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THIN AEROFOIL WITH MULTIPLE SLOTTED FLAP

T.5. PATEL, T. A DERBASI and A. N, HASSANEN (TRIPOLI)

The paper deals with the problem of thin acrofoil with multiple slotted movable hinge flaps.
Two particular cases are considered: a) assuming no gaps exist at the hinges, and b) considering the
existence of slots. The conventional assumptions of small angle of attack, small flap deflection and
small camber are omitted.

1. INTRODUCTION

The classical thin aerofoil theory can be applied to a two-dimensional wing
with a small thickness ratio, small camber under small angle of attack. In many
practical cases these restrictiois cannot be justified. They simplify the problem.
However, the assumptions of small angle of attack and small camber are not
valid for practial cases like take off, landing etc. There are numerous works
available on the application of the thin aerofoil theory, for example, the acro-
foil with rotating flap [1], thin aerofoil with ground effect [2], thin flapped
aerofoil [3], etc. . .

2. THIN AEROFOTL WITH MOVABLE HINGE MULTIPLE FLAPS (NO GAPS)

2.1 Formulation of the problem = _ o
The analysis of thin symmetric aerofoil with plain flap [3] has been exten-
ded here for the case of multiple flaps with movable hinges. The increase in
chord due to movable hinges has been taken into account. The aerofoil with
flap is. represented by a resulting cambered thin.aerofoil with distribution of
vortices along its meanline as in the general case of thin aerofoil: ...

(2.1) . K(x):zI/O[AO(I—J“ﬂS—Q)Jr )y A,,sinn'a]','
: -\ smnf el

where x = (¢/2)(I—cosf); 0 < x<cand 0< @ < 7, ¢ resultant chord when
flaps are extended. ' : ' ‘ '

Let the initial chord aerofoil without deflection of flaps be ¢; and the chord-
wise lengths of the main part of aerofoil and flaps be ¢y, ¢4, ¢, ..., ¢, where 7 is
the number of multiple flaps (sce Fig. I). Let the angle of attack of the main -
part-be o and the flap-deflections be 7, ;... i, (positive downward). The
theoretical representation of this aerofoil with' (¥+1) practically linear seg-
ments is ShOWIl in Flg T:i: Lo SRR S Ponmlonio, L
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FiG. 1. Thin flapped aerofoil and its simplified vortex model. Aerofoil model consisting of (r+1)
linear segments.

The boundary condition over the aerofoil may be satisfied on the meanlipe
1tse1f as in the thm aerofoﬂ theory It may then be glven by

ey [y VesinGrd)te
o \dx)  Vocos(a+d)+u”

where (dy/dx) is the slope of the meanlme u and v are the 1nduced velocrzles
along X and Y axes, respectively. - : '

Simplification of this condition leads to the following generai solutlon i3]
for the unknown coefficients A, and A,

(2.3) A=t a/ﬂ)t (dy/dx)-df
and

Q4. . . (2/n)f(dy/dx)cosn9-d0 :

w1th 5 as def1ned in Flg 1, y x
The solution of the problem then consmts in evaluatmg AO and A, using

Egs. (2. 3) and (2.4) for the. given geometry of the aerofoil and flap deflections.

The necessary geometrlcal details are worked out in the following paragraph. .
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2.2. Geometrical details

The height h of the first hinge from the chord can be expressed by two
different equations involving the unknown angle

(2.5 S Co'Sind =h -
and - : TR
(2.6) ' z ¢, sin(ny,~8) =

Equations (2.5) and 2. 6) can be solved by iterations to find the value ofiﬁ
Then the actval chord after flap deﬂectlon becomes

2.7 w0 e= ¢yrCO8d + Z ¢, cos(n,—9).
=1

Let the position of the hinge of the p~th flap be given by x, = (¢/2}{(1 — dﬁp), then
&, may be expressed as below:

(2.8) P, = cos 1[1— Y. {cs-iC087,— — )/(6/2)}-

s=1

Tf the slope of the meanfine segment for the main part is (dy/dx), and that
for the p-th flap is (dy/dx),, then their values will be

(2.9 (dy/dx)y = tandand(dy/dx), = — tan(n e 5)

2.3. Solution of the problem

Eqﬁaﬁons (2.3) and (2.'4) for unknown A4, and An.can be reduced to the
following form with the help of Eq. (2.9} .
Ag =(oc+5)—(1/n)|:d)-1tan5 Y (@i P Htan(y »0)—
(2.10) pel
—(m—@,)tan(n,— 5)}

and . : _
R = (2/1?:)[tan5(sinn®1)/n+ :

(211 . A _ : .

+tan(y, —S)(sinn®)/n— 3, tan(n,—d)(sinnd,, ; —sinndbp)/n],
: =1 _

where & an @ could be evaluated with the help of Eqgs. (2.5} to (2.8).

The aerodynamic characteristics of the aerofoil with ﬂaps may be worked
out as shown in the next paragraph. |

" 24. Aerodynamic characteristics

The coefficients of lift C, and the pitching moment C,,,; (nose up positive)
can be obtained using: Joukovsky’s theorem. The final tesults are as below:
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(2.12) Cy = 2n(do + A1/2)(¢/cy)
and
@13 Coun = — (/D) Ao+ Ay — Asf2) (/e

where A,, Ay, A, and ¢ can be evaluated from Egs. (2.10), (2.11) and (2.7).
The hinge moment coefficient for the g-th hinge could be reduced to the
following form:

(2.14) Cr = (A010q+ Y 4 Iﬂq) / ( > cp)z,

where - o
= (r— P H2c0sD,—1)/2 +sin®, —(sin 20,)/4,
__cosd, l:sin(n+l)®q sin(nml)@q]_

M n4l n—{
_l:sin(n%Z)(Pq_sin(n—Z)cED{l p
(n+2) n—2) ’

. . C 7 T Hq/[ZQU%cz)
H, hinge moment about the q th hlnge '

2.5. Numerical illustration
The problem of symmetrical aerofoil with double flap.and movable hinges
has been considered as a numerical example using the following data;
| =100, ¢, =080, ¢ =025 T¢c,=015
and the vatious combinations of o
o=000° -573°, 1145, 17.20°
1, =0° 10°, 20°, " 30° and g,=0° 15°, 30°, 45°
The computer program has been developed in FORTRAN-IV and the prob-:

lem has been solved with the help of the computer centre at Al-Fatch University,
Tripoli. The results are presented in the form of curves in Figs. 3, 5 and 6. -

3. THIN AEROFOIL WITH MOVABLE MULTI-SLOTTED FLAP

3.1. Formulation of the problem

The multiple slotted flapped acrofoil has been analysed here with the help
of the thin acrofoil theory. Each of the main part and multiple flaps is treated
as an independent thin aerofoil having mutual interaction on each other. A typl—
ca] aerofoﬂ modeI with such flaps has been shown in Fig, 2.
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Fi1G. 2. Vortex model of thin acrofoi_l with multiple slotted movable hinge ffr;lps.

According to'the thin aerofoil theory, each part is represented by the cir-
culation distribution over its meanline. Let Ko, K, K., ... K,,.., K, be the
circulation distributions for the respective part, each satisfying the trailing edge
condition. They may represented by

G4 . Kp:2V0[A0p(1+cost9p)/(sinf9p)+nglA,,psihﬁép],

where the chordwise position on each:segment %, = (¢, 2)(1 —cosb,); 0 < Xp € €y
and 0 0, < m; p=0;1,2,.., r for a respective segment the aerofoil.

