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THE TORSION OF A NONHOMOGENEOUS VISCO-ELASTIC BAR
OF ELLIPTIC CROSS-SECTION

A SELKARAMANY and F. E KODSY (TRIPOLI)

An exact solution for a torsion: problem of a: nonhomogeneous visco-glastic bar of
elliptic cross-section is presented. A method based on elastic-viscoelastic analogy is used
to obtain the stress distribution in the cross-section of the bar. The numerical results show
that the nonhomogeneity reduces the stress as compared to the homogeneous one.

INTRODUCTION

The influence of nonhomogeneity is of great importance in the study
of visco-elastic materials such as composite materials, fibre reinforced plastics,
fibre glasses and glass epoxy which are widely used in engineering design
and technology to increase the strength of the construction. Tn such
materials the material properties vary with position in random manner.
So far only a few papers have been devoted to the investigation of the
effect of nonhomogeneity on the stresses of torsional problems. The torsional
problem of a circular bar and a hollow sphere of nonhomogencous

visco-elastic material have been studied Karamany [1, 2]. In the present

work, an analysis of a torsional problem of a nonhomogeneous visco-elastic

bar of elliptic cross-section is presented. The creep function is assumed here
as a function of time and coordinates. The method of solution as discussed
by Iuousuin [3] for the homogeneous visco-elastic problem is applied here
to the nonhomogeneous visco-elastic problem and the numerical results
for the stress distribution in the elliptic cross-section of the bar are obtained
and compared with those of the homogeneous one.

1, FORMULATION OF THE NONHOMOGENEOUS VISCO-ELASTIC PROBLEM

Consider the boundary value problem
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0y, &; respectively, denote the stress and strain tensors; IT(¢,x,y,z} is
the creep function; K — the bulk modulus; {x, v, z)— the coordinates of an
arbitrary point M situated inside the body; ¢ is the time; €, — the per-
mutation symbol; u, — the displacement; So-_ the boundary surface where
surface tractions are specified. S, — the boundary surface where displacements
are specified, n;— the unit vector along the outer normal to the surface,
(x4, ¥s, 2 — the coordinates of an arbitrary point on the surface S, or S,,
and q;, ¢; are given functions (i,j=1,2,3).

It is assumed that the loading is- quasi-static and the relaxation effects
of the volume properties of the material are ignored [4].

We ‘shall use the Laplace-Carson transform with the real parameter p.
The 1mage of f{t) is f(p) defined by [5].

as f‘(p)='p'0j eTHf () dt

| ‘Taking the Laplace—Carson:transf_orm of the pr.t.)ible'm (L.11{1.3), 'we
obtain the following boundary value problem in terms of images:
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2. THE METHOD OF SOLUTION

We shall consider the materials for which the creep function IF can be:
written as

(2.1) O, x,y,2)=Hy(t}g(x,y,2),
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where g(x, y, z) # 0 everywhere inside or at the boundary of the body.
Let the function IT, () be given by [6]:

H
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A, B, o are empirical constants, I' () is the gamma function, G, is the shear
modulus which is constant for the homogeneous body and I, (0) = 1/2G,.
Using Eq. (2.1) in Eq. (1.2); we get.

(24) e;=g(x,¥,2 Iﬂo(t 1) dS;; (7).

From Eq. (1.4) and (24) one obtams

25) e;;= gil, gij-

In addition to the problem described by Eqgs. (1.5) and (2.5), let us
consider the problem of the nonhomogeneous theory of elasticity with the
following nohomogeneity law:

(2.6) G = Gylg(x,y,2), K = constant,

~where G is the shear modulus. In this case we have the following boundary
value problem [7]:

80',-; 62 Ekm
_<§;;+QF"=O’ EiJkGImnW" .
(2.7)
[
0= kwa T35 JlS di» uilS" = Q.

According to the elastic-viscoelastic correspondence principle [8], and
from Egs. (1.5) and (2.7), it follows that the present nonhomogeneous
visco-elastic problem in terms of the images is identical to the corresponding
nonhomogeneous elastic problem with the condition (2.6) and the following
substitutions:

1/2Gy — I, S%SU, G, G0y,

(2.8) e — € Gy 0—=0, F>F, g¢-§,
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3. THE TORSION OF A NONHOMOGENEOUS BAR OF ELLIPTIC CROSS-SECTION

Consider a long bar of elliptic cross-section. It is assumed that during
torsion, the cross-section of the bar remains plane and rotates without
any distortion. The non-vanishing components of stress of the Saint-Venant’s
torsional elastic problem are then defined as [7]

F F
(3.1) _ Oy = NG 7 Oy = —qG;, |
where F = F(x,y) is the stress function, G = G (x,)) = Go/g is the shear
modulus and # is the twist in radians per unit length of the bar for the
non-homogeneous elastic problem, g = g (x, y, 2).
The stress components (3.1) satisfy the equilibrium equation. -

da do
32 xe L Y ().
(3.2) FREN 0
Substitution of Eq. (3.1) in Eq. (3.2) gives
(3.3) G=G(F).

