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NUMERICAL ANALYSIS OF BEAMS AND FRAMES WITH
STRAIN-SOFTENING MATERIALS

T.LODYGOWSKI (POZNAN

The present study shows the softening post-peak deflection behaviour of beams and
frames for cracking reinforced concrete materials. The layered finite elements are used in
the analysis. Concrete exhibits strain-softening effects in tension and compression and the
steel reinforcement is assumed to be elastic-plastic. The bond slip of reinforcement is neglected
but still it is shown that the model satisfactorily approximates the existing experimental
tests, The arc-length method which seems to be very general even for snap- -through and
snap-back structural behavicur, Is wsed in numerical analysis.

1. INTRODUCTION

A structure w1th both physwal and geometrlcal nonlinearities can some-
times exhibit a softenmg response in which the load parameter declines
with increasing displacement after its peak value has been' reached. For post
buckling analysis of ‘elastic structures or for concrete and reinforce-concrete
(strain-softening materlals) structures such softening behaviour is typical.

Recently great attention has been focussed on finding general solution
algorithms for the nonlinear behaviour of structures. From the numerical
point of view the whole struetural response after the limit or bifurcation
point has been reached is of partlcular interest (snap—through or snap~back)

It is convenient to present the behaviour of the structure as a path
in the space of the displacement vector comyponents q and load parameter 1
(for one-parametric cases)— Fig. 1. When using the typical load control
incremental process, it fails for the max value of A when singularity of the
stiffness matrix appears. For many practical problems when only the snap-
-thorugh in structural response is observed, the components of displacements
are. chosen as control’ parameters.” In such cases we have displacement
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control algorithms [1-4]. Even these procedures cannot overcome the d}fﬁcu}ty

of the snap-back phenomenon. However, there are some proposition e. g.'
BerGaNs stiffness parameter [5], KrorLinvS and DRINKLER'S creep type

Snap-through .

e
Snap-back

Displacement

F1G. 1.

strategy [6, 7] which improve the efficiency of nonlinear analysis. WEMPNER'S
and Riks ‘ideas [8, 9], developed by Ramm [10] and CrisrieLp [11-14]
_based on the arc-length parameter, overcome the above difficulty and recently
‘seems to be the most general and the most powerful in the post-critical
analysis of structures of any type. This method will be adopted here for
the analysis of structures made of strain-softening materials. All of these
methods with their extensions are summarized in detail in the study [4].

In this work the softening post-peak deflection relationships for cracking
reinforced-concrete beams and frames are analysed by layered finite ¢lements.
_This type of clement, studied previously in [15] but with ‘geometric
nonlinearities which are now omitted, seems from the engineering and
design viewpoint to be accurate enough and has the additional advantage
that it permits the numerical analysis of complex structures with a small
number of degrees of freedom. The method can easily be extended to
geometrically nonlinear cases by using, for example, a convected formulation
as presented in [22] or [15].

2. STATEMENT OF THE PROBLEM

Let us consider beams or frames made of softening material (e.g. concrete)
possibly reinforced by elastic-plastic bars. The assumptlon of the bending
theory arc used and the bond slip of reinforcement is neglected. In
numerical examples the softening material (concrete) is assumed (o exhibit
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strain-softening in both tension and compression. We will use the “smeared
model” of material [16, 17], and we will not discuss the problems of
crack growth and propagation and localization effects [18]. Under these
assumptions we are allowed to formulate the laminated finite element.
Details are presented in Appendix -A. Moreover, the omission of shear
deformations makes it possible to dlscuss the constltutlve law in one-

-dimensional form. -
The numérical results reached in this study are based on the implemen-

" tation of the arc-length method. Some of them show the mﬂuencc of finite
element discretization on the final limit loads.

