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ERROR ESTIMATES FOR A SIMPLIFIED
REISSNER THEORY OF PLATE BENDING

Z. RYCHTER (BIALYSTOK)

A simplified Reissner theory for plate bending is dealt with in which transverse displacement
occurs as the single unknown variable. The two-dimensional theory used in conjunction with the
plane stress theory serves to construct three-dimensional fields whose relative mean square error,
under so-called ,,regular” edge conditions, is shown to be of order of the plate thickness cubed with
respect to elasticity solutions.

1. INTRODUCTION

Reissner’s theory [1-4] of plate bending is generally acknowledged for its
variational consistency, simplicity and accuracy. The theory takes into account
transverse shear strain and transverse normal stress effects, it is thus suitable
for composite plates exhibiting sharply different in-plane and out-of-plane
elastic properties.

There are three unknown kinematic variables in Reissner’s theory: the mean
transverse displacement w and two components of average cross section
rotation. Alternately, the governing differential equations can be formulated in
terms of w and a stress function [4]. A further possibility has been disclosed by
SpeARE and Kemp [5] in their so-called simplified Reissner theory. By adopting
O(h?) as a sufficient level of accuracy with error terms of order O(h*). Possible
descriptions of averaged dislocation density and distribution by means of the
diffusion equations (h being the thickness) they reduced the original Reissner
equations to a sixth-order equation for only one unknown displacement
w along with explicit expressions for internal forces in terms of w.

While an O(h*) error in the two-dimensional plate theory equations is fairly
small, one would be much more interested in comparing predictions supplied
by the Speare-Kemp theory with those of three-dimensional elasticity. This
task is undertaken in the present work which sets out to do two things: a) to
provide possibly most accurate three-dimensional displacement and stress
distributions constructed from the two-dimensional plate theory, and b) to
estimate the error in those fields in comparison to elasticity solutions in
a global sense. To achieve those aims we use a slightly different simplified
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Reissner theory from that of [5], the latter being readily obtainable from the
former by eliminating transverse load terms. Also, we employ the plane stress
theory, not considered in [5], to account for in-plane membrane deformation
caused by transverse load via Poisson’s effect. From such a combination of
two-dimensional bending and stretching theories three-dimensional dis-
placement and stress fields are constructed that involve several effects dis-
regarded in the classical theory of bending: membrane strains, in-plane strains
distributed nonlinearly over the thickness, transverse shear and normal strains,
and stresses self-equilibrating over the thickness. In so doing we are guided by
[6, 7] where the importance of such contributions is emphasized.

Referring to the PRAGER-SYNGE theorem [8, 9], we find that the
three-dimensional fields obtained are capable of approximating the exact
elasticity solutions with the relative mean square error proportional to the
plate thickness cubed, O(h®). Known estimates in plate and shell theory involve
global error bounds O(h) — [10, 11] and O(h*) — [12-15], depending on
which non-elementary contributions have been accounted for. There are also
O(h?) error estimates in Reissner’s theory [16, 17], but [16] permits no surface
load and [17] assumes low transverse normal deformability so that the present
O(h®) result is far more general. Its validity, however, is restricted to the
so-called ,regular” boundary conditions [10] on the cylindrical bounding
surface, assumed also in [10-17]. Irregular edge data which do not conform to
our three-dimensional fields give rise to an additional error that, understandab-
ly, cannot be expressed once and for all as a specific power of h, but varies from
case to case. For more detail about the effect of irregular boundary conditions
we refer to [10].

2. THREE-DIMENSIONAL PROBLEM

Plates are three-dimensional bodies whose elastic, small-deflection beha-
viour may be described by the linear theory of elasticity which, in this work,
will be treated as exact. Elasticity solutions, however, are in general difficult to
find and for this reason it is customary to resort to approximations. One
obvious way which we adopt for our purpose consists in searching for statically
and kinematically admissible solutions whose closeness determines the quality
of approximation (see e.g. [8-10]). The statically admissible stress field & (x,,
X,), X, (o = 1, 2) and x, being in-plane and thickness Cartesian coordinates, is
in the present work required to meet the following traction boundary
conditions:

Ou3(Xgy X3= 1 h) =0, G33(x5 x3=—h)=0,
(2.1) %
aaa(xpa x3=nh) ='P(xp),
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at the upper (x; = h) and lower (x; = — h) faces of the plate, 2h being the
constant thickness. It must also satisfy the equilibrium conditions

2.2) Oappt 0a3,3=0, Gu3,+0333=0,

with commas denoting partial differentiation with respect to x, and x; and
repeated indices implying summation over the range 1, 2. In defining ¢ we
have assumed that there is only an arbitrary distributed transverse load p(x,)
on the upper face, this being true for most applications, and that body forces
are unimportant.

