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'SOME ASPECTS OF MODE INTERACTION
IN THIN-WALLED STIFFENED PLATE
UNDER UNIFORM COMPRESSION

7. KOLAKOWSKI (LODZ)

Interaction of nearly simultaneous buckling modes in the presence of imperfections is studied.
The investigation is concerned with infinitely wide plate with thin-walled stiffeners under uﬂifofm
compression. The asymptotic expansion established by Byskov and HutcHiNsON {1] is also used
here. The present paper is devoted to the improved study of equilibrium path in the initial post-
buckling behaviour of imperfect structures. The results include effects of interaction of the ,,primary”
local mode and a ,,secondary” local mode having the same wavelength as the primary one. In this
paper the analysis of a few buckling modes interaction is presented. '

NOTATION

I' length of the stiffened plate,
b, width of wall i of the plate,
h, thickness of wall i of the plate,
E Youngs modulus,.
D, fexural rigidity of wall 7,
u, v, w;, displacements of middie surface,

i, By Wi prebuckling displacement fields,
#, 0, w; buckling displacement ficlds,
A measure of the applied pressute,
Ni» Ny, N, in-plane stress resultants for wall i,

number of mode,

number of axial half-waves of mode number #,
scalar load paramieter,

value of 2 at bifurcation mode number n,
.maximum value of A for imperfect stiffened plate,
amplitude: of buckling mode number n,

rlgm e o3 x ¥

imperfection amplitude corresponding to £,
ay, postbuckling coefficients (see Byskov and HutcHINSON {1]),

o* = 10%,/E dimensionless stress of mode number n,
a* [imit dimensionless stress.

1. . INTRODUCTION

In compression members containing thin-walled plates local buckling of
the plate elements and Euler type buckling of the whole structure can occur.
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Interaction between the buckling modes may result in an imperfection- i

-sensitive structure and is the principal cause of collapse of thin-walled stru-
ctures.

In recent years many papers have been devoted to the analysis of the in-
teraction of buckling modes as ‘a factor that detérmines the construction sen-
sitivity to imperfections at nearly the same magnitudes of bifurcational loads
corresponding to different buckling modes and to the closely related problem
of optimum structural desing,

KOITER and van der NBUT [2] have proposed a technique in which the
interaction of an overall mode with two local modes having the same wave-
length have been considered. Some examples of practlcal interest have been
studied.

.. The fundamenta] mode is henceforth called ,,prlmary and the nontrmal
hlghcr mode (having the same wavelength as the ,,primary’ > one} corresponding
to the mode triggered by overall long-wave (bending) mode is calted wsecondary”,

* SRIDHARAN and ALl [3] have presented an analysis of 3-mode interaction
using a finite strip method for thin-walled columns having doubly symmetric
cross-sections as regards the secondary order solution.

Some works concerning only the interactions between the two independent
buckling modes of thin-walled structures have been done by KOITER [4],
BENITO and SRIDHARAN [5], SRIDHARAN [6} MANEVIC [7, 8], KOLODJAZNY? [9],
KorAKOwsKl [10].

In the present paper the initial post-bucklmg behawour of w1de plates with
thin-walled stiffeners in the elastic range being under COmpression is exami-
ned on the basis of Byskov and Hutchinson’s method with the co-operation
between all the walls of the structures being taken 1nto account The solutions
obfained include effects of interaction of some modes having the same wave-
length problems of shear-lag and cross-sectional distributions.

2. STRUCTURAL PROBLEM

A large plate with thin-walled stiffeners: at a distance & simply supported
at both ends is considered. Types of cross-sections of such structures consisting
of a few flat plates with perpendicular axis of symmetry and local coordinate
systems assumed are presented in Flg 1 Materla]s of thc stlffened plate obey
Hooke’s law.

The membrane strains of wall i are

& = U x+0.5 (Wi + 1L,
(21) Siy = Ui,y + 0.5 (wizg.v + ui}’}’
y,xy = Uy Uy W W
and the bending sirains are given by .

