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TETRAHEDRAL SPACE-TIME ELEMENTS
IN THE ANALYSIS OF FORCED VIBRATIONS OFF PLATES

JL.KOTULECKTand M. WITKOWSKI (WARSZAWA)

The paper presents a generalization of the space-time clement method with a triapgular net.
Space-time is three-dimensjonal in dynamic analysis of plates, so instead of the triangular elements,
tetrahedrons were used. The space-time tetrahedral element of a moderately thick plate was pro-
duced and examined. The advantages of a triangular net, especially those leading to equations
uncoupled with respect to the podes, were conserved.

1. INTRODUCTION

There are a lot of possibilities for the generation of space-time clement nets.
However, the triangular nets described in the ODEN'S paper [1] have special
properties. As the result of using these nets we obtain a triangular matrix for
the equations of the space-time element method. The solution of the above set
is very simple because a triangular matrix does not require any inversion. The
applications of this concept to the different problems of structural dynamics are
described in the papers of KACZKOWSKI [2] and WITKOWSKI [3, 4}. However,
all the mentioned works deal with only one-dimensional problems of mechan-
ics, what enables to formulate them in two space-time'dimensions. The work
[2] indicates the possibility of solving also the plates, shells and solids but
without sample problems. In the recently published BAJER'S paper [5], the
tetrahedral space-time elements were considered in the analysis of the disks.

In the presented paper the forced vibrations of moderately thick plates are
considered. If in one-dimensional problems (for example tension bar, bending
beam, axisymmetrical solids with the plane strains) we have the triangular nets,
the ‘analysis of the plates requires using of the tetrahedrons. These clements
preserve all advantageous properties of the triangular nets what permits to
reduce considerably time of calculation.

2. BASIC FORMULATIONS OF THE THEORY OF MODERATELY THICK PLATES

This theory assumes that a displacement field has three components-deflec-
“tion w and two indcpendent angles 9, and §,. We can describe it in the form

e . | u={w 9,9}
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The strain vector is defined as follows:

(22) {ﬁxs » Kyy ¥ » xy}
The strain-displacement relatlons look like
23) g = 2,m,

where the opefator matrix has a form which is described in the KACZKOWSKTS
work [6]
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The stress vector contains the shearing forces, bending and twisting moments, |
It has the form :

@25 M%MMMJ
The stress-straln relatlon 18
(2.6) g, =Eg,

where E, is the constltutlve matrix which has the following form for the elastic
piates

H 0 0 O 0 ]
0 H 0 0 0

@n . E=|o 0 ) D 0
0 0 vD D 0
0 0 0 0 (=)D

. 2
In the above formulas we admli; 5 Eh
| 12014
(2.8) K
P By

where E, v— Youngs and Ponssons modulus respectively; h — thlckness of
the plate.
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In the dynamic problems, the equilibrium equations should be completed
by inertia terms. Introducing of inertia terms in the space-time description
requires the increase of dimensions of the strain and stress vectors.

They can be written as follows:

g = {58},
(2.9) ¢ ={g,a,},
where )
= {Bx K }
@10 = 10, Moo M,).
The strain-displacement relation is
(2.11) & =0,

where the operator matrix has the diagonal form

. | _ K,
(2.12) | %=y [171" 1].

In this case we obtain the following stress-strain. relation ° -

(2.13) g, = Ee,
where the constitutive matrix looks like

- . 3 opd
@2.14) E, = _-{gh eh” 912J [M B, BJ

and ¢ is a density of the mass.
In the space-time description the full dlsplacement—stram-stress rclatlons
have forms

£ = du, - g =Ee,
(2.15)_ gl | E_ Es_ 0 .
} . . . __ ; Qt 0 Et
3. THE TETRAHEDRAL SPACE-TIME PLATE ELEMENT

We take into consideration a tetrahedral space-time element (Fig. 1). Let us
assume that the dispiacement field of this element can be approximated, using
the linear shape functions. The position of the point P is defined by three
Cartesian coordinates x, y, t. In patricular coordinates of the apices are

