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ON CERTAIN PECULIARITIES OF THE SHOCK WAVE
REFLECTION

Z.A. WALENTA (WARSZAWA)

The present paper discusses the results, both theoretical and experimental, in author’s
opinion most important for understanding the formation of a quasi-stationary reflection
of a plane shock wave at a wedge. The peculiarities of the behaviour of the shock wave
in close vicinity of the leading edge of the wedge are reported. The differences between
the stationary shock reflection in the wind tunnel, and the guasi-stationary one in a shock
iube, are specified. It is concluded that these two kinds of reflection can be equivalent

only in the case of strong shocks.

1. INTRODUCTION

The phenomenon of shock wave reflection has been known to the scientific
community nearly as long as the shock wave itself. It was the year 1878 when
Ernst MAcH announced the discovery of the irregular type of reflection,
called thereafter "the Mach reflection” [1]. Still, not all peculiarities of this
phenomenon are fully understood even now.

Recently guite a lot of research work has been undertaken in this area
(see [2] and the papers quoted there). The aim of the present paper is to
clarify certain points on the basis of the most recent, and also some older,
experimental and theoretical results.

Of course, all problems of shock reflection would largely exceed the scope
of this paper. We shall confine ourselves mainly to quasi-stationary reflec-
tions: of weak shock in general, and of strong shocks in the vicinity of
the leading edge of the reflecting wedge. We shall not discuss the double
and multiple Mach reflections, truly nonstationary reflections from curved
surfaces and other problems of similar type.
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2. SHOCK WAVE REFLECTION — STATIONARY CASE

Shock wave is a wave of a very particular nature. For its existence some
dependence of sound speed on other properties of the medium is required:j
Small disturbances, e.g. weak compression waves, can increase the sound:
speed and, in consequence, overtake each other to form a finite, sometimes
very large jump of parameters, This jump, the "shock wave”, occurs in'a
narrow region, whose thickness is of the order of a few mean free paths of
the gas particles at its low-pressure side. :_

The shock wave in air at normal conditions is about 0.1 pm thick and
is frequently treated as a discontinuity. However, in certain situations, liké'
e.g. high altitude flights, the shock thickness may be comparable with the.
dimensions of the flying object, and then, of course, cannot be neglected. -

The distributions of the gas parameters inside the shock wave (commonly.
called "the shock wave structure”) can be described with a functional de-
pendence, close to the hyperbolic tangent. In fact, the hyperbolic ta;ngentf
describes exactly the structure of a very weak shock [3].
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F1aG. 1. Density distribution in a plane shock wave.

As the hyperbolic tangent extends from minus to plus infinity, a simple.
definition, attributed to. Ludwig Prandtl, of the so-called "maximum slope:
shock thickness” has been introduced, as shown in Fig. 1. -

The reader interested in the structure of the plane shock waves can be
referred e.g. to the survey paper [4]. '

If the flow containing a shock wave encounters a solid wall, it may happen:
that one or more new shocks are produced because of interaction of the
existing ("incident”) one with the wall. This is called "shock reflection”. -

Consider the situation sketched in Fig. 2a. At the right-hand side of the
flow field the gas is moving at a supersonic speed along a horizontal plane
wall. A wedge, placed above the wall, produces an "incident”, oblique shock:
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FIG. 2. Stationary case: a) regular reflection of an oblique shock wave, b) irregular
reflection of an oblique shock wave, c) interaction of two obligue shock waves,

- wave, The flow behind this wave is directed downwards. As the velocity at
the wall must be parallel to it, the flow is then turned back to the horizontal
_ direction. In the case of a supersonic speed this can be done only in the
second shock wave — the "reflected” one. The described situation is usually
called ”the regular reflection of the oblique shock wave”.

I the flow Mach number behind the incident shock is not high enough,
or the angle between the shock and the wall is too large, it may not be
~ possible to turn the flow back to the horizontal direction in a single reflected
- shock. The "reflection point” (where the incident and reflected shocks meet)
~ moves upwards and a third shock ("Mach stem”) is generated to connect the
53; reflection point (now the "triple point”) with the wall. (Fig. 2b). Behind
_ the "triple point” an additional discontinuity, the ”contact surface” appears,
~ since the parameters of gas, which passed two shock waves are different
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from those for the gas, which passed only one. Such a flow conﬁgura,tion-.isg
commonly called "irregular”or "Mach-type” reflection of the shock wave.