3. CONSTITUTIVE LAW FOR LAYER

An uniaxial stress-strain relation will be used for the concrete with the
approximate ‘piece-wise linear diagram shown in Fig. 2a and with strain-
-softening effects in both tension and compression.
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3.1. Concrete

The unloading diagram Fig. 2a assumed here is the straight line passing
through the origin. Its slope is equal to the secant modulus at the maximum
strain reached. This is a simplification of concrete behaviour. The softening
in tension and the size of the plateau in compression are characterized
by the parameters ", . One of the most important points in incrementally
iterative procedures is the proper choice of the constitutive state of each
layer and adopting the value of E. The problem becomes complicated
when a layer unloads so that & changes sign. The constitutive relat10n
is fully described using the following parameters: E,, e, ¢", 0%, 67, n*, 5.
In addition a vector which stores the indicators of each layer’s constitutive
state is introduced (e.g. IND = 0 for loading of IND = 1 for unloading).

3.2. Steel

The adopted constitutive law for steel elements is presented in Fig. 2b.
We assume the ideally elastic-plastic behaviour. All possible modifications
of the constitutive state of each layer that appear during the incremental
process are expressed in Fig. 2 and are used in finite .element code.
The nonlinear constitutive relation is the only reason for nonlinear structural
behaviour so the proper description of unloading-reloding states of laminas
and the proper limits modifications (e.g. o,, &) are extremly important.

4. THE METHOD OF SOLUTION

Before we present the flow-chart for solving the incrementally formulated
physical problem, let us present some basic ideas connected with the
arc-length method used in the analysis.

4.1, Arc-length method

The governing equilibrium equation where the load level 1 is treated
as a variable can be expressed as -

(4.1) g (q) = I (q)— 1p,

where £ i the vector of internal forces, g is the out of balance force
vector and both depend on the current displacements q; p denotes a fixed
_total load vector. Since we assume the scalar A as a variable, the additional
‘constraint equation is required to fix the increments of displacements.
For this purpose we choose the load parameter to lie on the (N-1)-
-dimension hyper-sphere given by:
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(4.2) Aq] Aq,+addip’p = AL,

where Agq, and A4, are the vector of incremental displacements and load
parameter at i-th iteration respectively, Al is the arc-length at the current
step. Following Crisfield’s suggestion, we adopt the above equation

(4.3) Aq; dq; = AP,

so we will not discuss the meaning of the scaling parameter a.

Let us introduce the following notation in which the subscript 0
describes the displacements (qo), internal forces (f*) on the load level (4q)
in the equilibrium state-at the beginning of increment. It means that for
perfect convergence

@4 o fBad=hep.
The iterative procedure involves
: _ A1 = Ao+ Ay = 4;+54;,
(4.5) | Q+y = Qo+ Ay, = q;+ 8y,
491 = A+,
where the subscripts denote the number of iterations, and for simplicity

the acceleration parameter is omitted in the formulas. We are looking for
the equilibrium state in the new configuration where

(4.6) g@A+4%,q) = (Q-(+A)p=g(A)—4ip=0.

The mN —R technique assumes that the tangent stiffness matrix X is formed
at the beginning of the increment and remains fixed for all iterations.
The additional displacement is obtained by

(4.7) : 8, = —K g (A;+84) = 8,461, 8,
where
(48), 8, = -K'g(l) and S,=K lp.

When using mN —R, we sec that 8; is found just once at the beginning
increment and only 8, is modified in the iterative process. Assuming perfect
_convergence at the last increment, we obtain

(49) - 8o = A7, 8,

We notice that the vector &, Eq. (4.7) is fully defined only if 64, is known.
Substituting Eqs. (4.7} and (4.5) into Bq. (4.3) yields

(4.10) al 5/’{-‘2‘}‘(12 525"‘(13 == 0,

where the coefficients are
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: a4 = 6{ _57‘,
@11 7 ay = 2(4q,+8)" 8,
az = 87 8,1-24q"'§,.

Among the two roots of Eq. (4.10) the appropriate one is chosen using
the criterion which ensures an acute angle @ between 4q; and Aq,,,.
It generally leads .to the one which is the closest root to the linear
solution if both roots generate the positive value of cos#. The second
root is simply omitted and is not discussed any more.

It is assumed that the arclength 4/ is known at each increment.
For the first increment the initial value of A1, is applied and it involves
the first length as

(412) Al = Aig /3T 8y .