(31) . P(xuyv t')! 1‘“1234

It is more convenient to use the volummal coordinates in the later analysxs
Voluminal coordinates I,(i = 1,2, 3,4) are defined as follows:
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3.2 L =—,

(3.2) (=Y

where Vis a volume of the whole tetrahedron Py-P,-P5-P, and V; as a volume
of the tetrahedron P-P;-P-P,,j # i k # I, m#i

Cartesian coordmates depend hnearly upon voluminal coordinates. Let us
write it in the form

1 1 t 1 1
: X b X X, X4
(3.3) = -
y Y1 - Y2 Y3 Vs
t ty t, ts ta

" After inversion of above relation ‘we obtain

(3.4) ' L= aix+by+et+d, i=1,234,

where a,, b;, ¢;, d; are constants, The formulas for. these terms are presented.in
the well- known book of ZIENKIEWICZ [7], Chapter 6.

We can describe the operator matrices (2.4) and (2.12), as the functions of
voluminal coordinates. The transformation formulas are

9. & oL 9.

x5 0x 0Ly
T 0 8 LR e
Cowin: B . 8 46Li a

The shape functlons can be written as below

3O UN=IN, Ny Ny N,



TETRAHEDRAL SPACE-TIME ELEMENTS.. 91

where
Ni = Lil—l, 1, 1_]-

The generalized coordinates vector of the space-time element contains following
twelve componets

, ' q = {q1, 925 93 9}
67 - @={qi, %, 4}
where
ai=w, qi=%. qi= Ipie
If we still regard the well-known relation ' '
38 . . . : K= !j’(aN)TEaNdV

then substituting Egs. (2.15) and (3.6) we obtain the formulas for the: compo-
nents of the stiffness matrix. ' '
We take into account that Vis a space-time tetrahedron. volume, therefore
Eq. (3.8) describes the stiffness matrix of space-time element. '
It looks like

Kll KIZ K13 K14
(3 9) R . K KZI KZZ K23 K24 ’
o Ky . K, K;s Ksq’
_K41 K42 K43 I(44
where the submatrix K;; can be written
[ K1 K% K3
if if if
(3.10) K,=| K% K3 K3 |V
| K3t K3? K3
if if if

The subindices belong to a set of nodes number, and superindices are conform-
ed to the sequence described in the formuia (3.7).

The analytical way for calulation of the integrals (3.8) can be applied and
we obtain following formulas for the stiffness components of the space-time
element:

1 -
K22 == D(aa +— ib)‘l‘ (1_+5ij)_BCicj9

G.11) K¥= D(bb+ aa,)+ (1+5h.)—3c,.cj,

2

;
K = K3} = — Ha,
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1

! 1—v
In the above formula D, H have forms according to Eq. (2.8), M, B — re-
spectively to Eq. (2.14), a, b;, ¢; — to book [7], however &;; is a Kronecker’s
symbol. S

4, PLATE VIBRATIONS IN THE CONSEQUENCE OF LOADING_BY IMPACT FORCE
In a series of numerical experiments the behaviour of the simply-supported

square plate was studied. The geometnca,l and matenal propertles were
assumed as follows:

. Span of the plate a=12m,
Poisson’s modulus. v = 0.3,
Young’s modulus E=21-10° MPa
" density of the mass o = 4000 kg/m?,
plate th]cknesses h'=1m,2m,5m.

All experlments were made for the identical space division of the p]ate 1nt0
elements (Fig. 2) and three plate thicknesses (1 m, 2 m, 5 m).

