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_ THE EFFECT OF THE POISSON RATIO ON THE YIELD
FUNCTION IN PLANE STRAIN CONDITION

A NIEMUNIS (GDANSK)

Initial and subsequent vield sirfaces are specified in the plane strain condition in
terms of three stress components acting within the deformation plane and the state variable
representing the lateral stress, The effect of the Poisson ratio on fhe yield condition is
investigated. The rate constitutive relations are derived and applied to several simple cases.

1. INnTRODUCTION

It is well known that the yield function expressed in terms of stress
tensor components does not depend on the elastic properties of the material
However, in a particular case of plane strain state, the stress component
normal to the plane of deformation depends on the Poisson ratio. As a result,
this ratio will appear in the expression for the yield condition when
expressed in terms of stress components acting within the deformation plane.
During the elastic-plastic deformation, an evolution of the yield surface
occurs in the space of these stress components. In the present work the
initial yield surface will be specified and its evolution will be determined
by regarding the stress component normal to the plane of deformation
as an additional state variable. It is often assumed that the yield condition,
such as Coulomb’s or Mises’, used to solve plane elasto-plastic problems
is the -same as that for a rigid-plastic body. This assumption, however,
is not legitimate in general and, when selecting specific material parameters,
it may lead to considerable errors. A general analysis will be illustrated
by several examples. A similar problem has already been treated by

Matos [2] and GrirFire [3].

2. TNITIAL AND SUBSEQUENT YIELD SURFACES TN PLANE STRAIN STATE

2.1, Initial yield surfaces

Consider an isotropic, elastic-perfectly plastic body deforming within the
plane x;, x3, and the xj-axis of the orthogonal Cartesian system x;, X,
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x5 is normal to this plane. The principal strain component €; vanishes,
so for the elastic state there is

2.1 Ee§ = 05—V (0§ +0%) =0,

where o2, 05, 0% are the principal elastic stresses and E and v are the
elastic parameters. We assume that the x; and x5 axes coincide with the
principal stresses o, and 5. It follows from Eg. (2.1) that ¢, need not
be an intermediate stress (let, for instance, o; = 50 kPa, 03 = 40 kPa, v= 1/3,
then one has o, = 30 kPa, thus o, is the minor stress). For some yield
conditions, (such as the Coulomb or Tresca condition), the major and minor
principal stresses specify the filure planc. If the stress ¢, is a major or
minor principal stress, then the failure plane will not coincide with the
deformation plane, Fig 1. There is an exception for an incompressible
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stress
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stress
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Fic. 1. Deformation and failure planes (II,, M) for Tresca material
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material for which v=1/2 and the stress o% = (o, +a3)/2 is always inter-
mediate. A formal proof of this statement aiso for an eclastic-plastic regime
was provided by Ziggier [1]. Consider first the Tresca, Coulomb and
Drucker-Prager yield conditions. For simplicity, assume that

0 = O3.

The Tresca yield condition has a general form .
(2.2) : : Fyp = 0 =0 —2c =0,
where ¢ denotes the cohesive strength. In the plane strain state, particular
cases can be distinguished: _ .

o120y Z03 Or 03 2vof{l—-v), g =(1-v)ay/v:
(2.2 _ Fro=0y—d5—2 =0,

oy >a3>0, of o3>ve(1—v):
(2.27) . Fry=0—v(o;+03}—2¢=0,
o> 0y>03  of o3> {1-v)a/v:
(2.2’”) ' Fpo=v (0, +a3}'—63—26 = (.

Fig. 2. Tresca yield surfaces and a stress path for further example.
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The yield surface, when depicted in the plane oy, o3 for different values
of v<1/2, becomes a hexagon with its size increasing rapidly with v.
This hexagon corresponds to an intersection of the Tresca prism in the
three-dimensional space 6y, 0z, 03 bY the plane o, =v (6, +03) with sub-
sequent projection onto the plane o, =0. When v = 0, o, =0 and the yield
surface (2.2) corresponds to the plane stress case (Fig. 2).