The magnitude of the next incremental length is changed as a function
of number of iterations required at the previous increment of load and the
previous value of Al So the first value of incremental load for new step
is found as

(4.13) diy = + 41/ /8% &, .

where the sign follows the sign of det K in our analysis.

4.2. Solution by finite elements with arc-length method implemented

The incremental process is carried out according to the arc-length
method previously shown. The main steps of the algorithm are briefly
stated as follows:

1. Read the input data — structure geometry, parameters of constitutive
law.
. Initialize. -
Loop on loading steps.
Formulate the stiffness matrix of a structure K.
Find the inverse stiffness matrix K (in fact factorization).
Loop on iterations where both increments of the load parameter
o4 and increments of the displacement vector Aq are iterated.
7. For each point check the loading-unloading conditions {constitutive
law code). Solve the system of equilibrium equations to obtain the new
nodal displacements. ‘ _
8 Check the convergence criterion [5]. Usually the criterion is, according
to the maximum value of residual forces in each node, IRl < 8 i=
=1,..ndf, or [} O/Y. 62, —1| < 9 where &, d;, are new and previous
i ]

N W
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values of i-th displacement components, 3 is the chosen tolerance. If the
criterion is not met, go to step 6.

9. Calculate the answer of the system at the end of the incremental
step. Print the results. Return to step 3 and start the next loading step
after the updating of all values.

5. NUMERICAL EXAMPLES

5.1. Concrete Beam

Consider a simply supported beam Fig. 3 in which all layers have the
same softening properties. The values of the parameters that describe the .
constitutive law are: E =300 GPa, " =0.000133, ¢~ = —0.00137, ¢* =
=40 MPa, ¢~ = —41.0 MPa, y* = 80, n~ = 20.0.

The cross section of the beam (its depth) is divided into 12 layers,
and becausc of the symmetry only half of the beam is analysed using
2, 4 and 8 elements. The obtained results that present the y displacement

- of point 4 (midspan) versus the load parameter A are plotted in Fig. 4.
These results are very sensitive to the chosen element size. When the
element size decreases, a sharper drop of the load is observed. It is due
to strain localization in the midspan of a beam. For the smaller number
of elements under the averaging of strains adopted here the strain locali-

zation effect is not so strong.
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5.2, Reinforced concrete beam

In the beam Fig. 5 the reinforcement bars are treated as additional
laminas with the steel properties, having the cross section of the same
value as the bars. In this case we have 13 layers. The properties which
are assumed for the analysis are expressed by the following parameters:
for concrete E=30.0GPa, ¢* = 0000133, ¢~ = —0.00137, ¢* = 40 MPa,
0" = —410MPa, n* =80, n~ =200, and for steel E=2000GPa, ¢" =
= —g~ =0002, ¢+ = ~g~ =400kN/ecm>. Figure 6 presents the results for

TR l}p :1__
1 - - ....A - - - ﬁ-—-.——b
X
7 196.0 cm ‘ 'ZQ?W'
ap .
¥ 4 gf b
— . s
. N § ’ g
= 5 =S
63.0cm = : e
A [ [ 3
[-3 a
a
912 8.0cm

Fic. 5. a} structure, b) cross-section.




NUMERICAL ANALYSIS OF BEAMS AND FRAMES WITH STRAIN-SOFTENING MATERIALS 479

340

4 elements
25.0 1~ -
8 efements
200

150

Logds KN :

5.0

i _ | |

0 40 80 120 168 200
Dispi. *E-83m
FIG. 6.

4 and 8 clements used in°the numerical analysis. Like in the previous
case this figure exhibits the same effect due to the clement size. Figure 7
shows the stress distribution in' the element, the closest one to the midspan,
obtained numerically in the computations. It also shows the corresponding
level of applied loads. '
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5.3, Reinforced frame

The frame Fig. 8§ which is analysed reflects the experiment made by
CranstoN [20]. He tested the portal frame symmetrically loaded. In general
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the faildye mode of the frame need not be symmetric. Cranston’s calculations
show that bending moments taken from the experimental data in fact are
symmetric. Therefore, for the numerical analysis we consider only one-half
of the frame.

