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FORCED VIBRATION OF A NONLINEAR STATIONARY SYSTEM
WITH A FRICTION CLUTCH, STRUCTURAL FRICTION BEING
TAKEN INTO CONSIDERATION

Z. SKUP (WARSZAWA)

The considerations are concerned with a nonlinear discrete stationary system contain-
ing a multiple-disc friction clutch, structural friction being taken into consideration. The
system vibrates under harmonic excitation. Nonuniform distribution of pressure between
the friction discs is taken into account. The influence of the dynamic system parame-
ters upon the amplitude, vibration frequency and the phase shift angle is analysed. The

equation of motion of the system is solved by the Van der Pol method.

1. INTRODUCTION

Advanced methods of design of friction clutches require a thorough analy-
sis of systems incorporating such clutches, the principal problem being that
of making use of the elastic and damping properties of the clutch as a natural
- means of energy dissipation, therefore also a means of vibration damping. By
judicious selection of geometrical parameters and loads acting on the system
the resonance amplitude can be considerably reduced. The establishment of
relevant relations requires a mathematical model representing in a correct
manner the real system. The studies which have hitherto been made by
the present author in the domain of mechanical systems with multiple-disc
friction clutches, structural friction being taken into consideration, are based
on the assumption of uniform pressure distribution between the surfaces of
the cooperating plates. Stationary and non-stationary operation conditions
are considered, with vibration exciting forces of deterministic or random
character. In real mechanical systems the distribution of friction forces
and temperatures is not uniform, the study of the problem of non-uniform
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pressure distribution thus appearing to be justified. The causes of non-
uniform pressure distribution are diversified. Let us mention, for instance,
incorrect assemblage of the clutch itself or the power transmission system,
excessive clearances in the bearings, thermal overload etc. The assumptions

concerning the properties of the material are those of the classical theory of
elasticity.

2. DETERMINATION OF THE TOTAL INCREASE IN ANGULAR
DISPLACEMENT {0, +1(M) IN ANY STAGE OF MOTION OF THE
MECHANICAL SYSTEM

We assume that the pressure distribution between cooperating surfaces
of a clutch is parabolic. Such an assumption approaches the real pressure
distribution and varies in the radial direction; it is based on the results of
extensive experimental research (Figs.1, 2) as well as the results of meas-
urement of the friction forces acting on the cooperating objects. Our point
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F1G. 1. The wear process of clutch plates after 25600 cycles. Type B.

of departure will be the formulae for circumferential displacements Vi(r),
Va(r), Va(r) of a clutch plate as functions of the external load and the
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FiG. 2. The wear process of clutch plates after 25000 cycles. Type C.

geometrical parameters of the system. These formulae are valid in the case
of parabolic pressure distribution and have been derived in [6].

a. In the first stage of the loading process the load increases from 0 to
aM (0<a<l)

fr

(2.1} Vai(r) = YT

{(P3 - P [+ mE -] +2[a+R)F -1

y (t1 ~ 3aM-h) + 81, [(1+h)% —~ 1]},

ofr

where

3
(2.2) h= Vl(CIM - Mg), nh = Hf(P3 ¥ P4)1'3’
(2.3) " ki=GC hi, ky=G-hs,

oM - kl

2.4 My= ———— th=Py— P(1+2h
( ) 2 (k]_"'kz), 1 4 3( + ),

(25) 11 = P4 - P3(1 + h),
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and h; is the internal plate thickness, hy — external plate thickness, k; —
internal plate stiffness, k2 — external plate stiffness, & — a dimensionless
parameter taking values from 0 to 1, G — shear modulus, P; — maximum
unit pressure on the internal side of the clutch plate, P; — minimum unit
pressure on the external side of the clutch plate, f — friction coefficient, r
-~ internal radius of the clutch plate, M — maximum value of the periodic
torque acting on the mechanical system. -

b. In the second stage of the process loading (unloading) we have
1 2 « 2 1

(Ps — Py)

_fr L v 1
(2.6) Vg(r)_24k2{ =778 (1 + Ms) p%]+z[r2(1+M3)§ pg]