The kinematically admissible solution consists of displacements @i(x,, x;)
and stresses &(x, Xx;), the latter being produced by the former via the
constitutive relations

(2.3) 0,5=D[(1 —V)iay g+ vOyptt; ;] + Cdyp 613,
24) Gz = Gl 3 + 13 ),
3 E, - %
(2.5) 953 =1 "2v,C (it3,3 + Cit, o),
where
26 Cadme Ak E
(6 byl e lew E)

with 6,, denoting the Kronecker delta and a pair indices enclosed in paren-
theses indicating symmetrization. Here a homogeneous, linearly elastic, trans-
versely isotropic material has been adopted with Young’'s moduli E and Ej,
Poisson’s ratios v and v, and the transverse shear modulus G. This type of
elastic law is fairly simple but sufficiently general to allow for possibly large
transverse shear and/or normal deformability (G/E <1 and/or E;/E < 1)
characteristic of composite plates.

As already stated, by minimizing ¢ — & one approaches the exact solution.
In the present context the crucial point is that such three- dimensional fields
& and 6 can be constructed from the two-dimensional plate theory presented
in the next section.

3. TWO-DIMENSIONAL PLATE THEORY

The kinematic variables of Reissner’s theory of plate bending involve the
mean transverse displacement w and average rotations b,:
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h
3 :
(3.1) w(x,) = a5 | #lp x3)(1 = x3/h?)dx;,
x5
h
B:..fa
(32) ba(xﬂ) = ﬁ ua(xp’ x3)x3 dx3'

ik

The corresponding static variables are the moments M «p and transverse shear
forces Q, related to the components of stress as
h

(3.3) M,y(x,) = j&ap(x;., X3)X3dx;,
~h

h

(3.4) Q,(xp) = Jr‘fas(xﬁ, Xx3) dx;.
=k

The field equations comprise the overall equilibrium conditions

(35) Maﬂ,ﬁ T Qa’ Qa,a =

and the constitutive relations

2 2
(3.6) M, = §h3D [ =) bg,p + Vo b;5] + ghz Cd,4p,
5
(37) Qa = §Gh (ba e W,a)’

which should be used in conjunction with the boundary conditions prescribing
(3.8) M,n; or b, and Q,n, or w on S,

S being the curve bounding the midplane and n, the unit normal to .

The relations (3.5) — (3.8) constitute the original Reissner’s theory [1-4] and
have been recorded here for comparison purposes. The transition to the
simplified theory we wish to deal with is straightforward. It consists in
resolving the constitutive equation (3.7) for the rotations

3
(3.9 be=—w, .t e T



ERROR ESTIMATES FOR A SIMPLED REISSNER THEORY OF PLATE BENDING 303

‘wherein the shear force Q, has been replaced by an approximation of the form,
familiar in the classical Kirchhoff plate theory,

2 3
(3.10) T,= -3k D4w,,

A() = (),,, denoting the two-dimensional Laplacian. Now with Egs. (3.9) and
(3.10) the moments in Eq. (3.6) become ”

2 2D 2
(3.11) My,=— §h3D(1 + 5_6h2A) [(1 —v)w, 5+ vi4w] + §h2C5aﬂp,
Substitution of Eq. (3.11) into the condition (3.5), yields the shear forces
- T 2D 2
= —= 1+—h%4)4 —h*C
(3.12) 0, 3t DO +zehd)dw,+ S Cp,

whence T, introduced in the relation (3.10) is now seen to represent indeed the
major part of Q,. Finally, inserting Eq. (3.12) into the condition (3.5), produces
the sixth-order governing differential equation in one unknown w:

. 2D. . 2
e = Adw = — Ch?Ap.
(3.13) 3h D(l + SGh A) Aw =p + 5C P

The simplified Reissner theory (3.9) — (3.13) may be further transformed
by using Eq. (3.13) to eliminate p, p,, and 4p from Egs. (3.11) — (3.13). Accepting
O(h?) as an adequate degree of accuracy with error terms of order O(h*), one
obtains equations derived by SPEARE and KEMP [5], but for our present
purposes the version in Egs. (3.9) — (3.13) is more convenient.

