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INTERACTION HYPERSURFACES APPLIED TO ESTIMATE
THE LOAD-CARRYING CAPACITY OF SPACE TRUSSES

J.AKONIG, J.A. KARCZEWSKI and J. CZERNECKI (WARSZAWA)

When determining the load-carrying capacity of a space truss, one has assumed, usually that
the result depends exclusively on properties of elements (struts) i. e. that the strengh of joints is
sufficiently high. Since joints constitute up to 30 per cent of the total truss weight such an approach
seems non-economical. The paper presents another approach to the joints design based on analysis
of their strength by means of interaction hypersurfaces of forces acting upon them. First, the
general concept is outlined and, then, possible simplifications are shown in the case of joint and load
symmetries. The theoretical considerations are illustrated by a numerical example of a truss plate.
Some general conclusions considering further development of the proposed approach are given.

1. INTRODUCTION

When anylysing space trusses, one usually assumes that the ultimate load of
a given structure is determined by properties of its members exclusively, i. e. the
strength of nodes is assumed as unlimited. To validate such an assumption, the
nodes must be sufficiently strong.

Let us notice, however, that the ,strength” of a truss node cannot be fully
described by giving a single number or an interval of safe magnitudes of a single
variable. Namely, since a node of a space truss is acted upon by a system of
forces transmitted from members interconnected at that node (as well as from
the loads applied directly to the truss), the stress state of the node and, thus,
its safety or failure are decided by the full system of forces acting upon the
node. Every particular set of the force magnitudes may be considered as a point
in a certain space of appropriately many dimensions. The boundary between
safe and unsafe force states, i. e. between corresponding domains in that space,
is a certain hypersurface called interaction hypersurface.

Such a representation is analogous to that used in the plastic limit analysis,
cf. [1], where such interaction hypersurfaces are defined for a point of continuum
(vield condition), for a truss member [2] see Fig. la (here the hypersurface
reduces to two ends of an interval), for a cross-section exposed to bending and
shear (the interaction curve of Fig. 1b) etc. _

Determination of the interaction hypersurface for a given node as well as
the inversed problem: determine node dimensions so as to contain a pres-
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cribed force set within its interaction hypersurface are not easy tasks. However,
when we know (approximately, at least) such hypersurfaces for a catalogue of
nodes, then we can design the truss simply by selecting sufficiently ,,strong”
nodes from the catalogue so as to ensure that all the force states which may
happen at a given node are contained within its interaction hypersurface. This
approach holds both when the axial forces in the truss members are determined
by means of the classical linear (or nonlinear) elastic analysis as well as when
buckling and yielding of the members are accounted for, cf. [2].

Obviously, such a procedure neglects the possibility of interaction between
strut and node failures, i. e. neglects failure modes combining simultaneous
failure of some nodes and members. However, in our opinion, it could be too
risky to account for such and interaction.

2. GENERAL REMARKS ON CONSTRUCTING ' INTERACTION = HYPERSURFACES
FOR SPACE TRUSS NODES

First, let us notice that, contrary to the case of, e. g., a beam cross-section
under bending and shear, the elements of a force set acting upon a given truss
node are not independent of each other. Namely, they must satisfy three equ-
librium equations. This means that, in fact, the interaction hypersurface is to
be drawn out not in the space of all the forces acting upon a given node but
in a subspace the dimensionality of which is lower by three.

A further space-dimensionality reduction may take place due to symmetries
of the node and of the forces acting upon it, as for the node depicted in Fig. 2.
If the forces acting upon this node were not symmetric, its interaction hyper-
surface should be constructed in a five-dimensional space of indpendent qu-
antities (5 = 8 — 3). Symmetries reduce this number to three. Finally, the only
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independent variables are: the forces D, and D, in the horizontal plane and the
magnitude K of forces in the cross-bars (two of them are subjected to com-
pression, the remaining two — to tension).

The interaction hypersurface for a given node can be constructed in various
ways: X

1. Experimentally, via determination of a certain critical state of the node
for various ratios of the forces acting upon it. In this way, different points of
the hypersurface will be determined. By completing sufficiently many tests, one
obtains an approximation of the actual interaction hypersurface.

Naturally, the test results depend on the definition of the node critical state
adopted. It may be first yielding, unconstrained plastic flow of the node or
something intermediate as, e. g., a certain prescribed amount of local yielding.

