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PLANE STRESS PROBLEM OF PLASTIC FORMING
OF CYLINDRICAL SHELLS MADE FROM COATED METAL SHEETS

T. SOLKOWSKI (KRAKOW)

The method of characteristics is applied to solve the axially symmetric problem of
plastic yielding of coated metal sheets under plane stress conditions, in spite of the layered
:étructure of the shell. The material properties are modelled by introducing different
_'.I'..ankford anisotropy factors and different strain-hardening curves for individual layers.
_The relations derived for the characteristics are then applied to solve the problem of press
.'f'orming of cylindrical shells on a flat or conical die without a blankholder. The numerical
.'exa.mples illustrate the effect of zinc and tin coats on the forming siresses of coated steel

sheets,

1. INTRODUCTION

.o The theory of axially symmetric plastic flow under plane stress conditions
has an application in solving the problems of forming sheet metal shells. For
principal processes of deep drawing, the theoretical solutions are already
known [1, 2]. The present development tendency of this theory consists in
the formulation of solutions accounting for real properties of sheet metal,
such as strain-hardening [3], anisotropy, nonhomogeneity, superficial coats,
ete,

._ In modern technology of plastic forming sheet metals coated by zihc,
in, varnish and films of plastic materials are used. The existence of coats
influences the stress state in plastic forming processes.

+ The theoretical solutions can also be used to predict the behaviour of the
coats during metal deformation.

Because the thickness of sheet metal is small in comparison with its other
dimensions, we will be able to propose a simplified solution which fulfil the
plane stress conditions, in spite of the existence of superficial coats.
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The stress state is expressed by its components in each material la,yé
Radial components of the strain-rate tensor are equal for all the layers of
sheet metal. This simplified solution will enable us to determine the var
ation of the stresses and thickness of each layer during the deformation
process.

2. FORMULATION OF PROBLEM

Consider a coated metal sheet composed of the principal middle layer
hi and two thin superficial coats of equal thickness hj = A%, which are
made of the same material different from that of the principal layer h;. The
magnitudes concerning the principal middle layer will always be denoted b
subscript 1, and the superficial coats — by 2.

In the following considerations, the model of plastic anisotropic matena.l :
for all layers will be assumed. The material of each layer will satisfy the
HiLL yield criterion [4, 5] formulated for anisotropic material characterize
by transversal anisotropy only. This anisotropy is determined by the LAN)
roRD factor R [6], and this factor is assumed to be independent of the strai
ratio. Furthermore, the properties of both the materials will be described
by strain-hardening curves, different for each of them.

Considering the stress state in such a material as a particular case of
three-dimensional axially symmetric problem, we have to introduce radial
stress a,, circumferential stress ey and, in addition, a distribution of stresses
0z, Try in each layer. Such a stress state is very complex what makes 11;
impossible to obtain a simple solution of the problem. However, since the
superficial coats of the sheet metal are usually very thin (not exceeding
0.1 of the principal layer thickness), we will assume for simplification the}
conditions of plane stress state (Fig. 1). Application of this model will b
justified in the case of deformation processes in which the surface of the
sheet metal is free (without the action of blankholder).

From the assumption of plane stress conditions it follows that: o, and
Ty, are equal to zero in each layer; stress components o, 0 are independent
of the z coordinate in each layer, but the lines of junction between the layers
are lines of discontinuity for stresses; across these lines, jumps of stresses oy,
oy are admissible.

Since k), = hY, the symmetry of geometry and maferial properties is
secured in each cross-section along the z-coordinate. So, the moments of
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adial forces operating in superficial coats and calculated with respect to
middle plane are self-equilibrated and they can be neglected provided
he radii of shells curvature are sufficiently large.

- The kinematics of deformation will be described by the radial velocity v,,
nd the geometry of the material — by thicknesses hy, hy. All the magnitudes
onsidered will be functions of the radius r and time £.