The shock wave reflection has been a subject of the work of many inves
gators, both theoreticians and experimentalists. The most recent descriptic
of the "state of art” in understanding the problem was given by H.Hornu
in an excellent review, published in 1986 {2].

3. VoN NEUMANN'S THEORY OF SHOCK REFLECTION AND ITS
CONSEQUENCES

Assume, that all shocks (the incident, reflected and, possibly, the Ma
stem) and also the contact surface, if present, are plane and of zero thickness,
Assume that all parts of the flow field, separated by the shocks and the
contact surface, are uniform. The Rankine-Hugoniot conditions, written for
all the shocks, constitute then a set of equations, describing the phenomenb
For the Mach reflection this set is not closed. To close it one should simply
note, that at both sides of the contact surface the pressures are equal and
the velocities are parallel.

The resulting equations will not be presented here. They can be found
e.g. in the paper by BEN-Dor [5]. The whole description of the problem
is commonly called "the von Neumann’s theory”, as J. VON NEUMANN was
one of the first, who formulated it [6}.

To show certain consequences of the von Neumann’s theory, the ”shock
polar® diagram p = p(8) (Fig. 3) will be used. Here p is the pressure behind
the shock,  — the flow deflection angle. This diagram is pa.rtlcularly well
suited for illustrating both the regular and the Mach reflections:

Regular reflection (Fig. 3a): the point R, where the reflected shock polar
intersects the vertical axis, corresponds to the region behind the reflected
shock — the net deflection of the flow behind the two shocks (the incident
and the reflected) is zero, as expected for the neighbourhood of the p]a,ﬁe
wall. _'

Mach reflection (Fig. 3b): the condition at the wall cannot be fulfilled.
as the reflected shock polar does not intersect the vertical axis. The point
of intersection of the shock polars (M or F in Fig. 3b) corresponds to the
region behind the reflected shock as well as behind the Mach-stem shock
since at this point the pressures and the deflection angles in both region:
are the same.
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F1G. 3. Polar diagrams for shock wave reflections: a) regular reflection, b) irregular
reflection, c} both types of reflection possible.
A — state behind the incident shock, B — point corresponding to regular reflection,

M — point corresponding to irregular reflection, F' — point corresponding to Fig. Zc.

[543]
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For all real shock reflections the interaction point of the polars stays
always between the axis of symmetry of the reflected shock polar and the
p-axis (point M). If such a point exists, the reflection is called "strong Mach
reflection”. If not, we have the "weak Mach reflection” and the presentedj_
theory does not correspond to the real flow, encountered in the experiment.
Other intersection points, like point F in Fig. 3b, either correspond to some:'
special flow cases (e.g. Fig. 2c) or have no physical meaning at all.

The polar diagram shown in Fig. 3c may correspond to both, the regula.r:
and the Mach reflections. The choice depends on the whole flow field. The
situation is described best by the ”information condition”, as first formu-
lated by HORNUNG et al. [7]. As the distance from the triple point to the
wall constitutes a length scale depending on the geometry of the walls, the
Mach reflection occurs when this length scale can be communicated from
the walls to the triple point. If this is not possible, the regular reflection
takes place.

4. QUASI-STATIONARY SHOCK REFLECTION AT A WEDGE

In the preceding chapters only the stationary shock refiections were con-
sidered. The shocks were motionless in the laboratory frame of reference
and the gas was moving at a supersonic speed. It happens often that shock
wave, travelling in a quiescent gas, encounters on its way an obstacle — a
reflecting wedge {Fig. 4). It is commonly considered that this case is equiv-
alent to the former one, provided that the shock is plane, moves at constant
velocity and the reflecting surface of the wedge is also plane. If this is ful:
filled, a Galilean transformation exists, which transforms the phenomena;
nonstationary in the laboratory frame of reference, into quasi-stationary, in
the frame of reference connected with the reflection peint.