Consider now the Coulomb yield condition

23 Fo = (0 — Ooi) + (O Ooia) $in & —2¢ €08 & =0,
where @ denotes the angle of internal friction and ¢ is the cohesion.
- Similarly to (2.2), we have for the respective three cases -
a) Feg=(0,—03)+(03-+01) sin @ —2ccos 9 =0,
23) b  Fo=[o1—v(o1+03)]+[o1+v(e1+0s)]sin d—2ccos &= 0,
¢) Fe=[vio,+os)—o3]1+[Y (6, 03)+ 03] sin —2ccos P =0.
These yield conditions are presented in the plane gy, 03 in Fig. 3. For
the cohesionless material (¢ = 0), the plane oy =v(g; +0a3) passes through
the vertex of the Coulomb prism and the yield condition is specified

by two lines in the (o4, ¢5) plane. It may happen, however, that the plane
g, = v(o,+04) does not intersect the Coulomb prism, which means that an

V=0, ; / -
% /S 7

S 9=0187 / ///_/

e o =S0kPa @ =30°
/ {Gmax - Gemin! * (Gmax = Gmin) Sin® - 2c-cosf =0

y

Fig. 3. Coulomb yield surfaces.
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elastic state of such a material is impossible in the condition of plane
strain. This-situation occurs when’

(24) o 2v+(14+2v)sin P < 1.

Let us now discuss the Drucker-Prager yield condition which, unlike the
Coulomb or ‘Tresca conditons, is also sensitive to the intermediate stress.
In terms of stress invariants, this yield condition is expressed as follows:

235 Fpp= I3 4al /3K =0,
where _ ' a
Iy = ay+0y+0,,

Iy = 02—+ (o5 =01+~ 02,

29 a=3tgg/9+121tg7¢)'",

k = 3c/(9+12 tg? g)*/2
In the space of princjpal stresses Eq. (2.5) is represented by a conical

surface, Fig. 4. Substituting ¢, = v(s(+0;) into Eq. (2.5), the initial yield
condition is expressed as follows: .

@.7) Fop = (40— (0 — gA] M —at (149) 2p f3—k = 0,

where
(2.8) B=02—v+1)/3, p=~(0,+03)2, g=(61~03)2.

Eq. (2.7) can be transformed to a quadratic form

q=-1z(G'1-G'3)

3 ek k0

$ =30°, ¢ =50kPa

e 5 it e § ' 8 b e o,

FiG. 4. Drucker-Prager. yield surfaces.
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(2.9) Ci1 p24Cy2 2 +2C 15 pg+2C31 p+2C5 g+Cas = 0,

and, depending on the sign of its determinant D= C,, C,,—C3,, can be
represented by an ellipse (D > 0), parabola (D = 0), or hyperbola (D < 0).
As D can be expressed in terms of the friction angle and the Poisson ratio,
these parameters affect the type of yield surface. Fig. 5. In the special
case of a cohesionless material, k —¢ =0 and the yield. surface in the
gy, 03 plane is represented by two straight lines passing through the
origin of the coordinate system. For more details on the initial yield
surface of the Drucker-Prager cone see [3].

2 A
05
Nwo straight lines

04 Hyperbola

03t Barabola

0.2

Ellipse
0.1

20 30 40 g
Fig. 5. Type of yield surface for ¢ and v values.

2.2, Subsequent yield surface

When plastic flow occurs, the initial yield surface specified in terms
of ¢, o5 evolves, since the value of ¢, varies during the deformaiion
process and eventually reaches its limit value o, = (o; +a4)/2 corresponding
to a limit state of unconfined plastic flow (or to a rigid plastic model).
Noting that the limit surface is formally obtained by setting v=0.5, the
‘initial and the limit yield surfaces can be denoted, respectively, by
F,(61,03)=0 and Fos{0,,03)=0. During the elastic-plastic deformation,
o, need not be an intermediate stress though it takes the intermediate
value in the limit state. _

Iniroduce a plane coordinate system Oxy preserving the index 2 for the
direction normal to the deformation plane. Let us present the stress and
strain fensors as vectors: o
2100 6 = [0y, 0y Tays 02175 &= [E2s 8y Vy> 821"

The yield condition can be represented in terms of the stress components
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0. Oy Ty and the stress ¢, can be regarded as “stat¢ variable” similarly
to the case of a hardening solid, thus . '

(211) - F (0'*, 0'2} = O: 6[*3 x 1) = [st O-ya Txy]T~

The evolution rule for o, is generated by requiring &, = &%+ = 0, thus
for the associated flow rule we have

(2.12) &y = AOF /S0y +[6,~v (G, +6,)JE=0,
and
(2.13) 63 = ~EA(5F/60,)+v(6,+6,).

The scalar mul‘upher A4 is obtained from the consistency condition F =0,
(2.14) . (0F/06™*) 6* +(6F /60 ,) 6, = 0.
Substituting Eq. (2.13) into Eq. (2.14), one obtains

(2.15) 1= % [(5F/56%) 6% +(3F/3a3) v (65+6,)] (OF/50,) 2.