. The system of basic equations for an axially-syminetric case of plane
tress contains:

. the equilibrium equation

d
2.1) -J;(orrh) —oph = 0;

the Hill yield criterion

2

o 2 2
" 14+R

2 .
Or0¢ + Op = 0y}

the flow law associated with the yield criterion

£, _ £g )
(1+ R)o, — Roy B (14 R)oy — Ro,’
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the incompressiﬁiﬁty condition
(2.4) Er+Eép+Ep=0.

These equations will be adapted to our problem. To simplify the form
relations in further considerations, we will introduce an "equivalent” la
hy = hy + h%. The stress state in the middle plane is written in p"b_
coordinates, and we take into consideration the stress components occurring

in two layers: the principal middle layer h; and the equivalent layer of co
hy = hY + hY. "

The equilibrium condition (2.1) must contain now the sum of the resp
tive components for both the layers:

do, da h h dh
(2.5) drl hy + d;z ha + (0p1 — 091)71 + (or2 — ‘762)?2, + 0r1-;£71
v, B2
r2 dr

The Hill yield criterion (2.2) and flow law (2.3) must be satisfied in bot,
materials, but we must introduce the respective parameters o,,, By an
Oy, Ra. If all the layers are perfectly joined, the radial component of flo
velocity is the same in each layer, so that v,1 = vy = v.{r, ). '

The strain-rates in the directions {r,#} are given by the relations:

. . dv,-
Epy T lpy = ar °

(2.6)

In view of é,, = é,, and &g, = &g,, by double application of the flow law
(2.3) we obtain also the relation
(1 + Rl)an — Rloffl — (1 + R2)0T2 - R2092
(1+ Ry)os, — Rioy, (14 Rp)og, — Reoy,
The yield condition (2.2) will be identically satisfied if the stresses

and og are expressed in terms of the following parametrizing functions,
troduced separately for each layer:

(2.7)

14+ Ry,

1 .
Or12 = Op1a T (COSW1,2 + m smwl,g) y

(2.8)

14+ Ry 1 .
Oy = Opio\f — 5 | COSW1,2 — —FF=—F7—=—SINWi2 | .

' 2 1 +2R1,2
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he relation (2.7) implies also a dependence between w; and w2 as follows:

guwz = 1+2R281

=3

The strain-rates in the transversal direction can be expressed as relative
ements of thicknesses for the time increment dt

These results follow from the non-compressibility condition (2.4) which
atisfied in each layer. Introduction of the respective rates, yields finally

1 (6h1'2 3h1 2) 61},,

P\ 0t " ar +W+__

_ Introducing the relation (2.3) into the incompressibility condition (2.11),
e obtain the equations to be satisfied in each layer

Ohy 2 ahi,z _ ’Urhl,z Tz + Ot ,2

9:12 2 4, = )
: ) ot or T Rl,zo',-i'z — (1 4 R1_2)091’2

The Eq. {2.12) contains partial differentials of the functions Ay or hs .

dhl,g - h]‘,g 2cos W2
dr 7 1+ 2R 3sinw g — coswy g

A second line of characteristics results {from the equation (2.3) for t =

2 14) dv, _ Uy COSW1 2 + V14 2K 2sinw;
: ) dr 7 coswy g — /14 2Ry 28inwy o ’

The third missing relation along the characteristic t = const is provided
y the equilibrium equation (2.5), which enables us to calculate w2 for
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t = const. After expressing the streses oy, , and &y, in terms of the
parametrizing functions (2.8), this equation vields the differential relation

d; d dh
(215) ?&;‘:1_ = [(%h1 + Opy d—:) (Al coswy + B]_ Siﬁ@)j_)

dho
dr

der
ar ot o

+20,, By -}:_—1 sinwy + ( ) (Ag coswy + By sinwsg)

-[-20',,215’2-’-:;‘-:1 Siﬂ(dg] / {amhg(fig sinwy — By coswy)D - (1 + tg2e)