The quasi-stationary reflection, as described here, is however not alwa,ys'
fully equivalent to the stationary one. In the two cases, the shapes of the
fiow boundaries are different. In addition to that, the stationary and non-
stationary boundary layers are of different character. The two cases are
therefore equivalent only if the flow behind the reflected shock is supersonic
relative to the reflection point. If this is fulfilled, the information from the
boundary cannot reach the reflected wave, so it is irrelevant to the reﬂectiori
process.

It should be noticed here too that, in order to produce the sta,tlona.ry
shock reflection, the suitable supersonic flow is generated in a wind tunnel
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AT

FIG. 4. Reflection of 2 moving shock wave from a wedge: a) regular, b) irregular.

of some kind. The incident shock results from interaction of the flow with
the wedge, immersed in it. For flows which are only weakly supersonic, the
wind tunnel may ”choke” because of the presence of the wedge, and the
expected incident shock may not appear.

Nothing of this kind can happen at the reflection of the moving shock. In
the quiescent gas a shock wave of any strength can be produced with relative
ease. It is also possible to place on its way a wedge of arbitrary shape. The
experiments [8-10] indicate, that in such a case the reflected shock appears
always, no matter whether and where the shock polars intersect each other.

It should be noted, however, that if the shocks are weak, the wave te-
flected irregularly is always curved and the flow behind it is nonuniform,
which is contrary to the assumptions of the von Neumann’s theory. It is
not surprising then, that the experimental results, obtained mainly in shock
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tube flows (with incident waves moving in a quiescent gas), for weak shocks'
disagree with predictions of this theory. o

5. THEORETICAL SOLUTIONS FOR MACH REFLECTION OF WEAK SHOCK

Because of inapplicability of the von Neumann’s theory to weak shocks,
the theoreticians attempted at finding some other solutions, valid in this
case. Among the first solutions of this type the best known ones are due to
GUDERLEY [11] and SAKURAI [12], although other attempts should also be
recognized. .
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I'1G. 5. Comparison of Guderley’s theory and experiment for shock wave angles at the
triple point. Air; Ms = 1.102; a) reflected shock, b) Mach stem.
Reproduced from STERNBERG {13].

The Guderley’s solution was supposed to explain the existence of the
Mach reflection of weak shocks, as reported by the experimentalists, when
the shock polars did not intersect. It assumed that the pressures at both
sides of the contact surface behind the triple point were equalized by an ad-
ditional rarefaction wave. However, no experiment confirmed the existence
of such a wave. Besides this, as shown e.g. by STERNBERG [13], the angles
between the shocks predicted by this solution differed very strongly from
those obtained experimentally (Fig. 5).
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The protagonists of the Guderley’s solution argued, that the rarefaction
wave is invisible with the usual optical methods (shadow, schlieren, interfer-
ometry), because it occupies very small area and the spatial resolution is not
sufficient to detect it. Besides this, both the reflected and Mach waves are
strongly curved in the neighbourhood of the triple point, therefore the angles
are never measured at the proper location. The argument was not solvable
as long as only the optical methods, requiring relatively high gas densities,
were available. We shall return to the problem later, when discussing the
recent experimental results.

STERNBERG [13] was perhaps the first who proposed to relax the von
Neumann’s conditions at the contact surface. In his extensive study, pub-
lished in 1959, he argued that viscosity transforms the contact surface into a
broad zone, which can support a finite pressure difference and have different
velocity directions at both sides. As this required new conditions to close the
system of equations, he argued that the flow in the whole region behind the
shocks should be solved. Sternberg’s argument was based on the order-of-
magnitude estimation of the possible influences, therefore it required future
confirmation.

Akira. SAKURAI in the paper published in 1964 [12] solved the flow equa-
tions locally, between the reflected and the Mach shocks, in close neighbour-
hood of the triple point. He tock into account viscosity and thiermal con-
ductivity of the medium; however, the shocks were assumed to be infinitely
thin. Their inclination angles were calculated from the Rankine-Hugoniot
relations.

Sakurai’s solution agreed well with experiment for the weakest measur-
able shocks. The agreement became worse at increasing strength. With the
present understanding of the phenomenon such a behaviour seems to be easy
to explain. Sakurai’s solution does not take into account the conditions at
the boundaries. Therefore, if the flow behind the reflected shock is subsonic
and the conditions at the boundaries are important, this solution cannot
be correct. However, in the limit of infinitely weak waves, the shocks are
actually sound waves, subject to the laws of acoustics. The influence of the
walls is then of no importance, and it is not surprising that the agreement
with experiment is good.