It is seen that o, varies both in elastic and plastic states. In order to
generate a new state variable which evolves only because of plastic deforma-
tions, let us introduce the concept of “plastic stress” p, specified by the
relation

(216) P2 = 02—682 ="0'2'—V (o-x+gy)n ‘

and with the evolution rule associated only with the plastic strain rate
[conf (2.13)]:

217 pa = —EL(6F/d0>).

The “elastic” stress component 6% = v (o,+0,) can now be added to the
plane stress vector o*, thus generating a transformed stress vector 6fyx ¢ =
= [0y, 6%, 0}, T,|7. The yield condition can now be expressed as follows:

(2.18)  F(e%p) =0,
and since _ '
19) . 8F/d, = OF/dp, = 6F/50%,

instead of Eq. {(15) we have
.1
(220 : A=— [(5F 166°) 6°7 (8F [8a,) 2.

Before discussing the rate constitutive relations, Iet us defme thc vector
Mo 1) normal to the yield surface, with
(221) ny = 0F/bo,, ny,=0F/éc,, n3=20F/do,, ny=JF/dr,,.

The ﬂow rule now takes the form
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1
. PP — m e §° = x 41 GF.
(2.22) & = A (8F/d0) By (nxm)é*=Cf, 4?0-
The elastic-plastic relation can now be expressed as follows:
(2.23) ey = Claxa Sax 1+ Claxa Slaxns

and it can be reduced to plane components:

(2.24) Eaxiy = Cfx a1 6= 115

with two separate equations

(2.25) &, =0 and &y=05%+ps.

In the matrix form we obtain

(2-:26) _
o 1+(N;)*+2vN, }Ni N3+v(N1+N3—1); N, Ny+vN, ,
;: o I ERIRIREERIE TRV DN, | Ny NekwNs | |
v R e pomm—— Ty

symmetric | e 12{(14+v)+ (NP
and -
227) Gy =V (65x+6,)—[N1 6,4V (0:+6,)+ N3 0,+ Ny Tl s

py = —[Ny 6x+v (6x+6,)+ N3 6+ Natnl,
where N; = n;/n,.
The inverse relations between stress and strain rates can be obtained
in a general form:
(2.28) Giax 1) = Diaxay frax 1 —Dfax gy Bax 1y E
where ' ?
(229 Dpyx s = D*n® 0" D/(K +nD*n’), E
and K denotes the hardening modulus (for the perfectly plastic material
K =0). These relations can be expressed in terms of plane stress and
strain rate components, namely
i I Ay I 7
A—d, dy/M | ———dy d/M | —dy dy/M
[ (L=v) |
g | | ———m———"F——777777" | e Ey
(2.30) g, |=

Xy

s

o = ——dyd :
L [ y 2(1_+v)_ R
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where
dy = A [ny+v (ny+na)f(t —v)],
dy = A [ny+v (ny+n3){1 —v)],
0 dy=A[ns+v(ni+ny)/1—v)],
Q3 . TR T
dg = A [na+(1-2v)/2-2v)],
_ E(1-v)
T A+v(1-2v)"
M=A4|n n+nn-|.—nn+. n _i:-_—}v__l_
= trhy iy 33”442(1_v)
2v .
“+ 1= (ny na+ny ny-kny na)],.
or briefly _ _
(2.32) d=D°n, M mnTD"

The comphance matrix Cpzx g = D;‘a,x 3 can be- formed by the inversion of
the matrix D if D is not singular, ie. the material is not in the critical
state when n, =0 and C does not exist. Consider now a particular case,
namely the uniaxial strain & # 0, ¢, = &3 = 0. For a smooth yield surface
the external normal vector m;x 1) = dF/d0 satisfies the condition n, = n, for
an isotropic material. The constitutive relation has the form '

2E

(2.33) 61=486 T M2 naflny ny +{4vag nz+2n, ny)L —vj] ,

1-

with the suplementary condition _ : :
(234) 6'2 = 6'3 = 6'1 {V/(]. - V) ~ [n]_ +2n2 V/(l — V):I/(an)} .

For a singular flow rule corresponding to an edge of intersection of two
regular surfaces F; =0 and F, =0 one has to specify two vectors n
and m normal, respectively, to F; =0 and F, =0 at the edge. Consider
a particular case when m; =n;, m, =n; and m;=n, (the Tresca and
Coulomb conditions satlsfy these reianons) Usmg Koiters’ ﬂow rule, cne
obtains_

(2.35)° by =&

— ny/[2ny ny+(dvng ny+ny ny)(1—v)],
and

036« Ga=by= by () —lmy b v —na).