{2.2) - K = = Wy K’iy'=i Wigp o Kigy = — Wi
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Fig. 1. Part of a wide plate with longitudinal stiffeners.

The differential equilibrium eguations resulting form the virtual work prin-
ciple written for one wall are
—Niyy—Niyy— (Nt ), =0
2.3 1X,X xy.y LY b
( ) mNiyy_Nixy,x (levtx)x_ ]
D VVW (lewz x) x (N ',y) b (leyw ) _(Nixy.wi y) x 0
The geometncal and statical continuity condltlons at the junctions of plates
(Fig. 2) may be written as
- wy) T = w]°cosa+u, Iosmoc w1419,
o) * =)0 cosa—w,/ sina = v, 4",

+ ¢} 0
i‘ =ws‘y| :wi+1,yl »
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Di(wi,yy -+ vwi,xx)l * ““DS(WS yy -|-sz xx)l D1+ 1(wi+ 1,y + YWy 1,xx)|0 - 0,

(24 " o=l = g%
Nl* —Nsyl0 cosoc+st|° sino— N, 4|° =0,
QI'J?IJr ¢ sina— st Cos% — Ql+1[ = (),

txy|+ Nsxylo_Ni+1xy|0 = 02
where
Q N Wi, + N:xyw — Dy (W, yyy (2_ v)wi,xxy)'

$z;

Fic. 2. Local coordinate systems for each plate meeting at the corner.

The prebuckling solution consists of homogencous fields and it may be assu-
med that
(2.5) u——xA iawvy, 'WHO

The boundary condltlons enable us to wrlte the ﬁrst order solutlon

. . MEX;
w = (CuCh(hiJ’i) + C2iSh(r1iyi) + Caz cos (l‘zf}’i) + C4i s1n (T'Zi}’i)) sin 7

" n n n n n " t " mnx;
(2.6} u; = (Cs; ch(ray) + Ce:Shiray 1)+ Crich(ray;) + Csishiryy;) cos [

n n n . non n n n n non n . mnx;
01 = (— Csib1 Sh(ray) — Ceibs €hlrsy,) — Cribashlrsy:) — Caibo chlpay))sin: i

H n R n

where rlzs T'ZH Fas Py bis bz sCe paper [10]

For some values of the load parameter the trigonometric functlons (2.6),
have to be transformed into suitable hyperbolic functions. The bifurcation load
A, is the smallest value of the parameter for any integer m for which the deter- -
minant of the coefficients of conditions (Eqs. (2.4)) vanishes.

The global buckling mode occurs at m = 1 and the local modes occur at
m # 1. All the modes are normalized so that the maximum normal displace-
ment is equal to the skin plate ;.
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The formulae for the postbuckling coefficients a;;, [1,10] involve only the
buckling modes. In the points where the scalar load parameter A, reaches the
maximum value for imperfect structure (bifurcation or limit points), the Jaco-
bian of the system of nonlinear equations {10]

Q2.7 E(L=AfA)+EE gt = MA &y at T=1..n

is equal to zero.
Symbols, formulae and methods of solution applied in this paper are identi-
cal with those in the paper [10] {(see Appendix).

3. RESULTS

The detailed numerical calculations have been performed for several wide
plates with thin-walled longitudinal stiffeners, the geometry of which is known
from literature [5, 7, 101, _ . '

Since the effect of shear lag is more pronounced in stiffened plates than in
unstiffened plates of the same extensional rigidity, the designer is even more
concerned with the interaction of shear lag and collapse by buckling in the case
of wide stiffened flanges. '

Simply supported plates of infinite width with longitudinal, regularly ar-
ranged stiffeners are considered in the present paper.

Types of cross-sections, basic dimensions of the plates and the local co-
ordinate systems assumed are presented in Figs. la—Db.

Due to the symmetry with respect to the longitudinal centre lines of each
skin plate, only action of a typical panel contained between two succesive
centre lines is considered.