Sakurai’s paper made it possible to understand that, even if viscosity
and thermal conductivity are taken into account, the local solutions cannot
describe properly the irregular reflection of the shock wave when the flow
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behind the reflected shock is subsonic. In this case the Sternberg’s idea &
solving the whole flow field should be applied. :

6. CONTEMPORARY NUMERICAL SOLUTIONS FOR FLOWS WITH SHOCK:
WAVE REFLECTIONS

Rapid development of fast computers made it possible to calculate man:
complex flows. The shock wave reflection, being relatively simple, and no
very difficult for experimental investigation, was often used as a test casi
for numerical codes. Quite recently a series of papers presented numerical
solutions to the Euler equations for irregular shock wave reflections at vari
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F1G. 6. Single Mach reflection: Air; Ms = 2.03; wedge angle 8,, = 27°; Initial ¢onditions:
p1 = 33.3kPa; 71 = 299.2K; a) infinite fringe interferogram showing lines of constant _
density, b} numerical simulation. '

Reproduced from GLAZ et of. [14].

ous Mach numbers [14, 15]. These solutions agree surprisingly well with
shock-tube experiments made at high densities (Fig. 6). Such an agreement.
supports the previously expressed opinion, that transport phenomena are
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generally of little importance for the shock reflection, except, perhaps, for
some special situations,

One of such special situations occurs when the moving shock wave is close
to the leadiﬁg edge of the reflecting wedge. Certainly, in this area neither
Euler’s nor even Navier-Stokes equations can be used. What remains is
~ the Boltzmann’s equation or the Direct Simulation Monte Carlo (DSMC)
" method.

Neither theoretical, nor experimental investigation of the leading edge
region has been brought to such a stage as that for high densities (which
is equivalent to large distances from the leading edge, as measured in mean
free paths of the molecules). However, a lot of work is presently being done
and one may hope that satisfactory results will appear soon.

7. RECENT RESULTS FOR THE VICINITY OF THE LEADING EDGE OF THE
REFLECTING WEDGE

7.1. General remarks

As already mentioned, the region close to the leading edge of the wedge,
reflecting the moving shock, is not sufficiently understood yet. The present
chapter describes mainly the experimental results, obtained recently in this
area. They give some information about the behaviour of the shocks and
create the basis for the future research.

In order to resolve the peculiarities of the flow in the leading edge region,
it was mecessary to expand the linear scale of the phenomenon. It could
be achieved by decreasing the initial gas density. This however, in turn,
required experimental techniques, suitable for nonstationary, rarefied gas
flows. The electron beam attenuation technique [16] and laser differential
interferometry {17] could only be used to obtain the results. Unfortunately,
these techniques in a single experiment can only register the variation of
gas density in one or, at the most, few points in the physical space. To
obtain the information on the whole flow field it was necessary to perform a
number of test runs under the same flow conditions and different positions
of the measuring device, and then superimpose the data upon one picture.
This procedure gives meaningful results, provided that repeatability of the
runs is good.
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7.2. Development of the regular reflection of an oblique shock wave

Quite recently Fucus and ScHMIDT [18] presented a series of results
(obtained with a laser differential interferometer [17]) for the density ﬁeld
at the leading edge of a 60 degree wedge in argon. The incident shock Mach
number was close to the value Ms = 3.88. The maximum distance between
the leading edge and the centre of the incident shock, measured along t]
reflecting surface, was equal to about 30 mean free paths of the gas particles
in front of the incident shock.
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FiG. 7. Lines of constant density for regular reflection: a) incident shock 10A; from the
leading edge, only thermal layer at the surface visible, b) incident shock 30A; from the
leading edge, reflected shock emerges from the thermal layer. {A; — initial mean free

' path). .
Reproduced from FUCHS and ScHMIDT [18].

