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ON THE STATICALLY EQUIVALENT LOADS IN SAINT VENANT'S
PRINCIPLE

. M. SOKOELOWSIKI (WARSZAWA)

In traditional Saint Vemanfs principle formulations the loads leading to similar stress
distributions are assumed to be statically equivalent, ie. to yield identidal resultant forces
and moments. It is shown (hat this requitement may be replaced with a. more general
one according to which the first N+1 moments of order 0,1,..,N| of both loading
systems should be compared. In the case of an elastic haif-plane loaded at the boundary
it is shown that the resulting stress differences calculated at large distances from the
loaded region are of the order of kr~%"2? where N denotes the highest|order of identical
moments of two loading systems, and r— distance from the loaded region.

" 1. INTRODUCTION

The principle was originally formulated by B. de Saint Venant in 1855.
Its obvious simplicity and generality lead to considerable simplifications
of the analysis of stress and strain distributions in elastic bodies and
engineering structures loaded at regions which may be considered as small
compared with the dimensions of the whole body. This|is the reason
why Saint Venant’s principle represents a frequently applied tool in.the
analysis of such. structures and in elasticity: in addition, numerous attempts
have been made to adapt its formulation to various particular forms of
structures and materials considered. It follows from the| fact that the
original St Venant’s formulation of the principle [9] is rather vague and
applies to the particular case of torsion of slender bars.

In the present paper we are not going to discuss the extensive literature
of the subject or to present a “correct” formulation of tha principle; the
paper is aimed at demonstrating a certain inconsequence connected with

"the notion of statically equivalent loads, and at showing how this incon-
sequence could be avoided. The considerations will be based on an earlier
paper [11] published recently (in Polish) in the Professor R KazimiErczak
Anniversary Volume by the Gdansk Technological University.

Let us first recall two of the many possible formulations of the principle,




780 M. SOKOLOWSKI

called sometimes the “principle of ¢lastic equivalence of statically equipollent
loads” (cf. A. 1. Lurie [5]). 7

1. “If the forces acting on a small portion of the surface of an elastic
body are replaced by another statically equivalent system qf forces acting
on the same portion of surface, this redistribution of loading produces
substantial changes in the stresses locally but has a negligibfe effect on the
stresses at distances which are large in comparison with the linear dimensions
of the surface on which the forces are changed” (S. Trvosnenko [13],

b. 31)

2. “The strains which are produced in a body by the gapplication, to-

a small part of its surface, of a system of forces equivalent to zero force
and zero couple, are of negligible magnitude at distances which are large
compared with the linear dimensions of the part” (cf. Y. \C. Func [1],
p. 300). Owing to linear stress-strain relations in elasticity, 'both formula-
tions are nearly equivalent. _ ' '

Analysis of both the formulations 1) and 2} makes it easy|to understand
the reason for repeated attempts aimed at their refineroent and correction:
they do not specify the form and material of the body copsidered; their
conclusions are inaccurate and vague, expressions of the type “substantial”,
“negligible”, “small regions”, “large distances” etc. being highly ambiguous.
‘Moreover, in the mechanics of engineering structures numerous cases are
encountered in which even such general statements are found to be not
true. For instance, N. J. Horr [3] considered in 1945 the problem of
torsion of bars of thin-walled cross-sections. He found that in Euch cases the

effect of actual load distribution at the end of the rod extends far beyond ,

the limits established for solid cross-sections, and in the case| of pin-jointed
space frameworks loaded by self-equilibrated force systems axial forces in
some bars do not decrease at all with increasing distance fr !m the loaded
region. ‘

It is also well-known that in elastic bodies containing cerfain’ structural
defects (cracks, notches), infinite stress concenfration appear;at very large
distances from the self-equilibrated- load systems, thus contradicting - the
formulation 2) of the principle. TN

In view of such effects, attempts are made to base the principle' on the

notion of the strain energy density and to account for thel form of the

body (structure) considered. Already in 1885 J. V. Boussinesq considered
the case of an elastic halfspace loaded at the surface. The reader is

referred to extensive bibliography of the subject published,| for instance, |

in books [1, 51

Tt was R. von Misgs in 1945 and E. SteRNBERG in 1954 ([6]~-and (12])
who tackled the problem first in more detail and. determined| the order of
vanishing the strains under increasing distances from the regions loaded
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by seif—equ:hbrated force systems. They introduced the notjon of forces
remaining in “astatic” equilibrium (under rotations of forces through equal
angles about their points of application). :