For a wide plates reinforced by equispaced narrow rectangular stiffeners
ofthe following dimensions [7] (Fig. 1a): o

by /b, = 4.226, hyfhy = 2367, /by =2591, b,/hy = 35.714,
the values of dimensionless stress (v = 0.3), the number of half-waves m for
the local buckling modes are shown in Table 1.

Table 1. Dimensionless stresses o for different buckling modes of wide plate with rectengular stiffeners.

m 1 2 3 4 5 6 7 8 9 10

ot | 2100 | 2940 [ 2704 | 3116 [ 3003 | 2845 | 2.843 | 2953 | 3.147 3407

In Fig. 3a the first two overall buckling modes are shown and the first three
local modes at half-waves m = 3 and m = 7 are presented in Fig. 3b and Fig.
3c, respectively. o . _ '

At the free ends of the stiffeners, conditions corresponding to a completely
free edge have been assumed M, = @, =N, = N, =0.
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F1G. 3. Two global and several local modes for the wide plate with rectangular stiffeners.

It can easily be noticed that for such dimensions of the stiffencd plate two
local buckling modes at different numbers of half-waves occur almost simulta-
neously. In this case the primary local mode at m = 3 may be calléd ',,local
mode of skin plate” and in the case m = 7 the primary local mode ,,local mode
of stiffeners”,

Table 2 shows the values of the ration of dimensionless limit stress o* to

dimensionless global stress o for various imperfection values ‘and for some -

possible combinations of buckling modes, presented in Fig, 3. The bottom

index at the imperfection denotes, respectively: 1 — basic global buckling mode -
(oF = 2.109); 2 — the first local buckling mode at m = 3; 3 — the first local

buckling mode at m = 7. Furthermore, the following code has been used in
Table 2, in order to index the buckling mode: the first figure denotes the mode
. of bucklmg in the same fashion as the bottom index does in the casé of i imper-
fections; the second figure denotes the first, second or third local buckling
mode for a previously fixed number- of half-waves (e g 23~refers to the third
local mode (6% = 5.341) at m = 3).
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In each case a set of m+1 nonlinear equations have been solved for n
buckling modes under the condition that Jacobian of this set of Egs. (2.7) must
be equal to zero. Numerical calculations have proved that the interaction of
local modes having considerable different wavelengths is either very weak or
does not occur at all. Therefore the interaction of the global mode(s) and a few
local buckling modes may be considered. According to the assumptions mode
in Byskov and Hutchinson’s theory [1], local buckling modes (and the second-
ary global modes) do not interact explicitly. However, the interaction occurs
through the interaction of each of them with the (primary) global mode.

“In paper [10], in the case of a wide plate with closed section longitudinal
stiffeners of dimensions (Fig. 1b)

b,/b, = 07166,  by/b, = 04933,  b,/b, = 1.0,
b, =120  hyfh, =06,  hy/hy =06,  byfhy = 300;

the following results were obtained:
o} = 3.9449, o =39271(m = 13), o = 3. 934%(m = 20).

Due to a very high torsional rigidity of closed stiffeners, a vertical symmetry
axis was assumed for the segment under consideration. All the buckling modes
are normalized so that the maximum normal displacement of the skin plate
is equal to the plate thickness h;.

Indices of the buckling modes applied here, are identical with those used for
the plate considered above.

Table 3 contains the values of the ratio of limit stress oF to global stress
o*, the 2- and 3-mode interaction approach for various imperfection values
being taken into account.

On the basis of the results obtained for wide stiffened plate it is poss1b}e to
conclude that the problem of interaction of the overall buckling mede with the
primary and secondary local modes having the same shape as the global one
is of great significance (for example compare cases 8 and 11 in Table 2). This
effect is contained in the term o +I;4(u, 4;) (where I, k = 2, 3) in coefficients @y
of the equations (2.7). In other cases it is moderate (cases in Table 3) ar absent-
-local mode stiffeners” (cases 4 and 10 in Table 2).