From the pictures of the constant density lines, as shown by Fuchs and
Schmidt (Fig. 7), it follows that the regular reflection is probably formed
with certain delay. After arrival of the incident shock, first a dense thermal .
layer builds up at the wall. The reflected shock emerges from it after some_f:_: __
finite delay time.

It is difficult to judge from the pictures what the delay in formation of"-;:'
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the reflected shock exactly is. In any case, the results of WALENTA [19],
obtained with the use of an electron beam for the slightly weaker shock
(Ms = 3.24), indicate that a well developed regular reflection exists when
the distance from the leading edge to the incident shock is equal to about
75 mean free paths. Walenta’s results show, however, an unexpectedly large
difference between the inclination angle of the reflected shock, as measured
and calculated assuming an inviscid flow (Fig. 8). It is believed, that this
difference is due to the influence of the nonstationary boundary layer at the
wedge. Such a boundary layer exhibits a strong "sucking” effect, causing
the reflected wave to stay closer to the wedge surface.

Argon
M, =324

Fi1a. 8. Regular reflection 75X from the leading edge. Points correspond to positions
of the ”shock wave head”, as defined in Fig. 1.

Reproduced from WALENTA [19].

This effect is most pronounced when the incident shock is close behind
the wedge tip. Later, for larger distances, when the boundary layer becomes
relatively thinner, its influence decreases and the reflected shock should move
towards the position, prescribed by the inviscid theory.

7.3. Development of the irregular reflection of a shock wave

The results obtained by WALENTA [20, 21] and FucHs and SCHMIDT
[18] in noble gases suggest, that the initial stage of formation of the Mach
reflection is quite similar to that of the regular reflection. When the incident
shock is close behind the leading edge, no reflected shock.appears, only a
dense thermal layer builds up at the wall. According to WALENTA [21], the
reflected shock can be spotted for the first time when the incident one is
about 15 mean free paths (i.e. about 4 incident shock thicknesses) from
the leading edge. From that time on, the reflected shock propagates in all
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directions above the wedge from the place it first appeared, in a gas set in
motion by the incident shock wave. '
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F1G. 9. Development of Mach reflection: a) weak shock case, Ms=1.42, b} strong shock
case, Ms=2.75,

Reproduced from WALENTA [21].

In the case of weak shocks the speed of the reflected wave is close to the
speed of sound, therefore nearly independent of the direction of motion. The
shape of the reflected shock is then circularly cylindrical. For strong shocks
this simple shape is distorted, particularly at the leading edge. Closer to the
incident shock the approximately cylindrical shape is maintained for some
time. : '




ON CERTAIN PECULIARITIES OF THE SHOCK WAVE REFLECTION 553

Because of the delay in formation,.the reflected shock initially meets the
incident one at the reflecting surface. The reflection is then "apparently
regular”. Only after a certain finite amount of time the reflected shock
"overtakes” the incident one. The point, where the shocks meet, moves
then away from the surface and the third shock, the Mach stem, is created.

From the described behaviour of the shocks it is clear, that the trajectory
of the triple point cannot begin at the wedge tip. This was first anticipated
by HENDERSON and SIEGENTHALER {22] and independently shown by Wa-
LENTA [23]. Later WALENTA made some more accurate measurements [20,
21] in noble gases, using a 25 degree wedge, at shock Mach numbers equal
to 1.42 and 2.75. Under such conditions the triple point first a.ppeai's about
100 mean free paths from the wedge tip (Fig. 9).

Based on the estimation of ”"sucking” the gas off the region behind the
Mach stem by the boundary layer, HORNUNG [24] proposed a method of
calculating the ftriple point trajectory for strong shocks. The calculated
trajectory agrees very well with WALENTA’S measurements {21]. .

Quite recently Xu, HoNnMA and ABE [25] calculated the formation of
the Mach reflection in a gas of Maxwell molecules, using the BGK model
equation. The conditions were chosen to be identical with those for the
experiments reported in [21]. In the case of diffuse reflection of the molecules
from the wall, an excellent qualitative agreement with experiments has been
obtained. Small quantitative differences can be attributed to the strong
simplifying assumptions — BGK equation and Maxwell molecules.