638 A. NJEMUNIS

3. EXxAMPLES '

Two examples will be presented, the first one concerning a stress-stram
relation for Tresca material and the second dealing with a stress prediction
in the Coulomb type material (influence of the overconsohdatlon ratio on
the K, value in soils).

i) Application to Tresca material

In the first part let us take into account. an isotropic elastic, perfectly
plastic material in a homogeneous plane stran and assume the Tresca
yield condition with the associated flow rule. For further simplicity, impose
the condition:

0y >0'3>0'2,

and consider the principal stresses and strains only. Under such circumstances.
the yield cohdition takes the form

FT' = 0’? —a‘é—pz—2c' = O
The normal vector n is constant and equals'
“a=[1, -1,0, O]T

From Eq. (2 27) the rate of evolution parameter is obtained:

Py = +165 —v (6 +63) = 61369,

and the followmg equations can finally be written for the elastlc reglme

—
e
1
il
by |
RN
t‘l
I
<|N
&)
- = -
)-n'll
{1y
o ¢ |
NI‘:
—/
B
|

for the transitional regime, according to the form (2.26),

g : ol 5

[él]_l 2(,1 j)ﬂ > [&1] - E

H|TE s Il { 63 : : -

Accounting for the fact that the elastic-plastic matrix C“’P is constant (in
general it can depend on ¢ and p,), we shall use our incremental equations
for increments of stress. The relation between stress and strain corresponding
to the stress path of Fig. 2 is shown in Fig. 6. The stress path 1— —2—3
was chosen and the following material parameters were assumed: ¢ = 50 kPa,

vy =01, E = 100000 kPa.

ii} Overconsolidated material

Our second example concerns horizontal stresses produced by a large
prestress in soil Let us assume uniaxial strain and an elastic-perfectly.
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n G {kPa)
(3@  Critical state
200 :
Elasto-plastic loading
with ,hardening’
- L E
@ ( 2(1-v)
\ Unloading
Elastic
100+ loading
—E-2 v =01
— 17 . & =50kPa
o1 02 03 &l

FiG. 6. Stress-strain relation for the stress path of example 1.

plastic material with the Coulomb yield criterion and the associated flow
rule. For simplicity, assume the parameters ¢, @, v, v to be constant in
the process of loading and unloading, Here y denotes a specific weight
of soil per unit volume. To be consistent with the geotechnical convention
of signs, we assume the confining stress as positive. Let us divide the
process into three stages:

initial state of stress (geostatic),

uniformly distributed surcharge,:

unioading. _ _ _

The initial state. The vertical stress ¢, increases with depth linearly
o, = vz but the horizontal stress ¢, in general, must be divided into an
elastic part of = o, v/(1 —v) (that results from Hooke’s law) and a “plastic”
part equal to the evolution parameter p, = o,—05. The latter occurs only
when the initial yield condition is violated by thé clastic stress, that is
when o ' : -

(¢ —a5)—(0,+0}) sin D—2c cos § > 0,

or, substituting the expressions for ¢, and o,, _
yz [(1 —sin @ —2v)/(1 —v)] > 2c cos D,

If the term in brackets is negative, the material can be regarded as purely
elastic in the uniaxial strain. This will be the case in nearly incompressible
soils or soils with a high friction angle. The following discussion is conducted
for “weak”™ soils which do not satisfy the condition sin ®+2v > 1. For
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‘cohesive materials, one can calculate a depth z, beneath which some plastic
deformations occur, thus

2c(1—v)cos &

: (1—-sin ¢—2v) 7 -

As the total stress must satisfy the yield condition, the ¢onsistency condi-
tion is derived in the form :

(5F [50,) 6+ (5FJ60%) 64+ (6F /3p3) by = 0,

Ze =

where
F = (6, — 05— py)—(0,+05+Dy) sin &—2c cos @ =0,
Hence we obtain

., (l—sin @) —(1 +sin D) v/(1—v) -
bn= 1+sin @

v

The equation of evolution for py is independent of the|stress level so it

can be integrated. The value of the evolution parameter if easy to calculate

as a part of horizontal pressure:
|

_ (1 —sin @)=(1 +sin P) vil—vy
ph - ] 1+_sin (D ) (av‘ '}"zc)s

provided that o,—yz >0 A’ distribution of geostatic: stresses in soil is
shown in Fig. 7. - : i .