Frc. 2

At first the eigenproblem for the plates was solved. The plates were
described using the moderately thick plates theory. The ‘vibration periods
of these plates, modelled by the use of the classu: ﬁmtc clements, are presented
in the first row of the Table 1. :
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Table 1
Vibration
_ period x 1074 [3]
Thickness of the plate [m] o R B R 2. 5.
1 Moderatorly thick plate E1gcnproblem for ﬁmte _
| element method : o " 104 | 8341} 560
Space-time eiemcnt method. Tetrahedral elements e
time step 05 107+ . S 105 | 85 | 57.5
Thin plate sm'lple supported Analytxcal SN P A
solution 209 110451 41.8

Next, the free vibrations of the same moderately thick plates were analysed.
Initial conditions were assumed as the displacements, corresponding with the
first cigenvector, which' was calculated carlier. Tt was computed using the -
space-time tetrahedral elements, whose net was generated for the base of the
space elements, presented in Fig 2. Application of the single-precission gave
a stabilization of numerical process only for time step DT= 2-10"* s. This
process was unstable when time steps were greater or smaller. For the improve-
ment of stable degree it was decided to make calculations with double-pre-
cision. In this case, convergence of the result to a certain limit was very good.
Analysis of the vibrations enabled to compute the vibration periods, which are
presented in the second row of the Table 1.

We can observe slight differences between results. obtained by different
methods of computing the plates, described using the same theory.

The third row of the Table 1 presents the well-known analytical solutions
for the thin plates. Remarkable differences, im comparison with the previous
solutions, are caused by the big thickness of consxderated plates what does not
allow to use the thin plates theory 1 in this case.

Fmally, the simply supported square plate charged by nnpact force was
solved. The force was applied in the middle of the plate. Vibration process
for the points I and 2 is presented in Fig. 3 using continous and drawing lines,

“respectively. The same straight lines represented static deflections for these
points. We can observe oscillation process around the equilibrium state as well
as an effect of wave propagation. UFLAND [8] proved that for an infinite plate
the equation of motion has a wave character. However, analytical solutions for
finite plates do not permit to regard it.

20 40 200 400 a0 s]
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Fic. 3 o
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Triangular nets are very useful not only in the wave propagation problems
for one-dimensional systems but also in the dynamic analysis of the plates.
Wave effect can be observed particularly in Fig. 4, where variability of
deflection of points I and 2 is presented.
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Uéing tri:ahgulzir or tetrahedral nets gives not 6n_ly the decrease of com-
puting costs but also permits the accuracy in description of a phenomen of
vibration. - '
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STRESZCZENIE: ©

CZWORGSCIENNE ELEMENTY CZASOPRZESTRZENNE W ANALIZIE
DRGAN WYMUSZONYCH PLYT

* Praca stanowi uog6lnienie metody elementow crasoprzestrzenych z siatky tréjkatna. W .anali-
zie dynamicznej plyt czasoprzestrzen jest trojwymiarows, dlatego zamidst elementdw trdjkatnych
zastosowano czworoéciany. Utworzono czasoprzestrzenny czworoicienny element plyty sredniej
gruboéci i przeprowadzono badanie testowe. Zalety siatki tréjkatncj, wyrazajace si¢ w rozdzieleniu
rownan wezgledem weztdw, zostaly zachowane.
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Pesrome

UETBEIPEXTPAHHBIE BPEMEHUIIPOCTPAHCFBEHHBIE 3JIEMEHTEL
B AHAJM3E BLIHVJJEHHBIX KOJEBAHHUWA TUIAT

Pabota cocrasaser 0DoQmeHME METONA BPEMEHHNPOCTPAHCTBEHHBIX 2JEMEHTOB € Tpe-
YrOABHOH ceTkoil. B AHHAMMYECKOM AHANHIE [UIHT BPEMEHH-TPOCTPAHCTBO ABNRETCA YCTHIPEX-
MEPHEIM M TIOTOMY BMECTE TPEXYTONBHBIX 3MCMCHTOB NPEMEHCHB! YeTBIPEXTPAHHHIE 3IE-
MeHTEL O6pazoBal BPEeMEHHIPOCTPAHCTBCHHEIE YETHIPEXTPAHHEIN IEMEHT IUMTHL CPEjHEH
TONMIMHEL M [POBCIACHE! TECTOBHIC HCCACHOBAHHA. JIOCTOMICTBA TPEYTONBHOH CETKM, BRIPA-
KAMIMECH B PA3iC/CHHK YDABHCHUH 110 OTHOLICHHIO K Y3JIaM, COKPAHCHBL
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