7.4. Further evolution of the Mach reflection

As shown by WALENTA’S measurements [21], at the initial stage of exist-
ence of the Mach reflection, the geometry of the neighbourhood of the triple
point is induced by the approximately cylindrical shape of the reflected
shock. The situation is physically possible, because the concept of the "con-
tact surface” is no longer applicable here. The flow regions behind the re-
flected and the Mach stem shocks are separated by a thick layer of gas with
varying parameters (as first suggested by STERNBERG [13] and shown exper-
imentally by WALENTA [23]). There is no evident reason why the pressures
at both sides of such a layer should be equal and velocities parallel.

As pointed out in reference [26], in the case of weak waves the whole
region behind the reflected and the Mach shocks is strongly nonuniform.
This nonuniformity does not seem to affect the shapes of the shocks, only
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the size increases with time. As a result, the circularly cylindrical shape
of the reflected shock is maintained. This is evident from all weak shock
experiments, at high and low gas densities [8-10, 21]. ' :

The shapes of weak reflected shocks, at positions not too close to the _
wedge tip, are well reproduced (Walenta [21]; compare also Fig. 9) by
circles of the radii:

r{t) = Urt + 7o
and centr - at the distances from the leading edge:
:l’,'c(t) = st + Zep-

Time is specified as:
t=X / U

and the other symbols are: X — current distance of the incident shock from
the leading edge, U — speed of the incident shock, U, — speed of the reflected
shock relative to the gas in the front of it, us — flow velocity behind the '
incident shock, re, .0 — constants, accounting for the delay in formation of ::_
the reflected shock. B
At this point one remark is due in connection with the GUDERLEY’S .
solutjon for Mach reflection of a weak shock [11]. In the experiments, re- '
ported in ref. [27], WALENTA investigated very carefully the neighbourhood '
of the triple point, trying to find the reflection wave, postulated by Guder-
ley. The conditions of the experiment (argon gas, 25 degree wedge, shock
Mach numbers equal to 1.14 and 1.28) did not allow for the existence of the
von Neumann’s solution (no intersection of the shock polars), therefore the
Guderley’s solution should have been applicable. The result was negative.
The measurements, performed under rarefied flow conditions with the use of :
an electron beam densitometer, indicated no trace of the rarefaction wave, i
although large gradients of gas parameters, as reported also in other papers
(8, 26] were clearly visible. .
In the strong shock case, the described shape of the reflected shock re- -
sults in the fact, that the fiow directions behind the reflected and the Mach e
shocks are convergent. This produces a local maximum of pressure, density, '
temperature and other gas parameters immediately behind the triple point.
Such a maximum was anticipated, on the basis of some optical measure-
ments, by Ben-Dor, TAKAYAMA and NEEDHAM [28] and shown directly by
WALENTA [21]. '
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Probably due to this maximum the flow evolves in such a way that, far
from the leading edge, the whole pattern agrees with von Neumann’s theory
even if the flow behind the reflected shock is subsonic with respect to it (the
case of the so-called "single Mach reflection”).

If the flow is supersonic, no information from the wall can reach certain
finite region behind the reflected shock. Part of the reflected shock in the
neighbourhood of this region is then plane and its parameters agree with the
von Neumann'’s solution. Close to the rear boundary of this region, a bend or
a kink appears on the reflected shock, which is connected with an additional
wave (compression, or shock). The whole phenomenon is then called the
"complex” or "double” Mach reflection. Its existence was mentioned here
for completeness, however it will not be discussed in more detail.

7.5. Mach reflection in gases with high molar specific heat

Quite recently WALENTA [29] presented the results of experiments on for-
mation of the Mach reflection in a gas of very high molar specific heat. As
a test gas Perfluoro-N-Hexane (CgF14) was chosen. Its complex molecules
have a very large number of vibrational degrees of freedom, resulting in
its high specific heat. Moreover, the vibrational degrees of freedom can be
excited nearly as fast as the translational and rotational ones. Such a sub-
stance, under rarefied flow conditions, may be treated with good accuracy
as a perfect gas with adiabatic exponent close to unity.

The structure of a shock wave of moderate strength in Perfluoro-N-
Hexane looks similarly to that in noble gases. All the internal degrees of
freedom are excited simultaneously with translational ones and no "relaxa-
tion tail” is present.