J(1+ D*g%an) + op hi1{A] sinwy — By cos wl)],

_ 1+R1 _ /1+R2
Al - 2 ) Az - 2 H

B = A/vVi+2R,, By = Ay//1T42R,,

f14+ 2R,
D = ———
14 28,

The solution of boundary-value problems consists in determining the
characteristic lines in the system of coordinates {r,¢}. The positions of
material particles at each instant of time are calculated with the aid of Eq.
(2.13)1. The magnitudes wy 3hy 2, v, sought for are calculated by numerical
integration of Eqs. (2.13)2, (2.14), (2.15) along the characteristics.

where

3. DEEP DRAWING ON A FLAT DIE

If the deep drawing process is effecled on a flat die and the action of
the blankholder is relatively weak, the theoretical problem is reduced to the
case of unsteady flow of a circular flange having an initial external diameter
Dy and internal diameter d. The draw stress is exerted inside the hole on
TA (Fig. 2).

The boundary condition for the radial stress components is established
at the outer rim B where O‘rl’z(TB,t) = 0. At the inner rim r,4 the material
flows into the hole with a constant radial velocity v,(r4,%) = vy. The initial
conditions for thicknesses are: hy(r,0) = ho,, h4(r,0) = h%(r,0) = ho, and
hy = bl + hj.
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The initial and boundary conditions are sufficient to solve the problem in
coordinates {r,t}. For t = 0, when h,=const, hy=const and o, =const, the
value of w; as a function of r can be calculated by numerical integration of
Eq. (2.15), and the initial velocity distribution — by integration of relation
(2.14). After time increment dt, new positions of the considered r-points and
the new thicknesses of the layers at these points are given by the relation
(2.13) written for the first line of characteristics; then the strains can be
calculated.

Using the Hencky logarithmic strains ¢,, g, 5 written for the principal
directions, the strain intensity is expressed by the relation

Rya+1
(3.1) Pira = 1 m/\/d-(ﬁ? +dig} + Rapdef,

In spite of the assumption v,, = #,,, the strain intensity is not equal for .
both layers, and it depends on the stress state in the entire material. This
difference is indicated by the plastic flow law (2.3) written in the complete
form

d(pf - ‘ dtpe
(14 Ri2)or, — Rapoe,, (14 Ria)os, — Ria0n,

(3.2)

d‘Phi,z _ dﬁois,z
—O0ry 3 T O0f s (1 + R1,2)0':P1,2

This remark is important for the technology if one of the two materials
will have a critical admissible strain value lower than that of the other
material.

When the distributions of o, ,(r) and hy,2(r) are known, the derivatives
doy, [dr, dog, [dr, dhy[dr, dha/dr can be calculated. The stresses and ve-
locities after time dt will then be determined by relations (2.15) and (2.14)




444 T. SOLKOWSKI

holding along the second line of characteristics. This procedure is repeate
in order fo increase the accuracy of calculations and to attain a presume

difference between the successive approximations. This procedure of soly.
tion was elaborated by W.SzczEPINSKI [2]. It takes into consideration th
strain-hardening of metal. The assumption of linear strain-hardening in.
dicates that the maximum force occurs just at the beginning of the dee
drawing process, which is in contradiction with the experiment.

In our calculations, the strain-hardening will be deseribed by the equatio

(3'3) Ty = C((\DO + 'Pi)na

where C, o, n are the material properties.

The numerical examples will be given for the deep drawing process o
cylindrical shells formed from a low carbon steel sheet coated with zinc o
tin. Steel containing about 0.08% carbon has a strain hardening dependenc
(3.3) described by constants: C' = 680 MPa, @ = 0.002, » = 0.22 an
Lankford factor B = 1.3. For zinc coat C' = 147 MPa, @y = 0.002, n =
0.185, R = 0.52, and for tin coat C = 34 MPa, ¢ = 0.002, n = 0.444
R = 0.35. Steel sheet of 2 mm thickness has two-sided zinc or tin coat
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FIG. 3. 1 - coatless steel, 2 — middle steel layer of zinc coated steel, 3 — middle steel
layer of tin coated steel, 4 — zinc coat, 5 ~ tin coat. :
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of 0.05 mm. If the initial external diameter D¢ = 100 mm, and the shel
diameter d = 50 mm, then d/D = 0.5.