2. Analytically or numerically by carrying out the same procedure for an
appropriate computational model of the node.

Let us notice that if a node critical state is not preceded by any form of
stability loss, then the interaction hypersurface defined by first yielding bounds
a convex domain. The same holds also true for the interaction hypersurface
defined by the unconstrained plastic flow of a node made of ductile material.
Such a convexity allows to construct a safe approximation to the exact inter-
action hypersurface on the basis of a small number of points determined in an
analytic or experimental way.
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3. APPROXIMATE INTERACTION HYPERSURFACE
FOR A CERTAIN SPACE TRUSS NODE

Let us consider a node composed of flat steel sheets welded together
as depicted in Fig. 3 and exposed to symmetric load systems as in Fig. 2a.
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The loads are transmitted by appropriate end elements of the truss members
welded to the node sheets. Such nodes were investigated experimentally, cf.
[3, 4]. These investigations did show that:

a. Only a negligibly small (and diminishing with the load increase) bending
of sheets was noticed.

b. Stress state of vertical sheets was, practically, independent of the state
of the horizontal one. The small influence noticed was probably due to some
imperfections.

¢. The node failure due to failure of a single sheet can be approximately
described in the following way: under positive (tension) force transmitted from
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the connected member the failure took place under the force magnitude
determined form the failure mode of the sheet yielding as marked in Fig. 3
whereas welds remained untouched. In the case of compressive force the
magnitude of the ultimate load was about 30 per cent higher (probably due
to the nonlinear effect). No buckling was noticed.

d. Failure of the horizontal sheet can be approximately described in the
following way: if D; > D,, then its ultimate magnitude was roughly as in ¢) i.e.
about 30 per cent higher than in the case of compressive forces. For inter-
mediate magnitudes of D, and D, the points obtained fitted approximately
an ellipse but enlarged by 30 per cent in the compression-compression domain,
Fig. 2b.

The above-mentioned observations suggest that the approximate interaction
surface as given in Fig. 2c can be suggested for practical purposes. It is of the
form of a deformed elliptic cylinder. Its horizontal cross-section coincides with
the deformed ellipse of Fig. 2b and Fig. 2c, its depth being equal to the ultimate
load of the vertical sheet in tension.

A piece-wise linear surface, inscribed within the above one, defined by six
test results: for D, > 0, for D, > 0, for D, > D, (in tension and in compression)
provides a good safe approximation to the exact interaction hypersurface.

4. EMPLOYING INTERACTION HYPERSURFACES
TO THE DESIGN OF A SPACE TRUSS

The truss roof of Fig. 4 was designed in the following way. First forces in its
members were determined by means of the programme JC12 (for elastic analysis)
from the SPAK system (for elastic-plastic analysis of space trusses) developed
at the Warsaw Technical University, [5]. Magnitudes of those forces, for the
case of a uniformly distributed load, are given in Fig. 4.

The nodes of Fig. 3 were used. The interaction hypersurfaces for the three
types of nodes (i.. in the design for various thicknesses of the steel sheets)
of Fig. 3 are depicted in Fig. 5. Since the nodes of the designed truss (with
exception of the central node) were loaded asymmetrically, a certain procedure
was applied allowing to translate, approximately, an asymmetric nodal load
system into a comparable symmetric one and, then, the requirement that forces
acting upon a given node do not exceed its interaction surface was applied. The
procedure consisted of adding projections of horizontal components of
cross-bar forces to the forces within the horizontal sheet. It was also applied for
the boundary and corner nodes.

The resulting distribution of nodes within the truss is presented in Fig. 6.



]
~
% 7( Upper layer
1/4 truss -385.97 -359.34 -303.48 -200.46
gp2 od g % il GigpViy 2§
S 5 BN @ & P S
! -213.06 |-178.85 | -10859 | 6.36 '
I 5 S g 2 s
TR o N e
\ ! 1 |-103.05 | -g142 | -4249'| 636 '
: 8 3 § 8 &
- — - R : o = o %
S yi k¢ ] ®
: 1| -5942"'| -46.24"'| -1667'| 636
- A o & T8 L
A o' (%)
B I_.-__ = 2, ] ﬁ’) % ? ‘& %
i | i v| ~55.27"| -4252'| -1667'| 6.36 "
¥ -8yl il
b 3 b o =
3 (2] o ©
©| 1390 ©| 36.55 55.37
BLio w8l cnidliion oB
g1 -1y 3nivgliol o
©| 1659 | 4379 | 62.83
] 8 2 8
§ -y < ]
34.26 | 8175 | 12571
3 S 8 2
> b3 s -
N| 29163 | 442.86 | 519.77
Lower layer

Internal Forces in [kN]

FIG. 4.

[212]

Cross bars




e

> i
|
I ek 7 D1
=
L : / Scale of Forces

D2 - 900.000kN
K1: k2
b

— 100.000 kN

mpe | D1 D2 [p102 JE
g ij( i;r fFor | for X
node +D | -D

| 180.00 | 234.00 | 20019 | 26045 | 100.00

II 36000 | 468.00 | 40038 | 52049 | 125.00
T 600.00 | 780.00 | 66728 | 86746 | 125.00

Fi1G. 5.