Data adopted for the material description are as follows: for conrete
E=255GPa, ¢" =00001, " = —00014, ¢t = 2.55 MPa, 6 = —35.7 MPa,

=150, 7 = 30.0, and for steel E = 2000 GPa, ¢" = ~5~ = 0002, ¢" =

= —o¢~ = 400.0 MPa. The load-y displacement of point A relation is plotted
in Fig. 9. The limit load obtained in the analysis agrees with experimental
results. S

6. CONCLUSIONS

The present study provides an efficient discretization procedire unsing the
layered finite element approach. The iteration method, based on the arc-
-length concept, which is nsually applied for elastic structures with geometrical
nonlinearities, allows for a successful analySIS of structures made of softening
materials,

The softening post-peak behaviour of load-deflection diagrams can be
explained in terms of the strain-softening behaviour of concrete. The presence
of reinforcement stabilizes the behaviour of structures even if the advanced
failure states appear in concrete layers. :

The adopted numerical procedures show good convergence and in spite
of previously reported difficulties [14] can be-used for the analysis of
physically nonlinear structures.

APPENDIX A, FINITE ELEMENT FORMULATION

Let us introduce a finite element Fig. 10 which is a part of beam
that each cross section is divided into »; layers. The constitutive law for
each layer can be different from the other as was discussed before.
For the analysis of reinforce concrete structure, some layers can represent
concrete and ;some the reinforcing bars.

The column matrices of element displacements and forces expressed in.
the local coordinate system are: '

u= {uls U1, @y, Uy, Uy, (PZ}TJ
f: {N11S19M13N23 Sz,Mz}T,

where u, v, @, are axial displacement, transverse displacement -and rotatioﬁ
of cross section and the subscripts 1 and 2 are referred to the adjacent

(A1)
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i-th layer

FiG. 10. a) Element in coordinate systems; b) cross-scéﬁoﬁ. g

cross sections at both ends of the element. The 1nterna1 forces are due to
the centroidal local axis x. : i
The strain at any point of the beam is

(A2) g(x, y)= oufox,
where the displacement in axial direction is
A3 . u(x,y)=t(x,0)~y dv(x, 0)/3x

When using the following expressions describing axial and transverse
displacements : S

7(A.4) u(x,0)=(1—-&u+lus,
(A5 0(x,0)=(1-3+2E% 0, + (38 -28%) v+
+ L (& -28+8) o1+ L, (cf3 éz)cpz,

where & = x/L,, L, is the eclement length (Fig. i0) and substitutmg into
Eqgs. (A3) and (A 2) we obtain the geometric equation in the form

£ (x,y) = Bu, )
= /L, {—1; 61 (1-28); 2L, n (2—38); 1; 61 (26— 1); 2L, "l 39} L

where n = y/L :
Then classically, applying the virtual work principle to the beam element,

we obtain

(A.6)

where V- is the element volume and E; is the tangent elasticity - modulus..
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Along the axis x it is easy to integrate amalytically and the integral
over the cross section area is approximated by a sum over all layers
I=1,.,n Tt is assumed that the stresses are constant on the depth of
a layer. The matrix K has to be transformed to the global coordinates
in the form

(A8) - K=1T7K,T,

where the fransformation matrix T has the following components: Ty, =
=Ty = Ty =Tss =cosa, T3 = Ty =10, T, = — Ty = Ths = — Ty, =sina
and other T;; are equal to 0.

13
Let us denote as follows:

Q = Z ET( bi hi’
(A9) R=). Erbihyys,
S = i E‘[‘i bi hi yizb

where b;, h;, y; are width, depth, and centroidal y; coordinate for the
I-th layer, respectively. Then we simply obtain the transformed form of the
element stiffness matrix as

rKn Ky K3 K4 Ky5 Ky
Ky Kyz Kju Kjps Ky
K33 Kiu Kjs Ky

Ko Kus Kys

. Kss Ksg |’
symmetry Ko

(A.10) K=

where its components are
Kii=Kyq= —Kyy :._— Ky = QL 2 +1281,3 5%,
Ky = Kss= —Kgs = —Ksy = QL' s*+125L.° %,
Ky =Kz = __Kls =—Ks1 =Kys=Ksu = —Kyy= =Ky =
: = (QL," - 12SL%) sc,
Kiz=Kj31=—K33= —Ky3= ~RI; ¢~ 65,25,