There exists a very large number of more recent papers in Wh]Ch the
authors attempt to reformulate the principle and to put it in a possibly
rigorous form. Let us mention here the fundamental paper by R. A. Tourmv
[14] who considered a linear elastic cylinder loaded by a system of self-
-equilibrated forces applied to its end. Making the observation that the
rate of decay of the strain must depend on the shape of the cross-section,
he formulated and proved two fundamental theorems. The theorems are
concerned with the distribution of strain energy stored within the cylinder,
and with strain estimates at points located at large distances from the
loaded end and at finite distances from the surface. The latter assumptions
‘made it possible to avoid the stress concentrations mentioned before. The
resulting inequality contains an exponential decay function involving several
expemnentally determinate parameters of definite physical meaning. Remarks
~concerning non-cylindrical bodies conclude the paper.

Under similar assumptions concerning the form of body consmlered
(prismatic or not}, the problem was analyzed one year later by A. Ropmson
[8] within the framework of non-standard analysis. In 1983 R. J. Knops
and L. E. Payne [4] considered the nonlinear generalization of the theorem
concerning a cylinder loaded at the end.

In all the cases mentioned above the loads are assumed to be “self-
-equilibrated”, or equivalent load systems are assumed to yield the same
resultant forces and moments. This problem of “statical equivalence” will
now be discussed on the basis of two simple examples of an elastic half-
-plane and half-space loaded at the segment of the edge (surface).

2. ELASTIC HALF-PLANE LOADED AT THE EDGE

Consider the well-known solution (Flamant.1892, Michell 1900) con-
cerning a half-plane y >0 loaded at its edge by a concentrated force

P =1 (force per unit thickness of the plate) applied to the origin of the
Cartesian coordinate system x,y (Fig. 1). The solution (cf eg. [7]) has
the form

3 2
(2.1) aoowix Y aooti_y O,oo:_?_ add
' A A woolgo ot SO

where r2 = x2+)?, and 0%, o3y, 6%} are components of the plane stress

state.
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Following now the derivations given in [11] and [10]; introduce the
notion of a concentrated moment M'® which is a result of the following
limiting procedure: two concentrated forces P =1/2¢ and P= —1/2¢ are
applied to the respective points x = —& x =& of the edge y = 0; with the
distance £-» 0 the load transforms to the first order “concentrated moment”
M'° =1 and the corresponding stress. components become . '

(22) | o | Giljo.(x,Y)ﬁma—a;{G%O (x,y)].,.. '

indices i,j assuming the values x, y. In this derivation z is a dimensionless
parameter, and ¢ is the corresponding multiple of length unit [1].

The procedure of superposition of concentrated forces 1/2¢, —1/2¢ outlined
above (the forces may be termed zero order moments M°%) may now be
repeated with respect to the first order moments to. lead to the second
order moments M2°. In this manner

ey e = Lol el

and, in general,

an
24) aff (x,y) = T Lo (x, ¥)].
X __
In particular, for instance,
Coe - : ;LS xy? 8 (5x*—p%Hy?
25) . el (x,y)= _-%—, Uﬁf(x,y):——s)—>-

nor T ¥
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and, in general,

(2.6) ol =— Wlf@
with the notation
@) £.00) = % [(1+3) sin (n+1) 0 —(n-+1) sin (n+3) 6]

Let us now approach the problem of determining the stress field
disturbances produced by redistribution of loads acting at the edge of an
elastic half-plane. Assume the segment ~-a, a of the edge y =0 to be loaded
by a certain distribution of vertical forces p(x). The boundary conditions
have the form -

6,,(x,0)=p(x) for x| <a
(2.8) Gy, (x,0)=0 Cfor x| > a,
0,y (%,01=0 for |x| < .

Function p (x) satisfies the condition

aq
[ px)dx=
Treating now stresses ot of Eq. (2.1) as a set of Green functions and
denoting them by '
| ol = Gy (x, ),

solution of the boundary value problem with conditions(2.8) may be written
explicitly
(2.9) i (x, y) = J" p(§) Gy (x—2¢, y)dt.