While the single differential equation (3.13) of the modified Reissner theory
is appealingly simple as compared with the original Reissner equations, there is
a problem in formulating appropriate boundary conditions. Retaining the
original conditions (3.8) of Reissner’s theory would seem to be physically most
sound, but they are not variationally consistent with the differential equation
(3.13) when expressed through w with the help of Egs. (3.9) — (3.12). On the
other hand, mere knowledge of the differential governing equation (3.13) leads
to some variationally consistent boundary conditions which, however, are
found to be not so convincing physically as Reissner’s conditions (3.8). We shall
not pursue that question further, but this boundary condition problem
indicates that the range of applicability of the simplified Reissner theory cannot
be as wide as that of the original Reissner’s version. It should also be noted that
reducing the number of unknowns inevitably increases smoothness require-
ments, a serious drawback from the point of view of numerical analysis.

The above equations account only for the flexure of the plate. This effect is
clearly dominant but at the level of accuracy we intend to achieve, it must be
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supplemented by membrane deformations; they arise due to Poisson’s effect.
Therefore we introduce average in-plane displacements of the form

h

va(xﬂ) g J‘aa(xp xB)dx37

—h

(3.14)

with accompanying membrane resultant forces

h

N 4(x;) = J.&zﬂ(xl’ X3)dx;.

s=h

(3.15)

These variables are subject to the equilibrium equations
(3.16) Ny =0,

constitutive relations

(3.17) N, =2hD[(1 — v)v(, g+ V 0450321 + hCOypp
and boundary conditions which specify

(3.18) Nyng or v, on S

The two-dimensional bending and stretching equations as stated above
may appear at this stage to be somewhat arbitrary. In fact their particular form
adopted here ensures the existance of very accurate three-dimensional fields to
be presented in the next section.

4. THREE-DIMENSIONAL FIELDS

Let us begin with the following three-dimensional displacement dist-
ribution, with the notation z = x,/h,

4.1) it (x5, z) = v,(x,) + zhb,(x5) + (zz - %) ky(xg) + <z3 - %z) JAER)
1 1
4.2) it3(xg, z) = w(xp) + zs(x5) + E(S 22— 1) g (x;) + 3-(23 —z)d (x5) +

=4 = S 27 = 39
ot . bt/ g et
+20<52 6z +35)r(xﬁ)+<z z 82+35>q(x,,),



ERROR ESTIMATES FOR A SIMPLED REISSNER THEORY OF PLATE BENDING 305

which reduces to identities the relations (3.1), (3.2) and (3.14) defining the
two-dimensional kinematic variables w, b, and v, of the plate theory. Assuming
further that

s=hCv,,, g=—h*Cb,,, d=—hCk,,,

(4.3) = hChe 1= 05 E, hp,
3 h h 1
k= 355 5 — 59« 16

and keeping in mind Egs. (3.9), (3.10) and (3.13), it is seen that @ in Egs. (4.1)
and (4.2) is specified entirely in terms of w, b, and v,.

The stress field 6 corresponding to i is, from the constitutive equations
(2.3) - (2.5) with Egs. (4.1) — (4.3) and (3.9),

4.4 Oap =D [(1 — V)V g+ vOyp0; 31 + zhD [(1 — V)b, 5+ vIyb; ;1 +

1
+ <22 & 5) D [(1 = V)ke,p+ vOsk; 2] +

3 ~
+(2° = 52) D [(1 = V)fap + V0upfia] + C Iy 63,

3 1
4 A o s — (3 _~
§.5).0 6, = ah 1-z)T,+ 3 (z°—2)Gd ,+
1 27 39
et g2 A F e =
+20<z 6z +35>Gr,,+(z 6z 82+35>Gq,a,

46) 63,=(2+3z— z3):i.

The statically admissible stress field &, which should be close to the
kinematically admissible one &, is taken in the form

= 1 3z 1
@7 G,= ﬁNaﬂ o e M, + E(3z —52%)6,Cp+

1
+ (22 - 3) D [(1 = V)kg,p+ vgpk; 2] +

3
L (23 = gz) B (Y — V)f(,,p) + V(S,ﬂf;_';,],
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sl @ 2 KiLia 2
(4.8) a,,3—4h(1 z )Q"+8()(52 6z*+ 1)Chp ,
h
e (23— 2) D [(1 = V) ki pyp + VKp pa] —

h
e E(524 — 622+ 1D [~ v)f(a,ﬂ)p'l" pr,pa]a

= |
(4.9) 033=(2+3z—z3)2—%(25—2z3—z)Ch2Ap+
a5 2 2 1.5 3 2
* 12(z 2z + 1)Dh Akm+20(z 223 + z) Dh* Af, ,.