Figures 3a,b present the change of draw stresses at the inner rim of th
middle steel layer and the coats during the deformation process. In spite o
the fact that the coats are very thin, the results of calculations indicate::
great influence of the coats on the stresses. The coats reduce the stresse
occurring in the steel layer. Figures 4a,b,c illustrate the changes of th
relative thicknesses of the steel layer and coats during the process. Th
increase of thickness of the zinc or tin coats is greater than that of the stee
layer. However, the difference between thicknesses of the middle steel laye
and the coatless steel is not important. The strain intensity value in zin
and tin coats is always larger than that in the steel layer, and reaches
critical value earlier than in the steel sheet. :

4, DEEP DRAWING ON A CONICAL DIE

Deep drawing without a blankholder is possible if the sheet metal i
relatively thick. The application of a conical or curvilinear die profiles i
useful in this case due to the reduction of the surface contact between th
metal and the die. This contact is then effected on the external metal edge-
only and the friction force is small enough to be negligible. The deformatio
of the side wall of the shell is unconstrained and the curvature of the w:
varies in time. The diameter of the initially flat material disk is Dg and a
punch of diameter d moves with vertical velocity vg (Fig. 5a). As previousl
the sheet metal will be composed of a principal middle layer by and tw
equal coats hf = hf. In spite of variable geometry of the side wall, the flow.
velocity is sufficiently determined at each time instant by a single radi
component v,(r,t) which is the same for all layers. Previous consideration
and assumptions concerning the stress state are then valid, and the relation
(2.1}, (2.2), (2.3), (2.4) established for plane stress conditions can also be.
applied.

The geometry of an axially symmetrical shell is described by the equatio
of the curve determined by cross-section of the shell along its meridian. I
this equation has the form r = f(z) and its derivatives +' = (8(2))/8z and
" = (02 f(z))/dz?, the radii of curvature are equal

M
1 -7 and 1 _ 1

4.1 —_ = — —_—
4D Pa (14 r2)3 ps 1+ r?
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-~ The strain-rates in directions {r,f#} are expressed for each layer by the
following relations: :

1 B’U-,- . . _ U

(4.2) Epy = br, =

- Eg, = &y, =
A or’ ! : Ar’

A =1+772

The incompressibility condition

1 (ma
hl,z at

+’U1- a.r +” +............:0_

' 6‘h1,2) 10v, v,
._(4'3) Adr  Ar

possesses a line of characteristics with the following relations satisfied along

dr —v.dt =0,

dhl,z _ h1,2 2 cos w1,2
dr ~ Ar J1+ 2Ry 2sinwi g — coswy g

The latter relation was finally obtained as previously, by introducing the
functions (2.8).
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Along the second line of characteristics (for t=const) we have to fulfil th
relations (2.14) and (2.15). "
The problem of deep drawing on a conical die has initial and boundar
conditions expressed in coordinates {r,7}, but it is not accurate in coord;
nates {r, z}. :
For each moment of time ¢ the condition of vanishing of radial stres
at the external edge is 0,(75,t) = 0. At the inner edge the condition fo
radial velocity can be formulated as v.(r4,t) = 0. The initial conditions fo
thicknesses are as follows:

hl('f', 0) = hgl, ;(T, 0) = g('r, O) = h02 and h2 = h’z + hg.

For t = 0, the values of wy 2(r) can be derived by numerical integratio
of Eq. (2.15), and the initial velocity distribution v,(r,0) — by integratio
of Eq. (2.14).