¢ 3M\ 8§ 1
X(r—g—l-———)-l- 1 (1+M3)3—P2]+(——-—2)

Mz IIf P2

M 3 Py-P '
y (6;f + 2rht1) tr {(_3;3__4_)(,,.4 — p3) + 8li(r - pz)]} ’

where
Mk,
2. = (M - =
(2.7) Mz = 1n( M3a), Mja it
(2.8) nm= Py — P3(1 + 2M3), S = Py - P3(1 + M3),
1 M2 h 3 ]
S e S 3 2 2_ "% ep2_ p2
(2.9) p2= [(P4—~P3) {( 3 [P4 + Py M3(P4 PS)]) +31}} )

P # Py
c. In the stage of repeated loading (ry < a < 1) we have

(P3 — Py)

fr 4 1
(210)  Va(r)= 7T v [r“(l + M3)3 ~p§b] +2[

'F'Z(]. + M3)§

1 3¢, 3M) 851 _1
— b4 —— e —— r 1 + M 3 -
p%b] (Ms of [ (+ Ms)F ~ g + A3
67 M 2t r3 1 [(P—P
- P 1 1
{ 3)( b () [ o - ane
3

+ 6aMh] +8hL(ps - T)}] ;

iaf
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Lo

2.11) pap=r [(&_ig) {(Ma [Pa +P? - —-—-(P4 Pa)]) +sl}] ,

riMk,
ky 4+ kg’

1 (Pz— P2) 4.5'1;)3
r[————(P4“P3){(s§ _\U3 - 4 [M3(h—M3)— _"""'_1-3(1)3+334)]

1
6 Pa— P 2\ 2
+_____sz( 2;.6 1) ) +51}].

" The symbols V1(r), Va(r) and Va(r) denote the circumferential displacements
- measured from the internal side of the clutch plate at a radius r in three
“consecutive stages of the loading process.

The total increase in angular displacement ¢, y31{M) in the (n + 1)-st
“loading cycle is determined for the mechanical system considered by adding
the increases in angular displacement Agpq(M) of the clutch shaft and the
 relative displacement Ap,41(M) of clutch plates, that is

ont1(M) = Apy (M) + App 1 (M),

m = wn(rnM — My), Mgy =

_ (Mpy1 - My

A(Pl(M) - GJO b
Id
2. =
(2.16) Jo 35"

and Jy is the geometrical moment of inertia of the clutch shaft, d — diameter
of the clutch shaft, ! — length of the clutch shaft, M., — M, — increase in
load between the (r + 1)-st and the n-th stage of motion of the system.

By proceeding in the same manner as was done in [7] it is impossible
to obtain a generalized formula expressing the displacement in any stage of
loading. It could be done in the case of uniform pressure distribution but
now it becomes impossible in view of the complex form of the formulae (2.1),
(2.6), (2.10) for the individual loading stages under non-uniform pressure
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distribution. A possbility of overcoming these difficulties occurs, however, if
the function involving the cubic roots appearing in Eqs. (2.1), (2.6), (2.10)
is expanded in power series. As a tesult of the theoretical and numerical
analysis, it has been found that the values of the roots and the first two
terms of the series are almost identical. In view of the properties of those
series and complexity of the solutions only the first two terms of each series
will be retained for subsequent considerations. After transformation the
formulae for the angular deformations ¢1(7), ¢2(r) and @3(r) take the form

uM?

21 = —

(217) Par) 61 kor?’
'U:Mz Cl(l - ﬂ)2M2 c1(]‘4[11,+1 - Mn)2
2.18 = - = -
(218)  e2(r) = G 611 kar? a1 61T kyr?
[

(2.19) e3(r) =2 + G—ﬁuie;?(M““ - Mo,

where M,, = aM is the variable value of the torque, M, ;; = M ~ maximum
torque, M, 12 = 11 M — minimum torque in the second stage of motion

by — uP:
(2.20) o= i_—qu, Py # Py,
kq
(2.21) w=n (1 - kz) :
" 2 2 2 'L
(222) blzﬁ[PS-l-P‘i +T1(P3—P4)] s
Wi Vs Vs
(2_23) o1 = _%r), g = _29, (‘03(1') = 3’5'-").