Now, considering the expression (2.6), we write the shear modulus (3.3)
in the form : .

Go
(3.4) G= , Gy = constant.
g(F)’ °
Further, the stress components (3.1) also satisfy the compatibility equation
de de . '
35 N
(35) 3y o ;
where
1
&y == 2G Tiys
Substitution of Eq. (3.1) in Eq. (3.5) gives
(3.6) V*F= -2,

where V? is the Laplace operator.
The boundary condition here is

(3.7) ' Fl,=0,

where & is the contour of elliptic cross-section.
# can be determined from the relation
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M= _”‘ (xayz_yo'xz) ds,

where M is the twisting moment.
The solution of Eq. (3.6) with Eq. (3.7) is

2 y2
(3.9 F~— —B( b2 1),
where .
a? b?
Y

Thus an exact solution is obtained [7] of the torsional nonhomogeneous’
elastic problem of an elliptic bar in stresses as :

3.10 ‘ Cog ™ ————y Oy = -
10 o) o0 T T g ox

If the nonhomomeneity of the material is taken in view of Eqg. (2.6) as
(3.11) G=Gy[1-(F/B)"], n>0 (integer or fraction).

One gets fro'm'Eq. (3.8), using Egs. (3.10) and (3.11),

Q@+ +n) 2 M
~ n(3+n  (mab) 2G, B

(3.12)

The components of stress and strain in the form mdependent of n would
then be

_ 2N
Oy = = [1=(F/BY M,
2Nx
Uyzz [1 (F/B)R:IM
2Ny M
(313) ' &y = “WTGO‘S
e — 2Nx M
¥ na*h 2G,
where
_ 2+nm(1+n)
n{n+3)

‘Using Egs. (2.8) and applying the inverse Laplace-Carson transform,
one gets the components of stress and strain in the nonhomogeneous
visco-clastic case as
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2Ny '
- _ _(F/BII M,
2Nx
Gy, = naab [1 _(F/B)n} M,
(3.14) t
: IN
By = —F;;- { o (t—1)dM (z),
0
b4
IN -
£y = ma’; JHO (t—1) dM (v7).

0

4. THE TORSION OF A HOMOGENEOQOUS VISCO-ELASTIC BAR OF ELLIPTIC
‘ CROSS-SECTION

- The components of stress and strain for the case of the homogeneous
visco-elastic bar may be obtained straight away as a particular case by
taking the shear modulus G = G, (a constant) in the preceding nonhomo-
geneous problem, Equation (3.11) then implies that n should tend to oo
as F/B < 1. The components of stress and strain given in Eq. (3.14) then
reduce to give the components of the homogeneous visco-elastic problem as

_ _ 5
(41) Oz = — naﬁS TV
2x
%= 3y M
i
2

By = — naJ;:s J.Ho.(t“"f) dM (7),

o

t

2x
By =3 JHO (t—1)dM (z).

0

5. NUMERICAL SOLUTION

In order to compute the components of strain for the homogeneous
or nonhomogencous visco-elastic problem, one has fo find the value of
the integral '
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: .
(5.1 [ Oy (t—7) dM (7).

Q
~ For that, let M (1)= M, h(z), where M, is a constant and h(t) is ‘the

Heaviside’s Unit Step Function.
Substitution in the integral (5.1) gives

(5.2) fﬂo (t—1) dM (z) = fno (t—1) Mo H.(z) dt =
0 0.

= M, fno (t—7) 8 (c) de = My o (1), (¢20),
0 .

where, & (t) is the Dirac delta ﬁinction.
Now, from Egs. (2.2) and (2.3) we have

(5.3) i, (£)= ﬁ[u[un dt],

where
b4 #

fL(t) di = J E_:r i LAr (@)]” £ dt
0 0 -

e R A (¢ 77))

can be evaluated for different values of ¢ (in minutes corresponding to
some special values of the empirical parameters «, A, f).
. Introducing the dimensionless components of stress and strain as .

o _ Tmab®
xz Txzs
M,
nah®
Oy = Tz
M,

(4

E;!'=2= nabz(zﬂio)gyzs 'J"=a/b
0

and using Eqgs. (52) and (5.3) in Egs. (5.1) and (4.1) respectively, one
obtains the . components of the stress and strain tensors in the homo-
geneous visco-elastic case as

. 2y 2x
55 o ® . _ 7 ¥
( . ) Oz p? Gy, ay »
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’ l t t
2x
o= 2 14 L)dt|, 8*=W 1+JL(£)dt .
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and the components of the stress and strain tensors in the nonhomogeneous
visco-elastic case as

ot = ~ 211 ~(F/BY1,
ot = 2N 11 _mp,

(5.6) ,
gk =— 21;3’ |:1+fL(t)dt:,,

1]
14

g = 2% [i+fli(t)dt:l.
ay
J

Case 1. Stress and strain components at the point (¢/2, b/2) under the
condition n = 2.