It is evident that this three-dimensional stress distribution is given in terms
of the two-dimensional internal forces M,;, Q, and N,, and the load p, and
that the relations (3.3), (3.4) and (3.15) defining the internal forces are identically
satisfied upon substitution from Egs. (4.7) — (4.9). Moreover, in view of Egs.
(3.5) and (3.16) the above stress field fulfills the traction boundary conditions
(2.1) at the faces and the equilibrium equations (2.2) in the body of the plate.
Thus it remains only to show that & is near to 6.

Comparison between Egs. (4.4) — (4.6) and Egs. (4.7) — (4.9) yields, with the
help of Egs. (3.6) and (3.17),

(4.10) §,5—0.5=0,

(Qa—T,); hp,; hD (dky+kg ps);

N'r—

|
@11)  G.,-6,3= 0[

hD (Af; +fﬂ,ﬂa)! G(d + ¥ + q),a]’

4.12) G33— 633=0(W2CAp; h’DAf, ,; h’DAk,,).

These expressions may be made appreciably more legible using the
following estimates:

p=0(), Q,—T,=0(), f,=0()

5 r=0(h*), q=0(h,
and
(4.14) k,=O0(h?), d=0(h.

The relations (4.13) and (4.14) are based on the observation that all the
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quantities involved depend on the elastic moduli and the thickness h (which are
constants) and either on the deflection w, in the case of the estimates (4.13), or
on the in-plane displacements v,, in the case of the relations (4.14); for brevity,
only h-dependence has been exposed. Specifically, the estimate (4.13), results
from Eq. (3.13); the estimate (4.13), from Egs. (3.10), (3.12), (4.13),; the estimate
(4.13), from Eq. (4.3), with Egs. (3.9), (3.10) and (4.3),; the estimate (4.13), from
Egs. (4.3), and (4.13),; the estimate (4.13)s from Eqs. (4.3); and (4.13),; the
relation (4.14), from Egs. (4.3), ¢; the relation (4.14), from Egs. (4.3); and
(4.14),. Now comparison of the error stress ¢ — ¢ in Egs. (4.10) - (4.12) with
the kinematically admissible stress ¢ in Egs. (4.4) — (4.6) yields, after using Eqs.
(3.9), (3.10), (4.13) and (4.14),

4.15) & —6=0(hn/D),

where L denotes the corresponding characteristic wavelength which depends
on the displacements v,, w and secures dimensional correctness of Eq. (4.15).
As we see, & is locally very close to 6. This praperty also ensures that ¢ and
& are good approximations to the exact solutions of elasticity in a global sense;
this is shown in the section ot follow.

It should be emphasized that several non-classical contributions must be
incorporated for that high accuracy. The in-plane and transverse displacement
components (4.1) and (4.2) are accordingly third- and fourth-degree polyno-
mials in the thickness coordinate, their respective elementary-theory dist-
ributions being linear and constant. Further, the statically admissible stress
field (4.7) — (4.9) involves terms self-equilibrating over the thickness. Also,
because of asymmetry of the surface load with respect to the middle plane,
membrane deformation and stresses, produced owing to Poisson’s effect, are to
be accounted for. All of these effects are emphasized in [7] in the context of
a different plate theory based on alternate kinematic variables. In [7] no
distinction is made between statically and kinematically admissible fields, and
non-elementary terms appearing in our &, and &5 distributions (4.8) and (4.9)
are not provided.

5. MEAN SQUARE ERROR ESTIMATES

Stresses will now be regarded as points in function space endowed with the

norm b

6.1 |e]*= j”:(l + V) 0u0p— V 0oy Opp — 2;2—3Eama33 +
3

*Hy

e S idFd
0,30, 01,70 Xas
G 3 a3 E3 33*¥ 33 3
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F being the region of the midplane; one easily identifies Eq. (5.1) as the elastic
energy functional which must be positive definite to represent a norm. The
Prager-Synge hypersphere theorem [8, 9] asserts that the exact stress field
o may be approached by means of (¢ + 6)/2, 6 and 6 being statically and
kinematically admissible fields, respectively, with the relative mean square
error e,

g .
52 lo— 3@ +8) /6] =e,
which is computable from
(53) e=|&-sl/2]s]-

We have already seen that locally & — 6 is O (h?) relative to ¢ and so will
their norms be, evaluated from Eq. (5.1), for a norm represents a homogeneous
functional. Thus from Eq. (5.3) with Eq. (4.15) it can be concluded that