The above equations (2.17), (2.18) and (2.19) may be generalized for any
stage of motion. As regards the entire mechanical system, the formula (2.14) -
takes the form

(Mpy1 — M)
GJo

+

(224)  np(M) = pu(M,) +

4! . dM
W(Mn+l - M,)’sign—-

dt ’
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3. DETERMINATION OF THE TORQUE AS A FUNCTION OF THE TWIST
ANGLE OF THE MECHANICAL SYSTEM

The motion begins at the moment of the load M, being applied. The
relevant angle of twist is ©,(M). As a result of the angular displacement
‘ from the initial position to the new position ¢, some elastic strain and
 friction forces will appear in a number of plates, These forces will perform
some work, which has been determined in [6]. As a result of unloading,
" the plate will be displaced under the action of the elasticity forces from the
- position ¢, to a new, extreme position @,41. From this new position the
- motion will be resumed and repeated as long as the elasticity forces will be
‘ able to overcome the friction forces. Because it is the inverse relation ¢p4;1 =
(M) which is known, not the direct relation M = fy(¢n41) the formula
(2.24) is transformed to the following equation describing the variation of
“ the torque as a function of time

3.1) dM (

dt

sign

{
Mpy1 — M) + 'C_;TO(M"H - M,)
~(¢nt+1 — ) = 0.

€1
ﬁﬂkgfz
One of its roots, namely

' 2., d  dotd
| (3'2) (M"'H - Mn) =k [:’;Slgn—gf’ {‘_1 + {1 + 77(9"11-}-1 - ﬁpn)Slgnd_(‘:] 2 }] y

* where

- (3.3) k= %@
_ 2€1G2J§
(34) "= ke

has a physical sense.
On substituting Egs. (2.20), (2.21) and (2.22) into Eqs. (3.4), we find
Gdthy {[pg + P24 r(PE— PR)F — \/iPa}
512v/2hal2 fro(hy + ho)(P} — P3)

where 7 is a dimensionless parameter.
New initial conditions must be taken into consideration in Eq. (3.2) for
each stage of the motion. This inconvenience can be avoided by displacing
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the system of coordinates of the structural hysteresis loop of the function
M = f,{(¢1,23) by performing a transformation as suggested in [5]. Finally
we obtain '

k. dp . dqo]%
(3.6) M(p,¢)= o {—1 +2 [1 +0(p + pa)sign—
1
. do\?
- (1 + 2nga,mgn—£) }
where
(3.7) g = Lol — Pn

5 2 b
and ¢, is the maximum value of the relative angle of twist of the clutch .
plates, that is the internal (active) and external (passive) plate at the end of -
the (n + 1)-st half-period of vibration, ¢, — maximum value of the relative -
angle of twist of clutch plates at the end of the n-th half-period of vibration
@ — current value of the relative angle of twist of the clutch plates during
one half-period of vibration.

4. EQUATION OF TORSIONAL VIBRATIONS OF THE MECHANICAL SYSTEM

Let us consider a two-mass model describing a mechanical system com-
posed of an engine (s), a friction clutch (§,) and a working machine (MR) -
as represented in Fig. 3. The assumptions concerning the properties of the -
material will be those of the classical theory of elasticity.

I | s I,
L N e 2 T ng
o ML
S o= - MR
UL
M)+ Mm Pr / M(ZD"P) Pz

F1G. 3. The model of the mechanical system under consideration.

The equations of a system with two degrees of freedom as represented in
Fig. 3 have the form

I+ M(p,9) — My = M(2),

(4.1} i i
Jop2 — M(p, ) + My, = 0,
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where Ji is the reduced moment of inertia of the moving masses of the
engine and the active part of the clutch, J; — reduced moment of inertia
" of the moving masses of the working machine and the passive part of the
 clutch, ¢; — angle of twist of the active plate of the clutch, @2 — angle of
twist of the passive plate of the clutch, M,, — nominal loading torque, M(t)
- harmonic excitation and M (¢, ) ~ the torque transmitted by the clutch,
the influence of frictional (forces which depend on the sign of velocity and
displacement).