Value —¢ appearing in (2.9) may now be viewed as a small increment
of variable x thus enabling us to expand the Green function into a Taylor
series in the neighbourhood of point x; y plays the role of a parameter.

210)  Gy=&n=3 "L "Gy (x,)

=0 n' ox"

The region of convergence of (2. 10) W111 be dlscussed on the example

of stress o, with the Green function (2.1),

2 3
ny (x—&, y) - ;

"s‘gJ‘t:
B
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Here _
72 =(x—&)>+y
Application of Eq. (2.6) yields the expansion

2 y3 o 1 o in
(211) T~ o ,Eo(r) 12 (6).

In view of the obvious inequality

: LR
1L OIS+,

series (2.11) will be convergent for any 0'< 6 <'n provided

2.12) E<r= /X1y,

Remainder Ry of the expansion (2.11)

6, (=&, y) = == i(i)"fnwmtm

2or SH\F

satisfies the inequality

I (N4 = (N4 1) (2
pe- 0—@Emae

Substitute now the expansion (2.10) into (2.9). In the formula for
stresses a; ' ' '

(213) Ry <

. ° (=1p
(214) o= m, S Eape,
" or, in the particular case of ,,,
1 & o Jo(0)
(2.15) Jyy(r,9)=—§un-n;0M © e

Coefficient M"® appearing under the summation sign

(216) : M = _f opEde,

is independent of variables x,y and represents the n-th morr}ent of load
p (x) about the origin of the coordinate system.

Application of dimensionless coordinates ¢ =r/a and X = )J(/a makes it
possible to write the formula (2.15) in the form

[_j1 X" p (a%) dX] _—{;’fl) :

_ 1
(2.17) o,y (0, %)= S

i

"
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Convergence of the series (2.14), (2.15), (2.17) may be analyzed on the
basis of condition (2.12); it depends on the interval of integration (2.16);
since ¢ should be less than r, and £ varies between —a and q, Series
(2.14y—(2.17) will converge for all ¥ > a, ie. outside the semicircle of radius
a centered at the midpoint of the loaded portion of the edge (shaded
area in Fig. 2). The same conclusion may be drawn directly from Eq. (2.17).

3. CoNCLUSIONS

Formulae (2.14y—(2.17) are of fundamental importance for| establishing
the effects of load rearrangement upon the stress field at |considerable
distances from the loaded region.

Denote. by p{x) and p'(x) two different load d1str1but10hs over the
segment —a, @ both of them satisfying the condition

_jf p(x)dx = _jﬂ p{x)dx=P

are denoted by oy;(r,0) and ay;(r, 0), respectively. In the case of stresses oy,

Stresses produced by these loads in re'gion'r>a of the halEplane y=>0
Eq. (2.15),

the difference of stresses o¢,; and oj; is written, accordmg
in the form

. , 1 2 . o Ju (0
(31) O™ 0w = 5 Zo (M —M"™) fn(+1) )

this result cnables us to draw the following simple conclusions.
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1. If both loads p (x) and p'(x) yield the same resultant force (zero order
moments) but different resultant moments (of first order), the) difference of
the corresponding stresses produced by the loads at distancgs r > a will
be of order K (afr)?; the value of K may be established by an analysis
of coefficients M™ and M similar to that vsed in the preceding section
(Eq. (2.11)). ‘

2. If both loads yield the same resultant force and moment, ie. if they
are “statically equivalent” according to the traditional definition, and differ
by the second order moments M2° and M'?° the stress differences will
be of the order of K (a/r)°.

3. If the first N+1 moments M°°, M'°, .., M" of both load systems
are identical, the corresponding differences will be of the order of K (afr)' 72,

It is seen that the static equivalence requirement appearing in most
of the Saint Venant principle formulations should be considered 4s a particular
case of a more general equivalence requirement fo be imposed on the load
systems leading to similar stress distributions at large distances from the
loaded region, Estimation of the resulting stress differences|seems to be
relatively simple. The traditional formulation of the principle results probably
from the fact that the resultant forces and moments of tﬁﬁe first order
appear in the fundamental laws ‘of motion. (conservation of momentum and
moment of momentum); however, such approach seems to bfe ungrounded
in the case of formulation of the Saint Venant principle.