At the point x =g/2, y=b/2, on the elliptic cross-section of the rod
under torsion for n = 2, one has F/B = 1/2 and consequently the components
of stress and strain for various values of y are otained from Egs. (5.5)
and (5.6) for visco-elastic homogeneous and non-homogeneous materials,
respectively. The results are given in Tables 1, 2 and Fig. 1.

Case II. Stress components along the axis "1_mder the condition n = 1

For any point (x,0) on the axis (ie. x-axis) of the elliptic cross-
-section of the rod under torsion for n=1, one has F/B=1-—x%/a* and
the stress components of, = 0. The other stress component o}, for various

Table 1. Showing stress components &%, and 3%

a¥ a
¥ Homogeneous Nonhomogeneous * Homogeneous - Nonhom'ogeneous
visco-elastic visco-elastic visco-elastic visco-elastic
1.0 ~1 —0.9 1 0.9
1.5 —1 —09 0.667 0.6
20 -1 —0.9 0.5 045
2.5 -1 —09 04 0.36
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Table 2. Showing strain component *.

L) o
for >
£ o=025 y=1 y=2
A =0106 Homogenecus  Nonhomogeneous | - Homogeneous  Nonhomogeneous'
B =005 visco-elastic visco-elastic visco-elastic visco-clastic
1] 06758 1.6758 20110 0.8376 1.0040
2] 0.3900 1.8900 2.2680 0.9450 1.1340
3| 10556 2.4667 1.0278 1.0294 1.2334
5 1.3216 23216 2.7859 1.1608 1.3930°
7| 1.5407 2.5407 3.0488 1.2704 1.5245
8| 16388 2.6388 3.1666 1.3194 1.5833
91 17309 2.7309. 3.2771 1.3655 1.6386
10 1.8180 2.8180 3.3816 1.40%0 1.6908
12 19734 29734 3.5681 1.4867 1.7840
14;  2.1263 3.1263 3.7516 1.5632 1.8758
16 2.2613 3,2613 39136 1.6307 1.9568
ggz ' Q
19 - for y=2
18
17
e
16
18
14
13
12
11
10
a8
08
27— :
Ll L1 [ N | T T T T
2 4 & 8 @w 7 WS H ¢

Fic. 1. Relation between t and ¢, of the homogeneous and nonhomogeneous visco-elastic

€ases.
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values of x is calculated from Egs. (5.5) and (5.6) for visco-elastic homo-
geneous and nonhomogeneous cases. The results are given in Table 3 and
Fig. 2. - . _
~In both cases the creep function I, () is taken in the form (2.2) and
L(t) in the form (2.3) when _

' ' 0 =025, A=0106, =005

Table 3. Showing stress component o}, - |

Points o
along visco-elastic visco-elastic
X-axis homogeneous nonhomogeneous
8/8,0 0.25 “ 0.0059
af4,0 0.50 ’ 0.0469
3a/80 | 0.75 0.1582
af2,0 1.00 0.3750
5a/8,0 1.25 0.7324
3a/40 1,50 1.2656
0.84,0 1.60 1.5360
0.854,0 1.70 1.8424
0.50a,0 1.80 .2.1870
0.954,0 1.90 2.5721
0,0 2.00 3.0000
b’gyz |
3.0
28K
20
15
10— gy
&
o
- \m(“./
05+ /
/ ’ 4
I 2

3 §

=]
N
=
Y
S
=
o]
x
-3 =

[P
"R

|

Fig. 2. Stress distribution along x-axis of the cross-section for the homogeneous and non-
homogencous visco-elastic cases.
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~J]

STRESZCZENIE

SKRECANIE NIEJEDNORODNEGO PRETA LEPKOSPREZYSTEGO
O PRZEKROJU ELIPTYCZNYM

Przedstawiono 4cisle rozwigzanie zagadnienia skrecania niejednorodnego preta lepko-
sprezystego o przekroju eliptycznym. Zastosowano metodg analogit spr@zysto—lepkospr@zystej
do wyznaczenia rozkladu naprefen w przekofr poprzecznym preta. Wyniki numeryczne

. wskazujg, #e nicjednorodnoé¢ prowadzi do zmaiejszenia tych naprezes.

Pesrome

CKPYUHNBAHHWE HEOJHOPOOHOIG BAIKOYHIPYIOrO CTEPXHSA
C SNNMHIITHYECKUM CEYEFHHWEM

IlpeacTaBnedo TouHOS pEIICHHE 3afayH OKPYYHBAHMA HEOHHOPOAHOTO BAIKOYNPYIOro
CTEPAKHA C ULIHNTHIECKUM ceueHReM. IIpuMEHEH MOTOI YIpyTe-BA3KOYNPYFOH aHanornH s
OlIpeigJicH)s] PACNPEACNCHHs HAPSLKCHHE B MOTIEPEYHOM CCUSHMH CTepxkHA. UHCNEHHLE pe-
3yJIbTATH YKA3BIBAKOT, 9TO HEQHOPOOHOCTE HOPMBOAKT K YMEHBIIEHHIO 3THX HATpMKEHHH.
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