On introducing, as a coordinate, the relative displacement angle of the

(4.2) ® = p1— P2,

: JiJo
43 Jz = —>,
(43) A

we obtain the equation

L, Mlpp) _ M)  Mn
4.4 = .

It is assumed that the variable engine torque is described by a constant
average value M, and a discrete torque M(t} in the form of harmonic exci-

tation
(4.5) M(t) = My coswt,

My — excitation amplitude, w — angular velocity of the excitation torque
- and ¢ - time.
The expected form of solution of the nonlinear differential equation (4.4)

(4.6) @ = Acosz,
where
(4.7) 2 = wt + o,

* o is the phase shift angle between the excitation torque amplitude and the
¢ displacement, A — the displacement amplitude in the form of the relative
© twist angle of the clutch plates.
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The Van der Pol method presented in [1] yields

{4.8) Acosz — Apgsinz = 0.

On differentiating the expected solution (4.6) twice and substituting int
Eq. (4.4), we find

(4.9) - AwJ,sinz - Aw?J, cos z — AwgoJ, cos z + M (p, ) |
= 3y Mg cos(z — o) + M,

where
(4.10) B ===,

On multiplying Eq. (4.8) by wcos z, Eq. (4.9) — by sin z and subtracting,
we obtain ;

(4.11) — AwJ, — Aw?J,sin zcos z + M{p, @) sinz
= 1 Mgsin z cos(z — o) + Mp, sin z

Since A and g are slowly varying parameters in Eq. (4.4), Eq. (4.11
takes, after integrating over the interval (0, 2x), the form

2
. 1
(4.12) —24Aw], 4+ Vi f M(p,¢)sin zdz = B Mg sin y.
' 0

On multipyling Eq. (4.8) by wsinz, Eq. (4.9) - by cos z, adding an
integrating over the interval (0, 27), we obtain

2
1
(4.13) — 2J, Awgo — J, Aw? + —If/M((p,gb) cos 2dz = [y My cos @g.
0
In the steady state we have
A = ()'00 =0 r
therefore Eqs. (4.12) and (4.13) are reduced to the form

1
By My

2
(4.14) ' sin o = ] M (¢, ) sin zdz,
0
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4.15) Tyt + Bl T

14
2 cos g = H_IA. ] M(p,¢)cos zdz.
0

If the solution of Eq. (4.4) is analysed by variational means (the Ritz
nethod) we obtain a result which is identical with Eqgs. (4.14) and (4.15).

As regards integration of Eq. (4.4) it is necessary to match the solutions,
a consequence of a discontinuity of M(¢p,¢) for ¢ = 0. To avoid this
ecessity, we confine our consideration to a single half-period (the motion

ween two stops).

Thus the integration interval, from 0 to 211, of the rigid-hand terms of the
"3bove equations is divided into two sub-intervals, from 0 to II for negative
ign dp/dt and from I to 21T for positive sign dy/dt. This is, for instance,
lie procedure adopted by the authors of [1, 2] and [5].

By denoting

8 dep
4}16) A = p,sign— %

'4"17) {(1 + 2'nA)2 +1~ 2[1 + nA(1 - cos z)]2 } for mgn—d‘e <9,
{2[1 + nA(1 + cos 2)] 2 —-1—(1+294)z } for mgn—f >0.

Evaluation of the integral in Eq. (4.15) by analytical methods being
mpossible, the terms of Eq. (4.17) involving square roots were expanded
n power series. As a result of the numerical analysis it was found that the
alue of the root and the sum of the first five terms of the series approach
ach.other very closely. The remainder of the convergent binomial series,
eginning from the sixth term, tends rapidly to zero with increasing number
f the rejected terms of the series. In view of the properties of that series
he first five terms are assumed for further considerations.