_ In the case of thin-walled open structures of low flexural-torsional rigidity,

where stresses corresponding to higher global modes are of the same order as
those corresponding to local modes, it may be necessary to take into account.
interaction of the ,,secondary” global mode with the others (4-mode approach).

SRIDHARAN [4] considered the interaction of two buckling modes of wide
plate with rectangular stiffeners for which the overall mode is assumed to con-
sist of two half-waves to model the ,,clamped” end conditions, and havmg the
following d1men31ons (Fig 1la):

bifby =20,  hyhy =10,  byfhy =50, b, =264
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Ih this case the postbuckling equilibrium paths are governed by the second-
ary order solution only.

Having assumed those geometric dimensions of the plate, calculations have
been carried out in terms of the three-mode approach and it has been found
that all components of the first approximation, i. ¢. coeflicients g;;; of the set of
equations (2.7) are equal to zero.

Next, the same dimensions of a wide stiffened plate cross-section and identi-
cal wave-length of global buckling have been assumed (the global buckling
mode corresponds to one half—wave i. e. I/b; = 13.2). Results of the calcula-
tions are

af=1.187, of= 1.157(m —11),  of =2793(m = 11)

where indices 1, 2, 3 denote the global, the prlmary and secondary local mo-
des, respectively.

Stress. values ¢¥ and o¥, obtained here, are identical with those obtained
by SRIDHARAN [4] for two-mode approach, at the same buckling length. How-
ever, following major terms of the first order solution (i. e. &,&3, &, &3, £,&,¢5),
have turned out to be non-zero. .

" Table 4, Limit dimensionless stresses carried by the plate with rectengular stiffeﬁers.

o . : o 23
Imperfection amplitudes 2-mode approach 3-mode approach 3 ’
& & &4 o a¥fet o¥fat o %
0.1 0.0 0.0 0.8986 08942 05
01 005 00 |- 0.7738 ©0.7605 1.7
01 02 o000 | 0.6363 061127 ©41
05 . 00 . 00 0.8017 . o784 22
05 . 005 00 0.7160 ' 0.6915 35
0.5 02 0.0 : 0.6050 05715 58
10 0.0 0.0 0.7361 . 0.7079 40
10 005 00 . 06670 o 06334 53
1.0 02 . 00 | 0.5736. 0.5345 73

In Table 4 the ratlos of 11m1t stress a* to the global stress o are presented
for different unperfectlons two- and three-mode approaches bemg taken into
" account. As the imperfection becomes more significant, the difference between
these two approaches increases, too.
It is seen that also in this case, local mode 1mperfect10ns promote an 1nterac—
tion between the local mode (s) and the global mode.
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Therefore an.a priori application of the results obtained for the same buck-
ling length but a different number of half-waves m, may bear even a qualitative
error resulting in the appearance of a catastrophic failure.

4. CONCLUSIONS

The mmal post-buckling behav1our of ‘a thin-walled infinitely wide plate
with longitudinal stiffeners has been presented on the basis of Byskov and
Hutchinson’s method, co- operatmn of all walls of the structure being taken
into account.

The solutions given here are valid in the case of uniform compression. The
present approach takes into account the secondary local mode activated by the
interaction of the overall mode with the primary local mode.

In the case when a few buckling modes are comparable, dlsregardmg the
mode inferaction may lead to overestimation of the load carrying capacity of
the structure.

The paper is aimed at drawing attention to.the question assomated with
disregarding the key terms of the first order solution.

APPENDIX
THE ASYMPTOTIC METHOD

The method outlined in the followmg ‘was deveioped by BYSKOV and
HUTCHINSON in {1] where a complete derivation is given. This method is suita-
bie for sfructures with M simultaneous or nearly simultaneous buckling modes.

Assume that the structure is perfect and that the prebuckling state is linear
with respect to the scalar load parameter 4. The displacement field is expanded
in the following fashion

(A1) | U= A+ Ety+ & b s

where the prebuckling displacement field is described by Aug, the amplitude £,
measures the influence of buckling mode u, and u; is the second order field
associated with u; and u;. The stress and stram ﬁelds are expanded ina fashion
similar to (A.1).