4, NUMERICAL EXAMPLES

To illustrate the conclusions let “us consider two simple examples of an
elastic' half-plane 'y > 0 and a half-space z >0 acted on by loads acting
at the segment —a < xS« {Fig 3a, b). In the first case normal load p is
constant along the segments —a < x < 0 and 0 < x < a so that the boundary
conditions have the form '

| .pl for —a<x<0,
o, =
¥ lp, for 0<x<a.

The accurate SOlutIOIl for stresses oy, (x, y) is easily obtained|by integration
of Bq. (2.9) and- : '

o : P1 s+l X
41) _
@1 om o)== |:y((x+1)2+y2 x2+y2)+

_ox1 X 2 X x—1
t v o jan” ) |- : o
+( an y an - J’):l x [y(x2+y2 (#+1)2+y2 +
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+(tan_1 —xww‘[an_1 x—1 )]
y ¥

The approximate solutions involving the resultant momerts of order 0,
1 and 2 are written in the form

(4.2) Tyy =~ M O-g)?’
(4.3) Ty = MO0 a0 ~M*® a0,
1
(4.4) Ty = M0 030 —M' O o) +7 M* a3y,

z¥

Fic. 3.

according to formulae (2.14), (2.15) with notations (2.1) and 62.5). Resultant
moments are in this case equal to
a? a’
M =(p;+py)a, M =(-p, “?Pz)—z', M?® = (p +P2)“§~
Numerical results of approximations (4.2}—(4.4) given in| Table 1 have
“been evaluated for the case when a=1, py=p=1, p, =2p =2 Accurate
‘values of stresses ¢, (x, y) are determined from Eq. (4.1) at sgveral locations
x,y and given in column (0) of Table I. In columns (1), (2), (3) are
given the absolute values of errors (in %) following from the consecutive
approximations (4.2), (4.3), (4.4) according to the Tormula
= 1009 IOy 9 3

w0
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Table 1.

stress Errors of consecutive

Ty _ approximations (%)
x ¥y ) (1) 2 3)
4] 2 82472 15.8 15.8 35
0 3 59373 7.2 72 Al
0 4 45863 4.1 4.1 22
0 5 37214 2.6 2.6 081
0 10 18972 67 67 0060
1 4 42778 1.13 275 23
2 4 32678 6.49 25 36
3 4 21696 9.85 2.65 14
4 4 13441 11.2 379 050
5 4 08193 112 . 404 20
10 4 00984 3.85 65 Az

Accuracy of the consecutive approximations increases with n]in most cases,
and “statical equivalence” is found to- be of no particular {importance in
this respect; in some cases the condition of equal “zero-order moments”
M® may already lead to satisfactory results provided x*+y* > a*=1
(outside the sernicircle shown in Fig. 3a).

Another numerical example is given in Fig. 3b and Table|2. It is known
that stresses produced in an elastic semispace z >0 loaded| at its surface
z=0 by a concentrated force P =1 applied to the origin of coordinate
system (the Boussinesq problem, cf, eg, [5, 7, 13]) are given by the
formulae

. 3
(4.5) 6, (%, 7,2) = E”}%’ R2= x2+y’+ 2,

followed by similar expressions for the remaining stress components, Denoting
stress (4.5), by amalogy with (2.1), by 022 (x, ¥, z), solution of the problem
shown in Fig. 3b (three concentrated forces P, P,, P acting at x=
= —a,0,a,y=z=0, respectively) assumes the form :

(46} Oz (x,y,z)= Pl Gg:? (x+a, y,z)+P2 0220 (x,y, Z)+P3 J%zo(x%an ¥, Z)~

Stresses ot produced by unit n-th order concentrated ﬂmomen.ts (2.16)
applied at x = y = z = 0 are calculated from the formulae analogous with (2.4),
and it is easily found that

_ 3z
oop (%, y,2) = S5 R

' 3 -S5xz3
4.7 | ol (x,y,2) = 5 TR
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Table 2.
stress errors of consecutive
[ approximations {%)

X ¥y z () o (2) 3)