After some manipulations we obtain

4.18)  M(p,$)=kA {cosz + %nA [%(1 — cos z)? — 1] + %nzAz

11— cos 2] 4247 3[l 4 ]} ign 97
x[l 4(1 cosz)]+8nA 8(1 cosz)" — 1| ¢ for 31gndt<0

1
4.19)  M(p,¢) = kA {cosz + %nA [1 - 5(1 + cos 2)2] + %1’,'2}12

1 31| 42 3[ _1 4]} ien &P
x[4(1+cosz) 1]+817A 1 8(1-i—cosz) for s;gndt>0,
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On substituting these expressions into Eqs. (4.14) and (5.15) and int
grating, we find

(4.20) sin g = ]Iﬁ A (] M(p,¢)sin Zdzl..gn:;ﬂ@

2knA? {3 3 l
+ f M(p,¢)sin zdzlswn?a)u) = T Mop, [§nA (1 - EWA) - 1]

ﬂl /
4.21 Jz = M s zdz
( ) w A COS (pﬂ HA ( (QO? @) co |n|gn32<0

T
+fM((p,(P)COSZdlegn3‘£>o) —wk{ 5 [l 167]A 3 277A

On introducing the notations: @ = A/p,; — dimensionless vibration am
plitude, ¢, = My/k - static displacement in the form of relative angular dis
placement of clutch plates, ¥ = w/wp = dimension frequency, ¥ = n(Mo/k
— dimensionless parameter, we have the following relations for the tangent:
of the phase displacement angle @ and the dimensionless frequency 7 as
functions of the external load, the geometrical parameters of the system
the friction forces and the dimensionless amplitude a:

i [ (1 5%0)

2 o= 1- %ﬁ [1 — ——¢ (3 - Ezba)] ]

(4.23) ¥ = [1 - % [1 - —15—61[}(1 (3 - %¢a)]

1.1
e s e (1 300) -1}
Fa P o zYe 1 3ve) !
Numerical computation was performed with the following data hy

0.00125m, hy = 0.00103m, r = 0.0585m, { = 0.15m, d = 0.035m.
The results of computation are shown in Figs.4 to 10.
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5. CONCLUSIONS

- On the basis of the results of numerical analysis it has been found that
| the resonance curves start from the dimensional resonance amplitude,
mewhat below unity, and tend asymptotically to zero in the postreso-
nce range. They tend also to a more smooth form in that range. In all the
_ cases the dimensionless resonance amplitudes take, under constant pressure
distribution, the values which are higher than those for variable pressure dis-
bution, the difference ranging from a few percent to a dozen percent or so.
e can also observe a phenomenon of displacement of the resonance in the
direction to the left in the case of variable pressure distribution as compared
-that of uniform pressure distribution, other parameters of the system re-
aining unchanged. The above inferences are confirmed by diagrams, some
amples of which are shown in Figs.4 and 5. In the case of resonance curves
moving farther to the left, the damping in the system is stronger, which is
en from the decreasing resonance amplitudes. From the diagrams in Fig.
it is seen that an increasing excitation amplitude My results in a smaller
mensionless resonance amplitude. This fact is caused by the increase in
the load Mo being accompanied by an increase in area of the zone of slip
which means increased energy dissipation, which results, in turn, in more in-
tensive vibration damping in the power transmission system. The damping
effect is the best for an appropriate value of the product g2 = pf, because
he zone of relative slip between the clutch plates is the largest. This infer-
ence is confirmed by the diagrams of Fig. 4 showing clearly the influence of
product on the resonance amplitude, with the same geometrical parameters
and the same load, but a variable coefficient of friction f. The influence of
the dimensionless parameter ¥ = g(My, d, hq, hs, I, v, P3, Py, f) on the
dimensionless resonance amplitude can be easily analysed by the designer.

The nonlinearity of the system is observed at any frequency and amplitude
f vibration. For an excitation frequency w approaching the natural fre-
uency wp, the dimensionless amplitudes ¢ reach very high values. From

Flgs 4 and 5 it is seen that the most dangerous frequency interval is "

0.73 < v < 1.15

.. If ¥ approaches zero, the dimensionless amplitude of vibration tends to a
alue between 0.85 and 0.9. This means that slowly acting excitation torque
roduces an angular displacement of the system approaching its static value.
- The dependence of the phase shift angle ¢y on the dimensionless fre-
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Fia. 10. Diagrams of phase angle ¢y as a function of the diameter D of the clutch shafi
for vy =0.7.

quency 7 for various values of the friction coefficient f is represented by the
diagrams in Fig. 6. For a high value of the friction coefficient f the angle
o varies rapidly in the neighbourhood of ¥ = 1. At decreasing values of v
the angle (o becomes large, therefore there appears a phase shift between
the forced vibration and the excitation torque.