The material is assumed to be linearly elastic. The dot used in the following
denotes integration over the entire structure

(A.2) _ o8 _jo- &odv,

L%
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The eigenvalue problems determining the buckling modes and thelr associated
eigenvalues 4, are found from the variational equation :

(A3} oy lilou)+ ;0411 (uy, 0u) = =1,., M,

where du denotes all kinematically admissible variations of w. The buckling
modes are taken to be mutually orthogonal in the following sense

(A‘4) . 7 0’0 .. Il 1(“!‘5 uj), i # j.

If the structure contains geometric imperfections u given by u'= £, the fol-
lowing M nonlinear equations determine the equilibrium paths

A o A=
(A.S) ) éJ 1—7 +C,—fja,-j_;+... :WéJ, J = 1,.‘..,M.
o . A _ A, o
The formula for the coefficients are ' '
(A.6) - . Wy = [O'J‘lu(“%a “j)‘_i‘ 20,14 (up uj)l/ (205¢).
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STRESZCZENIE

PEWNE ASPEKTY WSPOLDZIALANIA ROZNYCH POSTACI WYBOCZENIA PLYTY
WZMOCNIONEJ CIENKOSCIENNYMI ZEBRAMI I PODDANE]J
ROWNOMIERNEMU SCISKANIU

Rozwarono wspoldziatanie prawie réwnoczesnych postaci wyboczenia nieskoniczenie szerokiej
plyty wzmocnionej cienkodciennymi zebrami w pbecnoéci imperfekcji konstrukcyjnej. Zastosowa-
no réwniez rozwinigeia asymptotyczne Byskova i HutcHINsoma [1]. Praca poswigcona jest
poglebionej analizie stanu rébwnowagi konsirukeji z imperfekcjami w poczatkowym zakresie
pokrytyeznym, Otrzymane wyniki wykazuja efekt wspoldziatania ,,podstawowej”, lokalnej postaci
wyboczenia oraz ,drugorzednej” postaci lokalnej o tej samej liczbie polfal W pracy przed-
stawiono analize wspétdziatania kitku postaci wybeczenia. .

Pesrome

HEKOTOPLIE ACIEKTBLI B3IAMMOJAEWUCTBUS PA3HBIX BHUA0B
MPOJOJIBHOI'O M3TUBA TLIIMThI YTIPOUHEHHON TOHKOCTEHHBIMH
PEBPAMHU U ITOABEPTHYTOH PABHOMEPHOMY CXKATHIO

PACCMOTDEHO BIAMMOZEHCTENG TOMTH OJHOBPCMCHHEIX BHACB TpOfoNbHOTC m3ruba Gec-
KOHEYHOH IUIHTHI, YIPOUHEHHON TOHKOCTEHHBIME pebpamm, B NPHCYTCTBHA KOHCTDYKIMOHHBIX
nepexton. TIpEMEHEHB! TOXE ACHMUTOTIMECKHE pasmoxenus Dhickopa ® Tarwmmcona [1].
PaSoTa TOCBALEHA yrIyGAEHHOMY ARANA3Y COCTORHES DABHOBECHS KOHCTPYKIHMM C jeQerTaMu
B UAYANLHOH crajdm nocne ToeTpH yeroiiumsocrn. Ilojyuemnbie pe3ynbTalhl YKa3bIBAIOT HA
adipekT BIAMMOMECTERA ,,0CHOBHOIO”, JIOKANLROTO BARA IPOAOABHOIG H3rnba ® ,BTOPO-
CTENEHHOTO™, NOKANBHOLO BUAA C JTod e camofl UMHOM BoMHHL B pefore mpemcrapicHm
AHAIMG PRAAMONCHCTBHA HECKOIBKEX TAKHX BFIOB POMOJIBHOTO H3rHOA.
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