0o 0 4 162260 103 T 103 1.15

0 o 6 076065 462 4.62 226

0 0 8 043628 2.60 2.60 0714

0 ¢ 10 028179 167 167 0292

2 0 4 12088 152 107 1.75

4 0 4 042725 259 105 837

6 0 4 012548 ' 25.1 10.7 142

& 0 4 0040887 21.7 861 110

0 0 4 0015501 184 6.66 755
-2 0 4 089145 150 419 355
-4 0 4 028846 o7 131 1.15
—f 0 4 00RGH4E 252 123 1.03
-8 0 4 0029540 8.43 .64 47
—10 © 4 0011688 8.24° 7.3 521

4 4 4 013591 155 3.75 160

6 6 6 00356808 10.1 182 0323

10 10 10 0019584 502 692 000425

3 ~5(REPLTXY 2
20 -
020 (x, y; 2) = o g

In the numerlcal example it was assumed that a=1, =1, P=2,
= 3, so that

M®=6, M=2 M®—4;

moments MY for j# 0 vanish, loads P being distributed albng the x-axis.
 Accurate values of stress o,,, Eq. (4.6), at several points x,| y, z (satisfying
the condition R > 1) are given in Table 2, column (0. Columns (1), (2), (3)
present, as before, absolute values of errors resulting from the .consecutive
approximations (4.7} analogous with (4.2)—(4.4).

Also here, in a three-dimensional case, it is seen that the statical
equivalence does not decide on the accuracy of approximation, what suggests
the possibility of reformulation of de Saint Venant’s principle.
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STRESZCZENIE

O STATYCZNIE ROWNOWAZNYCH OBCIAZENIACH W ZASADZIE
SAINT VENANTA

W tradycyjnych sformulowaniach zasady de Saint Venama zaklada sig, Ze obciaZenia
prowadzace do ‘zblizonych rozkladow naprezef powinny byl statycznie rownowazne, a wige
prowadzi¢ do identycznych sil i momentéw wypadkowych. W pracy wykazano, ze zaloZenie
to zastapié moZna ogllniejszym, zgodnie z ktorym poréwnywad nalely pierwsze N+1
momentéw rzedu 0,1, .., N obu ukiadéw sit obcigzajacych. W przypadku polptaszezyzny
sprezyste] obciazonej na krawedzi okazuje sig, Ze réZnice naprezefi wywolane obydwoma
ukladami i obliczone dla odleglodci duzych w poréwnaniu z rozmiarami obszaru obcig-
zonego sy rzedu kr~ ¥ 2 gdzie N oznacza najwyzszy rzad lden!ycznych momentéw obu
ukiaddw, a r — odleglo$¢ od obszaru obcigzenia. : s

Pesrome

O CTATUYECKW PKBUBAJEHTHbLIX HAFPYXEHWAX B NPUHLIWIE
CEH-BEHAHA

B Tpasumumonneix dopmynuposkax nputuund Cen-Bepana nipeanofaraercs, 4To Harpy-
WeHUA, NPUBOJALAE K COJIOKGHHLIM DACHPCAENEHMAM HAUPAKCHWH, AOJKHBI ObITh CTaTH-
YECKH IKBUBANCHTHLIMH, 3HAYHT AOJKHBI NPHBOAMT K WAGHTHYHBIM PE3YNBTHPYIOIMM CHEAM
# MoMentaM. B pafoTe nokasaso, uTo 9T OPEANOJOKEHHE MOXHO 3ameHuTh Gosieé ofimm,
COMIACHO ¢ KOTOPBIM CJEAYET CpABHMBATL nepBbie N+ 1 momentor nopaaxa 0,1..., &V obonx
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CHUTEM il pyscons i B cuytin yupyiono nodynpoctRECLsa, i pyacHioi o ia kpae,
OILIBASTU, UT0 PirsHIAL  IEIPHACHEE, BLrsainae. oDoMIL CHCTEMOME 1 PICCUiitLe
U PACCTORMRTL GUALIHES B0 CPABICHEIO O PIIME DM sl pyacHHOi oDIACTH, nopHIc
ke w2, N OGOTHANAET CaMbIl BLICOKHE BOPSIJIOK HACHIHEHLIE MoMeHToB abotx CleieM,

H {RICCroRHNe o RITIHINEY] HAat PYacHHA .
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