(5.4) e=mIB+0 kY, n>3

Here L, is the mean square wavelength which characterizes the deformation
pattern of the middle surface through the displacements w and v,; it also
depends on the elastic moduli. An explicit formula for L, is too complex to be
worth recording the more so that in each particular problem the error e may be
directly calculated from Eq. (5.3). In an isotropic plate under uniform load, L,
is expected to be of the order of the plate surface dimensions. It then follows
that the error (5.4) will be reasonably small even in moderately thick plates,
a conjecture numerically confirmed in [7] for a similar theory.
The inequality (see [9, 12])

(5.5) llo—&/[6]| < 2

shows with Eq. (5.4) that the statically admissible stress & is also a good
approximation to 6. Moreover, although the global error estimate (5.5) appears
worse than that in Eq. (5.2), it is expected that locally & rather than (¢ + 6)/2
will be closer to o, because the former field satisfies the traction boundary
conditions on the faces while the latter does not.

Another inequality,

(5.6) o) —a&@@]/|6

implies that to within rigid body displacement our kinematically admissible
displacement field @ approaches the exact field u again with an error O (h?).

The main novelty of our O(h*) error estimates in the Reissner theory
compared with their predecessors [16, 17] is that they permit surface lateral
load and impose no restriction on transverse rigidity. Although we were
concerned with a simplified Reissner theory, the conclusions apply for the
original Reissner theory, this subject being treated in detail elsewhere. Finally,

| < 2e,
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it should be remembered that the error (5.4) corresponds to certain idealized,
Jregular” boundary conditions on the cylindrical edge surface of the plate.
Irregular edge data, i.e. distributed through the thickness in a different fashion
from our u and fields in Egs. (4.1), (4.2) and (4.7) — (4.9), produce an additional
error to that in Eq. (5.4). KOITER [10] shows how to handle irregular boundary
conditions when there is a straight edge and points out that an error as high as
O(h'’?) should be expected if irregular strains have the same magnitude as
regular ones.

6. CONCLUDING REMARKS

This work has studied the accuracy of a simplified Reissner theory for the
bending of elastic, homogeneous plates subjected to transverse load on one
face. The two-dimensional bending theory used in conjunction with the plane
stress theory has been proved to afford three-dimensional displacement and
stress distributions bearing a relative mean square error of order of the plate
thickness cubed with respect to the elasticity solutions, provided the edge
conditions are regular. As a consequence, the theory may be expected to
furnish reliable results for not-so-thin plates, plates under loads varying rapidly
over the faces and anisotropic or composite plates exhibiting increased
transverse deformability.
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STRESZCZENIE

OCENA BLEDU UPROSZCZONEJ TEORII REISSNERA ZGINANIA PLYT

Przedmiotem pracy jest uproszczona teoria Reissnera zginania plyt, w ktorej ugigcie jest jedyna
niewiadoma wielko$cia. Rozwazana teoria dwuwymiarowa w polaczeniu z plaska teoria sprezys-
tosci stuzy do skonstruowania pol trojwymiarowych, ktoérych sredniokwadratowy blad wzgledny,
w przypadku tak zwanych ,regularnych” warunkow brzegowych, jest wielkoscia rzedu grubosci
plyty w trzeciej potgdze w porOwnaniu z rozwiazaniami teorii sprezystosci.

PE3IOME

PACYET OUIMBKU JIJ1S1 YIIPOIEHHOW TEOPUM PEVICCHEPA
W3Ir'nBA ITJIACTUH

PaccMaTpuBaeTcs ynpolleHHas Teopus Pelicchepa usruba 1uiacru, . B KOTOpO# more-
peuHblii MPOrUO SBISETCS €IMHCTBEHHOW HEH3BECTHOH BEIMYUHOM. DTa OByMepHasi TEOpus,
B COYETAHMH C IUIOCKOM TEOpHeH YNPYroCTH, MCHOJL3YeTCs Ul KOHCTPYKIHMM TPEXMEPHBIX
floteif, KOTOPBIX CpeIHEeKBaApATHYECKas OWKHOKA, NPEIoaras Tak Ha3bIBAEMBIE ,,pEryJIspHbIC’
IPAHMYHBIE YCIIOBHS, SIBJISETCS BEJIWYMHOW MOPSIKA TOJIIIMHBI IUIACTHHBI B TPEThCH CTENCHU
10 CPaBHEHHMIO C PELICHHSIMH NPOCTPAHCTBEHHOH TEOPHH YNPYTOCTH.
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