[213]



214 % J. A. KONIG, J. A. KARCZEWSKI and J. CZERNECKI

Mark l‘ the nae (see Pl.3)

o — type I
o — ftype II
e — fype Il

@ — designed indywidually

FIG. 6.

5. CONCLUDING REMARKS

1. Strength of a space truss node can by fully defined only by means of
the interaction hypersurface notion as given in Sect. 1.

2. Effective determination (analytically or numerically) of the interaction
hypersurface is a difficult task due to the lack of ready-to-use solutions of
partial problems such as determination of the load-carrying capacity of a sheet
loaded as in Sect. 3. Therefore, one should try to obtain some reasonable
approximations, as shown in the example of Sect. 3.

3. The interaction hypersurface may be determined experimentally or
computationally. Experimental investigations are costly and their results are of
a limited range of applicability. Therefore, there is a need for possibly general
computational methods.

4. Tt seems promising to combine some experimental observations with the
analytic and numerical approaches as shown in the presented examples.
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STRESZCZENIE

ZASTOSOWANIE HIPERPOWIERZCHNI INTERAKCII
PRZY SZACOWANIU NOSNOSCI GRANICZNEJ KRATOWNIC PRZESTRZENNYCH

Obliczajac no$nos¢ graniczna kratownic przestrzennych przyjmuje si¢, ze zalezy ona wylacznie
od podatnosci pretow tzn. zaklada si¢, ze wezly sa wystarczajaco mocne i zachowuja si¢ az do
chwili zniszczenia konstrukgji jak elementy sztywne. Poniewaz na wykonanie wezlow przeznacza
si¢ w kratownicach przestrzennych na ogél ponad 30% materialu, podejscie takie wydaje si¢
ekonomicznie nieuzasadnione. W pracy przedstawiono koncepcj¢ projektowania wezlow na
podstawie analizy ich no$nosci granicznej przy wykorzystaniu hiperpowierzchni interakcji sit
na nie oddzialywujacych. Omoéwiono zalozenia ogoélne koncepcji oraz pokazano mozliwosé
uproszczen zadania w przypadku szczegélnych symetrii wezla i ukladu obciazenia. Rozwazania
teoretyczne zobrazowano przykladem obliczeniowym, w ktorym zaprojektowano wezly w bez-
stupkowej kratownicy dwuwarstwowej. Przedstawiono rowniez wynikajace z rozwazan uwagi
i wnioski.

Pe3ome

INPUMEHEHUE TUMITEPIIOBEPXHOCTU B3AMMOJEWCTBUS TTPU OLIEHKE
MPEJEJIbHOV HECYIIEW CITOCOBHOCTU MPOCTPAHCTBEHHbBIX ®EPM

Boruucniss npeenbHyIo HECYIIylo CIOCOOHOCTh MPOCTPAHCTBEHHBIX ()epM, NPUHHMAETCH,
YTO 3aBHCHT OHA MCKJIIOYMTENILHO OT NOAATIMBOCTH CTEPXKHEH, T.3H. NPEANojaraercsi, 4tro
y37bl JOCTATOYHO KPENKHEe M BEAYTCS, BIUIOTH K MOMEHTY pa3pylIEeHHS KOHCTPYKIMM, Kak
XKECTKHE I371eMeHThl. T.K. Ha H3TOTOBJICHHE Y3JIOB MpEJHA3HAYAETCS B INPOCTPAHCTBEHHBIX
depmax B obmem ceeime 309, Marepuania, Tako# IOJXOMA KaXETCs 3KOHOMHYECKH HEOOOCHO-
BaHHBIM. B pabote mpescraBieHa KOHIENIMs NPOEKTHPOBAHUS y3JIOB HA OCHOBE aHAJIU3a
UX TIpe/IeIbHON Hecymied CrocoGHOCTH, NPH HCHOJIb30BAHWM THIEPHOBEPXHOCTH B3aHMO-

JIEHCTBYSI CHJ BO3JEHCTBYIOIMX Ha y3ibl. OOCYyXaeHb 0OLIMe NPeanoOKEeHHSI KOHIETIUH
M TOKa3aHa BO3MOXHOCTb YNPOLICHUS 3aJa4d B YAaCTHBIX CIyYasX CUMMETPUH y3jla M CHC-

TeMbl HarpyxeHus. TeopeTHueckue paccykJEHHs WIIIOCTPHUPOBAHBl PACYCTHBIM INPHMEPOM,
B KOTOPOM 3alPOEKTHPOBAaHBI y3ibl B Oe3cTonboBod aByxcioucroit ¢epme. IlpencraBieHs!
TOXKE 3aMEYaHWsi W CIIEJCTBHUS, BBITEKAIOLIHE U3 PACCYXICHUH.
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