For v > 1 the angle g decreases and tends to zero, which shows that the
forced vibration is the same phase as the excitation torque. With decreasing
(v < 1) the value of the angle o increases which means that the forced
vibration is shifted in phase with respect to the excitation torque. Then
the vibration damping in the system increases. The diagrams of g = g()
shown in Figs.7 and 8 differ form those presented in Figs. 9 and 10 both in
the pre-resonance and post-resonance ranges. In the post-resonance range
{7 > 1) the curves g = g(d) begin at ¢ = 0 and tend to @y = 41°. Before
resonance (7 = 0.7) the value of the phase shift angle g decreases rapidly
:'_depending on the diameter of the clutch shaft (Fig. 10). These diagrams
show clearly that the angle @ is influenced by the friction coefficient f.
The phase shift angle is a measure of vibration damping in the system. If
it increases, the energy dissipation increases also, as well as the vibrations
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occuring in the mechanical system. The effects of structural friction can be
made use of to improve the design methods of dynamic systems.
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STRESZCZENIE

DRGANJA WYMUSZONE NIELINIOWEGO UKLADU STACIONARNEGO ZE
SPRZEGLEM CIERNYM PRZY UWZGLEDNIENIU TARCIA
KONSTRUKCYINEGO

Rozwazania przeprowadzono dia nieliniowego ukladu dyskretnego stacjonarnego zawie-
rajacego sprzeglo cierne wieloplytowe przy uwzglednieniu tarcia konstrukcyjnego. Drgania
wystepuja pod wplywem wymuszenia harmonicznego. Zagadnienie rozpatrywane jest przy
zalozeniu nieréwnomiernego rozkladu naciskéw wystepujacych pomiedzy wspélpracujacy-
mi powierzchniami tarcz ciernych. Zbadano wplyw parametréw ukladu dynamicznego na
charakterystyke amplitudowo-czestotliwoéciowa i na kat przesuniecia fazowego. Réwnanie
ruchu badanego ukladun rozwiazano metods Van der Pola.
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PE2IOME

BOOMYILIEHHLIE KOJEBAHWSA HENMWHENHON CTALIMOHAPHOM CUCTEMBI C
SPHUKLIMOHHON MY®TOV IMPH YUTEHUM KOHCTPYKLUWOHHOI'O TPEHMUSA

Paccysknedid NPOBHOEHO ANA HeAHHeHHOr0 QUCKPETHOTO CTAMOHAPHOrO CHCTEMA
ojlepAcAIOLET0 MHOrONAACTHHKOBOH dpukunonsod MydrTol ¢ yuTenHeM KoHCTpyk-
nuoHHOTO TpeHnA. Konebarus BhIcTYNAIOT NOA BAHAHNEM I'a pMOHHYECKOTO BOSMY Lle-
anad. [IpofaeMa paccMATDHBAIOTCA HA OCHOBAHHWM HEPABHOMHEPHOFO PACHOIOXKEHRUSN
BICTYNJAIONIMX MedAAY cpaGATHIBAIONIAMY HOBEPXHOCTAMH (JPHKUMOHHLIX IIATOB.
HccnenoBaHo BAMAHWE NMAPAMETPOB OMHAMMYecKOH CHCTEMB! HA AMIJHTYAHOYACTO-
HOM XapAKTEPHCTHKY ¥ Ha YToA ¢a3BOro cOBAra. YPDaBRHEHNE ABUIKEHHS HCCAEHODATE-
7mit cmeTeMbl pemeHo Merofnom Ban pep Hona.

NSTITUTE OF MACHINE STRUCTURES
TECHNICAL UNIVERSITY OF WARSAW, WARSZAWA.

Received November 19, 1990.