The relation (4.4); make possible the calculation of the new r-positions
of material particles after the time increment dt. New thicknesses of layer:
at the considered r-points are found from Eq. (4.4); under the assump
tion that t = 0, »' = 0 and A = 1. Unfortunately, we miss a relatio
which would enable us to determine the variation of z-positions of the m:
terial during the time interval dt. This can be evalnated simultaneousl
with the r-displacements. For this purpose, we can attempt to calculat
the z-displacement of the external edge kunowing its r-displacement and.
the geometric form of the die (e.g. the conical die with vertex angle
Nevertheless, the vertical displacement of the external edge calculated as.
dzp = drﬁtga is not correct because this approach does not satisfy the co .
dition of conservation of the material volume. In fact, the external material
edge is not joined with the die, and it can freely slip and rotate about. the
die surface. The assumption of linear form of the side wall after deforma,tlon
is also not correct {7].

To obtain the first approximation of the z(r) function assume that the
radius of curvature p,, is constant at this moment and compare the side wall
areas before and after this deformation rate. A new r-position of the external
material edge is 7% = rjy — v/ pdt, and the shell area can be expressed in
terms of angles of tangents to the side wall at the inner and external edges'
YA, 7B, respectively. The condition of area equality may then be written as

@) oy (Vo =7~ ot = 15) = e (VoZ =5 == 73).
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From this condition, the value of 44 can be calculated numerically. For
'@ch point i of the considered »n points of the side wall, we have y; = y;_1+
M and dz; = dr;tgy;.

'ITILL the second approximation, the value of 7’ is calculated numerically
or each point on the basis of the position of three adjacent points. After
etermining the value of 7/, A is introduced to the relation (4.4);. Next, the
onservation of material volume can be verified for each wall element and
ts z-position is corrected. The final - and z-positions determine the form
f the side wall after time dt.

Now we can calculate dhy 2/dr, doyy o/dr, stresses are found from (2.15),
nd velocity v, — from Eq. (2.14). In this calculation, the strain-hardening
aw is described, as previously, by the Eq. (3.3).

The numerical examples will also be found for a carbon steel sheet
oated with zinc or tin, characterized by the previously evaluated constants

zp/a

R IR/
zvé)/ /D/ .
]

T

W = L
00 0 200 250 o0 12 h‘l3
B
Gy, (MPal 2

FIc. 6. 1 — coatless steel, 2 — middle steel layer of zinc coated steel, 3 — middle steel
layer of tin coated steel, 4 — zinc coat, b — tin coat.

Figure 6 presents the results concerning the third approximation. The
numerical calculations show that the deformation of the shell’s side wall is
almost independent of the material properties, and it is practically the same
for material with or without coats. The side wall profile variation in time
(Fig. 6a) can be then considered as valid for all materials with a given d/D
tatio. The draw stress variation depends mainly on the properties of the
sheet metal and its coats (Fig. 6b). The action of coats not only reduces
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the draw stress in the middle steel layer, but also displaces the maximum of
draw stress in time. This fact may be used to determine the optimum die
angle,

During the initial stage of the process, the material remains in contact
with the die at a very limited surface of the external edge only (Fig. 5a). If .
the slope of the side wall vg attains the value of the die angle a, the surface:
of contact increases and a considerable friction force appears (Fig. 5b). This:
contact should take place after the deformation force reaches its maximum -
and starts to decrease. Therefore, the die angle can not be greater than the -
slope of the side wall at the external ege v5 at the moment of maximum
draw stress. If this maximum of force takes place just after the beginning-'?
of the deformation process, the admissible die angle is relatively great and
the profile of the die may be short. '

100
g 80
o~ 1 /
&0
&
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FiG. 7. 1 - coatless steel, 2 — zinc coated steel, 3 — tin coated steel.

Performing the calculations for different d/D ratios, we have determined -
the maximum die angle values for steel both with and without coats (Fig.
7). From this point of view, the presence of coats is not advantageous for
the deep drawing process because it requires longer dies.

