsioms

HYYBCTBHTENLHOCTE TEPBOIC ¥ BTOPOIO HOPSAIKOB MATPUITHI
NEPEJATOYHON ©VHKLIUU MEXAHHYECKOH CHCTEMBI

B cratse mpencrammen amajmz 9YBCTBHTENLHOCTH B NPOCTPRHCTBE “ACTOT. MaTpuis

YYBCTBHTENLHOCTH NEPSOro O BTOPOTO NOPAAKOB TIOXYIEHRBI ULH “AICKPeTHOH - MeXamitueck ol

CHCTEMEI, MCHOMB3YS YACTHEIE IPOM3BOMRAE MATPHI{HE nepenarounoi Pynxmun. Tipécrasnen-

Hble HpuMepsr moxasmipazor BIMARAE HM3IMCHOHUI IapaMerpds ‘HA© AMHAIITYIHO-9aCTOTHEE
XaPAKTEPUCTHYH, R S A R T D
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