The presented experimental results indicate, that in Perfluoro-N-Hexane
both the reflected and Mach shocks are produced much faster than in noble
gases. This is most probably due to the fact, that in a gas of such a high
specific heat the temperature rise at the shock is more than an order of
magnitude smaller than in noble gases. This results in reduction of the
cooling effect by the walls, which evidently has major influence upon the
phenomenon. As the flow velocity behind the shock in a gas of this kind
is larger than in noble gases, the effect of momentum transfer is probably,
generally, of minor importance.
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8. CONCLUSIONS

1. The two cases of reflection of plane, oblique shock wave from a plane
surface (the case stationary in the laboratory frame of reference and the
quasi-stationary case of a shock moving at constant speed), are not equiva-
lent, except in specified particular situations. -

2. The reflection of a moving shock wave from a wedge at high gas
densities (i.e. at large distances from the leading edge, as measured m
molecular mean free paths) seems presently to be quite well understood. It~
can be described using the FEuler’s flow equations ~ without viscosity and :
thermal conductivity. In the case of weak shocks, the influence of all flow
boundaries must be taken into account. For strong shocks the description
simplifies greatly and reduces to a set of algebraic equations, following from '
the Rankine-Hugoniot conditions at the shocks (the von Neumann’s theory).

3. Close neighbourhood of the leading edge of the wedge, which reflects
the moving shock, seems to be the only region, where transport of momen-
tum and energy {the effects of viscosity and thermal conductivity} has an -

essential influence upon the reflection. The experiments with gases of high .
molar specific heat indicate that, among these effects, the energy transport -
is of major importance. :
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STRESZCZENIE

O PEWNYCH ZJAWISKACH ZWIAZANYCH Z ODBICIEM FALI UDERZENIOWET

Niniejsza praca zawiera omdwienie wynikéw, zaréwno teoretycznych jak i ekspery}’"f:if
mentalnych, najbardziej zdaniem autora istotnych dla zrozumienia procesu formowaniii":__'_'
sie quasi-stacjonarnego odbicia plaskiej fali uderzeniowej od klina. Oméwiono w szczegél—-":.:'_
nosci ostatnio opublikowane prace eksperymentalne, wykonane przy silnym ruzrzedzeniu'_:f-:f
gazu, dotyczace zjawisk zachodzacych w sasiedztwie ostrza odbijajacego Klina. Zwrécono
réwniez uwage na istotne jakosciowe réznice migdzy odbiciami fali w warunkach stacjo- :

narnych i quasi-stacjonarnych, powodujace, Ze zjawiska te moina uwaial za éwnowazne

jedynie w przypadku fal silnych.
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PESIOME

0 HEKOTOPBIX SABJMEHWAX CBA3AHHLIX C OTPAXKEHUEM YJIAPHOMU
BOJIHEI

Hacroamas paboTa conepKHT 0Gcy)KAeHUE PE3YALTATOB, TAK TEODETHYECKHX, KAK
M BKCHEepUMEHTANBHBIX, HanGollee IO MHEHIO ABTOPA CYUIECTReHHBIX AJa MOHHEMAHHUA
nponecca pOPMAPOBAHMA KBAa3UCTANUOHAPHOI'O OTPAXKEHHA NACCKON YNApHON BOAHBI
oT KANEA. B yacTHocTH ofcyKaeHsl onyGAHKORAHHBIE B OCAeqHEe BpEMA BKCIEPUMEH-
TalibHbie paborTsl, NpoBeleHHbIC DY CHALHOM PA3DEXKEHMH T'ASA, KACAIOLLHECH ABNEHHIE,
IPOMCXOOAUIHX B COCECTRE OCTPHA OTpaskalomero knuna, 06palgeHo ToMXe BHUMAHRE
HA CYI[ECTBEHHbIE KAYECTBEH HEIE PASHHILBI MeYKY OTPAKEHHAMM BONHLL B CTALMOHAD-
HBIX ¥ KBA3HCTAIZMOHAPHRIX YCAOBHMAX, M3 KOTOPLIX CAe[yeT, YTO STH ABACHAA MOMKHO
CYHTATEH SKBUBAJEHTHEIMA TONBKO B CHYHAe CUNLHEIX BOJNH.
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