Figure 6c shows the change of the maximum relative thickness of the :
middle steel layer and zinc or tin coats, this maximum appearing on the
external edge of the shell. The increments of relative thickness and strain
intensity are greater in the zinc and tin coats than in the middle steeel layer. -

5. FiNAL REMARKS

Solution of the plane stress deep drawing problem obtained by the method
of characteristics with regard to the influence of superficial coats on sheet
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metal may prove to be useful. To this end, a very simple model of the siress
state acting on the layers, including the kinematic condition of equal radial
velocity of all layers was proposed. With these assumptions, the equations of
characteristics take into account the stresses in the layers and their physical
properties such as the normal anisotropy factor and the strain hardening
law. In this way, the stresses in the layers and the behaviour of layers (e.g.
growth of thickness, strain intensity) can be estimated theoretically; this
problem is difficult to solve by other methods.

The numerical examples show that the zinc or tin coats placed on the
steel sheet reduce the draw stress in the middle steel layer, and that the
thickness and strain intensity of superficial coats increase during the defor-
mation process.
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STRESZCZENIE

ZAGADNIENIE PLASTYCZNEGO KSZTALTOWANIA, W WARUNKACH
PLASKIEGO STANU NAPREZENIA, NACZYN CYLINDRYCZNYCH Z BLACH
WARSTOWYCH ’

Metode charakterystyk zastosowano do rozwiazania osiowo-symetrycznego zagadnie-
. nia plastycznego plyniecia blachy warstwowej przy utrzymaniu warunkéw plaskiego stanu
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napre¢zenia, pomimo istnienia réznych warstw. Wlasnogci materialéw warstw zostaly zmo:
delowane przez wprowadzenie réznych wskaZnikéw anizotropii Lankforda i réinych krzy:
wych wzmocnienia dla poszczegélnych warsiw. Wyprowadzone zwigzki wzdlug charakte:
rystyk zastosowano do rozwiazania procesu tloczenia naczyn cylindrycznych w matrycy
plaskiej i stozkowej bez dociskacza., Przykiady liczbowe ilustrujs wplyw powlok z cynku
icyny na napregenia i odksztalcenia przy tloczenin blach stalowych powlekanych.

PegswoME

3AJAYA TJIACTUMECKOT'C $OPMUPOBAHMSA, B YCAOBUAX TIJIOCKOTrO
HATIPSI2KEHHOT'O COCTOSIHKA, UUAMHAPUYECKUX COCYAOB U3
CIIOCUCTRIX »KECTEN

MeTon XapaxTepHcTHE NPHMEHEH IR PEIEHNA 0CeCHMMeTPHYROK 3802 K OAacTH-
HECKOI'0 TEMEHHA CAOMCTON JKecTH, NPH MONEPHAHHH YCHORKH MAOCKOrO HANPAIKEH-
HOro COCTOAHYSA, HECMOTPA HA CYILECTROBAHHE PA3HBIX cloer, CBolicTBa MaTepHaion
CECEB MOQCNHPOBANLI MY TCM BRECHUA PAIHLIX NoKasaTeneil anuzorponnn Jankdopaa
M Pa3sHBIX KPHERIX YNPOMHEHHMS [UIA OTHEALHLIX cloeB. BLiBefienHble COOTHOUIEHMs
BEOJNE XAPAKTCPUCTAK NPRMEHEHDI A PellleH# NPOlecca MTAMACBKH LHAHKIDHYe-
CKHX COCYNOB B NAOCKHX A KOHHYECKUX MATPHIAX Gea npuskuma. Uucnopble DpuMepsy
WIAIOCTPHPYIOT BAUAHHE 0G0N0UCK B3 LHHKS M ONOBA HA HANPAYKEHHST W ,qedaopua.unu,
NPU IUTAMIOBKE CTAABHEIX XKeCTel ¢ HOKDPRITHAMM.
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