.. The boundary-condition to be satisfied on the meanline of each segment the
aerofoil may be given as follows: . Lo R '

32 Volldydn), —sin@ ), = i?o”ﬂ’.' .

where (dy/dx), is a slope of the meanline for the ¢-th segment ”Heq is the position
on the meanline of the ¢-th segment where the boundary condition is satisfied
at e point and v, is the normal component (to chord) on the g-th segment
induced by the circulation distribution- K, of the p-th segment. '

‘The conventional assumptions of a small angle of attack and small flap.
deflection are omitted in Eq. (3.2). ' ' Cs
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The problem lies in finding the values of unknown coefficients 44, and 4,,
in the circulation distribution K, of the p-th segment. It can be numencally
solved by retaining N number of terms in each of the dlstrlbutlons K, The
boundary condition then must be satisfied at the same number of points 9
every g-th segment.

As suggested by MULTHOPP [ 5], the value of 0,, may be chosen as follows:

(3.3) Oy =(m-e)f2e+1), e=1,2,.,N and ¢=0,1,2..r

3.2. Induced velocity components Vgp

The 1nduced velocity components may be obtamed with the help of
Biot-Savart’s law. The final results are summarized below

(34 Vgq = Vo(—Agy+ 2, Ayzcosn0,,),
n=1
(3.5) Dpg = — J K p(Q 80 00y + R ,,c080,,) (dx,)/21(Q 2+ R2),
-0
where

QP‘I = (xqﬂxp) i (Cq/2)(1 —COS eeq)cos (ﬂq—i’]p) -
- (cq/z) (1 —COos ep))

Rpq = (y,—¥,) + (¢,/2) (1 —cosb,,)sin0
vy, 1s the induced velocity at any point 0,, on the g-th segment due to circula- -
tion distribution K, and v,,, is the mduced velomty at any point 0,, on the g-th
segment due to c1rcu1atlon dlstrlbuuon K,

The integrals involved in Eq. (3.5) are evaluated numerically using Simpson’s
rule. :

eq

3.3. Solution of the problem

The boundary condition (3.2) become a set of linear (»+ 1) x N number of
equations by satisfying it at (4 1) x N points given by Eq. (3.3) retaining only
N terms with N unkown values of coefficients in K, (see Eq. (3.1)). Thus,
there will be (r+1) x N unknowns with:(r+ 1) x N equations: which can be
solved by either matrix inversion or by the iteration method. The aerodynamic
coefficients can be obtained with the help of Joukovskys theorem. The final
relations are as below:

Cl = 2 C!p’
. =0

)
L)
I

21E(A0P+A,p/2) (CP/C), CmLE = Z Cm.LEp"

p=0

CmLEp = - (15/2) (AOp+Alp—“A2p/2) (cp/c),_zs
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r r r
CHq = Z CmLEp + Z Clp(xp - xq) (C/ z cp):
P=q r=q P=q

x, and x, are the distances of hinges of p-th and g-th segments of the acrofoil
from its leading edges.

3.4. Numerical illustration

The numerical problém of the aerofoil with double slotted movable hinge
flaps has been worked out using data as follows:

c, =080, ¢, =025 ¢, = 0.15 and combinations of
a =0.00° 5.73° 11.45°, 17.20°,
1, = 0°, 10°,20°, 30° and 17, = 0°, 15°, 30°, 45°.
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Fic. 3. Curves of C, and C,;; for thin aerofoil with and without slots.
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FiG. 4. Curves of comi:ronents of lift and pitching moment coeflicients for double slotted flaps.
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iy &
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Fig. 6. Curves of C,, against 7, and Cy; against 1.