Ky3 =Kz = —Kys= —Kg3 = —RL's+68L,%¢,

- Kyy = 2K ;35 = 2K,y = Kee = 4SL,",
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Kig=Kgy= —Kyg= —Kega = RL;l_cw6SL;2 s,
Ky = K¢ = —Kgg = —Kgs = RIZ's—6SL; ¢,
_ s=sina, ¢=COSa,

After the displacements are solved, the internal forces are found as
Ny= —N,=[(U—Uy)ct+(V1—Va)sl QL. +{(p—$1) RL, ",
$, = =8, = [(U,~Uy) s+ (V= V) €] 12SI57 +($1+65) 6SL.%,
M =[(U,—Uy) RN AR RL;'+

‘ F[(Uy—Uy) s—(Va— V1) €} 6SL2 +2 21+ 62) SILY
-M2_=[(UL—UZ)C'*(Vz'-Iﬁ)S]RL—elJF . o o

LU, —Uy) s—(Va— Vi) c16SL2+2 (1 +262) SL.

in which U, V, ¢ are the displacement components in global directions
at nodes.

(A11)
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STRESZCZENIE

ANALIZA NUMERYCZNA BELEK I RAM Z MATERIALOW OSLABIAJACYCH SIE

Praca dotyczy analizy belek i ram ukazujac ostabiajace zachowanie si¢ konstrukeji
betonowych i Zelbetowych. Bfekt taki osiagnigto, zakladajac dla betonu zwiazki konstytutywne
z oslabieniem varowno w strefie Sciskanej jak i rozcigganej. Do analizy numerycznej preyjeto
maodel warstwowy elementu skoficzonego, w ktérym nie uwzgledniono wplywu podlizgu na
styku materialow, zbrojenia i betonu. Mimo to otrzymane wyniki odwzorowuja z zadowala-
jaca dokladnodcia wyniki znanych doswiadezed taboratoryinych. Zastosowano sformulowanie
przyrostowe, a do sterowania procesem numerycznym tak zwana metode parametru Sciezki
(“arc-length” — Crisfield) uwzgledniajgea réwnoczesna iiteracie wektora przyrostu przemie-
szczema i parametru obciaZenia.

Pesome

':“.II’ICJIEHHBII‘/'I AHAJIM3 BAJIOK V1 PAM U3 OCHABNHBAIOIIMXCA
MATEPHUAJIOB

-PaGOTa Kacaercs{ aganusa Oanok M pam, ykasbiBas Ha ocaabrousaiomieecs IIOBEICHHE
iL '_ T KEAe306C TORIER roucTpykuui. Taxolt sddexT nocTuruyr, mpeamomaras ans
HPECACTATOMHE’ COOTHOMEHMS ¢ 0cAadIeHNeM Tak B CXHAMaeMoli 30HE, KAk M B pac-
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ToxuMaeMol 3oHe. JnS UBCICHHOTO AHANM3A NPHHNTA CIOMCTAS MOJENs KOREYHOTO 3le-
MEHT2, B KOTOpOIl HE YYTeHO BIHAHHE CKOJBXEHHS HA KOHTAKTe MaTEDHATOB, APMHPOBKH
# OeToHa. HecmoTps ma 970 TOJYYCHHBIE Pe3YIRTATH 0TODPAXKAIOT C JOCTATOYHOH TOY-
HOCTBEEO Pe3YJILTATE! H3BECTHEIX naGopaTopdwx 3rcriepmmenTos. IIpmmenena dopMynuposka
B MAPHEPOCTAX, 4 /I8 YIPABNCHHS YHCACHHBIM IPOLECCOM TPUMEHEH TaK Ha3blBacMBiH METOI
napaMerpa mopoxku (j,arc-length” — Kpuehuns)y), yIuTeIsarOMME MHTCpANHIC BEKTOPA IIpH-
POCT4 MEPEMELICHAS B TapaMeTpa HarpyXeHds,
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