Loading. At any depth z the soil experiences the: same - vertical stress
increment Ao, =g and the same elastic horizontal stress| increment Ao}, =
= gv/{(1—v). The evolution parameter can be obtained frd]m

_ (1—sin ®)—(1+sin &) v(1—V)

(g+yz—yz) (>0}

Ph= T iqsin®
o | 20+sinf =1 } ' . b 2\7+sinﬁ_<1 l
_G_‘G:ﬁ'-z gﬂz
zc=25(1-.\7)cusg
F1-sin@ - 29}
z . - z
-G'h-ggbg_.s_c;v . §#i3h+Ph ! Gﬁ;%.cv

Fig. 7. Geostatic stresses for; a-— strong and b— weak soils. =
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and the total stress is expressed as follows:
g, = Yz-+4g,
On = O +Py = (V2+q) V(1 V) +p,.

Let us notice that at a certain depth there can occur both purely elastic
and elastic-plastic increments (Fig. 8, section 0—1 and 1—2, respectively).
Unoloadmg The process will continue according to the relatlon

oy =0, v/(1—v),

untll the horizontal stress is much bigger than the vertical one and the
passwe state” of the Coulomb condition is reached, ie.

(o4—0,)—(0,+0,) sin ®—2¢ cos & > 0.

Therefore, once again we have to distinguish two stages, purely elastic

i

G'\',=a'z+q

20000 (kPal §®
$ =165, c=20kPa

%= 20kNIm

1000+

2 500 1000 GyikPal

Fig. 8 The process of loading and unloading of soil in the uniaxial state of strain.
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and elastic-plastic (Fig. 8, sections 2—3 and 3—4, respectively). After simple
calculations we obtain the value of vertical elastic unloading:

e = 2ot LE=2HML—) —A1 A=) |
! 1—-2v+4sind >

where the upper index (2) denotes the stress state at the [point 2 of Fig. 8.
During the subsequent process of unloading, our evolution parameter p,,
decreases according to the consistency condition associated with the Coulomb
condition (conf, Fig. 8). The following equation is obtained:

1—sin®=2 |
|

Pr= 19 (1 =sin @) %o

and as o, is negative, the evolution parameter p, decreases. Defining the
overconsolidation ratio as OCR = ¢/¥/a and the coefficient of earth pre-
ssure at test as K, = oi¥/o'®, one can casily interrelate them as shown
in Fig. 9,

Ko As G{é)/ G(él

z2,5m, 6=20kPa

/
/2=5m, ¢ =20kPa

$ = 146470 22025
7 =20kN/m3

TS 3 4 5 6 7 8 9 1om 213U B
ocr = & [ &9

FiG. 9. Earth pressure coefficient at rest Ko as a function of the overconsolidation ratio.
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STRESZCZENIE

WPLYW STALEJ POISSONA NA UPLASTYCZNIENIE W PLASKIM STANIE
ODKSZTALCENIA o

Wyznaczono poczatkows i kolejne powierzehnie plastycznodei w | warunkach plaskiego
stanu naprgZenia, wyrazajac je za pomocs trzech sktadowych naprezen! dzialajacych ‘w plasz-

s - . . P . ol -
czyinie odksztalcenia oraz zmiennej stanu przedstawiajacej naprezenia w kierunku po-

przecznym. Zbadano wplyw stalej Poissona na warunek plastycznoéci.!E Wryprowadzono row-
nania konstytutywne i zastosowano je do kilku prostych przypadkéw, |

PeslomMe

BIIMAHHUE HOCTO)IHHOIZ OYACCOHA HA TIEPEXO[Z B ITJACTUYECKOE
COCTOAHUE B ILTOCCKOM JEPOPMATTHOHHOM COCTASHHH

OnpeesieHLI NepBas ¥ MOCIEAOBATE IbHEE [LIACTHYECKHE TIOBEPXHOCTH B YCJIQBHSX [LIOCKOTO
HATIPAKEHHOTO  COCTOAHWA, BHIPaXAd HA [IPM TIOMOWIH TPEX COCTABILIOINHX MANpSXeHHH,
TeHCTBYIOWMK B INIOCKOCTH ActhOPMAlHE M TePeMCHHOR COCTOSHWS, IpeICcTaBRsome Hanps-
XERHA B HOTICPEYHOM Hanpasaexun. Mcecnenosano siamseue mocrosinHod TTyaccoma Ha yoaosue
TTACTHIHOCTH. BBeseRuT ONpEAE/ISIOIIME YPABHEHHS M OHH UPUMEHCHB K HECKOTMBKHM
TPOCTRIM CIYJIasM,
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