_ The positions of the first hinge (x;,y,) and second hinge (x,y,) are as
follows: :
xp =080, y, =002  x,=080+025c0s9,,
y; = 0.03540.25sinP,.
The results of computation are presented in Figs 3, 4, 5 and 6 together with

the possible results for the same problem attempted by the simplified theory
without slots. ' )

4, CONCLUDING REMARKS

Figurer3 shows that the values of C, and -C,,; for the slotted aerofoil
increase with the angle of attack and flap deflection #, for constant flap de-
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flection #,. It is found that the trend is the same with variation in flap deflection
1y also. The-rate of such increment is more for the simplified model without
slots than that for the slotted aerofoil. The increment rate is decreasing with an
increase in « which indicates that for the slotted flapped problem the adverse
effect of the front segments on the rear segments grows with an increase in. .

Figure 4 shows that the value of C),; and the absolute value of C,;50
increases with a rise in « and also with a rise in flap deflections », when #,
= const. This agrees with the thin aerofoil theory. The value of C,; and
absolute value of C,;p, rise with an increase in « but decrease with an increase
i #, when #, = const. The increase in the above quantities with « is slower
than that for Cy, and C,,; z. The effect of #, on them is opposite to that on Cp
and C,,pzo. This may be due to the adverse effect of comparatively powerful
circulation over the nearby main part-ahead and above the first segment. The
value of C,, and the absolute value of C,,; g, decreases with an increase in o and
also with a rise in 77, when 7, = const, This scems to be a trend opposite to the
expected one. This may be due to the combined negative induced effect of the
main part and the first segment which are ahead and above the second flap.

Figure 5 represents variations in C;; and Cyy, with flap deflection #,, with
flap deflection #, as a parameter. The magnitudes of both of these coefficients
increase with n, and #,. It may be noted that at higher values of #,, the
circulation distribution over the main part becomes more powerful than that of
the second flap and hence the increase in these coefficients with 5, becomes
slower. The values of Cpy, are higher for the simplified model with no slots than
for the model of slotted flapped acrofoil.

“Figure 6 indicates the curves for the coefficients C,, and C, against flap
deflection #, with flap deflection #, as a parameter. Their values increase with
a rise in 77, but they decrease with an increase in #, in magnitude. This may be
due to the combined adverse effect of the nearby first flap and the main part
which are ahead and above the second flap. The values of hinge moments with
the slotted flapped model are higher than the simplified aerofoil model without
slots. This difference may be attributed to the slots which allow a flow of air
from a high pressure region to a low pressure region across the slot and reduces
the intensity of circulation accordingly.

The curves are not linear in most of the cases as the linearising assumption

" of small angles of attack, small flap deflections and small resulting camber are

avoided in the present work.
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STRESZCZENIE

CIENKI PLAT Z WIELOSZCZELINOWA KLAPA

Rozwazono zagadnienie cienkiego plata zaopatrzonego w wicloszczelinowe ruchome kiapy
osadzone na zawiasach. Zbadano dwa przypadki szczegdlne: a) przy zalozeniu, ze nie ma szczelin
przy zawiasach i b) przy zalozeniu, ze szczeliny takie istnieja. Pominigto stosowane zazwyczaj
zalozZenia dotyczace malego kata natarcia i malego ugiecia klapy.

Pesome
TOHKOE KPEIJIO C MHOT'OPA3PE3HLIM 3AKPLUJIKOM

PaccmoTpena 3agaua TOHMKOrO Kpsijia, CHaOMEHHOTO B MHOTOpaspe3Hble [OABUKHBIE 3a-
KPBUIKM, OCWXJEHHbE Ha nNeTnsax. MccrepoBambl [Ba YACTHHIX CiOy4as: a) IIPH DPEANOJIO-
XeHUW, YTO HET pa3pe3oB NPH MNeTHIX ¥ ©) NPH IIPeIIOJNONEHHH, YTO TAKME pa3pessi
cyiecTytof. TIpenebperaeTcs NpPHMCHSEMBIME OGLIYHO - MPEANONIOKEHHSIMY, KACAIOLIAMUCS
MaJIoTO YIjia aTakd H Majoro mpornba 3akpsLika.

AL-FATEH UNIVERSITY, TRIPOLI, LIBYA,

Received November 22, 1985





