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NEW COMPUTATIONATL ALGORITHMS FOR A DISCRETE
KALMAN FILTER IN ROBOT DYNAMICS

K. KOZLOWSKI (POZNAN)

The equivalence between the standard Newton-Euler formulation of the equation of
motion for an n-link manipulator and the inverse dynamics equations has been proved
in this paper. Solution to the two-point boundary-value problem leads to the forward
dynamics equations which are similar {o the equations of Kalman filtering and Bryson-
Frazier fixed time-interval smoothing. The extensive numerical studies conducted by the
author on the new inverse and forward dynamics algorithms derived from the two-peint
boundary value problem establish the same level of confidence as exists for current meth-
ods. In order to obtain the algorithms with the smallest coefficients of the polynomial
of order 0(n), the categorization procedure has been implemented in this work. Software
packages for both robot dynamics algorithms have been developed in Pascal and run on
an IBM compatible computer. The resulis obtained by Rodriguez have been extended
by the present author to an arbitrary manipulator with both rotational and translational

joints.

1. INTRODUCTION

In standard classical kinematical and dynamical considerations the equa-
tions of motion for an n-link manipulator can be obtained as recursive
Newton - Euler equations. Another approach to finding the inverse dynamics
equations is to formulate the system dynamics and kinematics as a two-point
boundary-value problem.

This paper extends the results presented by RODRIGUEZ in papers [17,
18, 19, 20] by proving the equivalence between the standard Newton - Euler
formulation of the equations of motion for an n-link manipulator with a
fixed base, and the inverse dynamics equations introduced by Rodriguez.
We notice that the bias forces (which represent centripetal, Coriolis and
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gravity forces) given by Rodriguez are calculated according to two different
expressions in papers [17] and [18]. We believe that these expressions are not
calculated correctly due to wrong differentiation. In the sequel we remove
the mistakes and give the corrected proof of the bias forces.

In ref. [19) RODRIGUEZ has presented the corrected version of the bias
spatial forces by making use of results given in references [17] and [18]. To
make the derivation clear we have decided to prove in this paper the state
equation (in which the bias forces appear). A hint which has helped us to
establish the correct expression for the bias forces has come from the applica-
tion of the work presented by Rodriguez and co-author [20] to the standard
classical and dynamical equations normally given in the form of recursive
Newton - Euler equations [1, 6. We have to notice that the spatial bias
forces and spatial bias accelerations (which results from the differentiation
of a vector in two different coordinate systems) are different in references
[17] and [20] (in [20] they are calculated correctly). Briefly, these vectors
differ because in work [17] RODRIGUEZ has considered the spatial forces on
both sides of the ¢-th joint and recognized thém as different vectors. The
same applies to the spatial velocities and accelerations. Below we present
the equivalence between these two sets of vectors which, later on, results as
the equivalence theorem between the recursive Newton - Euler equations of
motion and the inverse dynamics given in [17]. From the physical point of
view these two sets of equations have to be the same. One aim of this paper
is to prove this statement in a rigorous manner.

In his original work [18] RODRIGUEZ has considered a simple example in
which only planar motion is allowed. Apart from that, Rodriguez has calcu-
lated the number of arithmetic operations per link which are required by the
forward dynamics algorithm for a planar chain. Next, this number of opera-
tions has been compared with the number of arithmetic operations required
for assembly of n-by-n inertia matrix. The initial comparison presented by
Rodriguez has inspired the present author to explore the potential of the
approach. The author examines the case where the spatial bias forces, spa-
tial bias accelerations, as well as the link-to-link transformations have been
included in the number of operations {Rodriguez in his example has assumed
that there are no bias forces and accelerations). Next, the discussion of the
planar robot is extended to an arbitrary robot with rotational and transla-
tional links. In calculating the number of operations we have assumed the
‘modified Denavit-Hartenberg notation [6] between two successive links. Al-
though the results are applicable to an arbitrary manipulator, additionally
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r inverse dynamics we have assumed that the link angle o; (twist angle)
lay take values of 0°, 90°, and —90°. It must be noted that our assumptions
are satisfied by most of the available manipulators.

" In order to minimize the number of arithmetic calculations (FLOPS),
'the concept of customizing the dynamic equations developed by KHosLA
[13] has been implemented. The customization procedure guarantees that
very two mathematically equivalent expressions are denoted by the same
variable name. In our analysis we have calculated the FLOPS for the in-
‘verse and forward dynamics algorithms. The results have been compared
with those existing in robotics literature. The author has conducted exten-
sive numerical studies on both algorithms given by Rodriguez and tried to
establish some level of confidence with the existing methods for dynamic cal-
‘culations. We have found these investigations quite interesting. At the same
time we have tried to implement some factorization techniques [3] to obtain
the fastest recursive algorithms. The investigations which we have done lead
is to a better understanding of the methods proposed by Rodriguez.

'_ The paper is organized as follows. In Sect. 2, the notation used in for-
mulating the equations found in this paper is discussed. In the third section
the main results are obtained. In the fourth section, the computational re-
quirements for the inverse and forward dynamics algorithms are compared
with other solutions presented in the robotics literature. In Sect. 5, the sim-
ulation results developed by the author are presented. The results of this
work are summarized and some conclusions are given in the final section.

2. NOTATION FOR SPATIAL DYNAMICS

In this paper we have assumed that a mechanical system of » links is
numbered in an increasing order which goes from the tip of the system
toward the base. Joint & in the sequence connects links & and & + 1. Fixed
base is considered to be link n+41. At any point at the tip of the manipulator
a fictitious joint 0 is attached. The ordering system is shown in Fig.1.

The robotic system depicted in Fig.1 can contain only simple revolute
and/or prismatic joints. Coordinate systems can be assigned according to
a modified Denavit- Hartenberg convention but, in general, the equations
which will be derived do not depend on the specific coordinate transforma-
tion used.

The formulation of all equations in this paper is carried out using spatial
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FiG. 1. N-link serial manipulator and relationship of defined quantities to link k.

notation. We have used the notaton introduced by RODRIGUEZ in [17] and
[20] (Fig.1). The spatial velocity, acceleration and force are all 6 x 1 column
vectors. A more detailed definition of these concepts is provided below.

T,f and F,;" are 3 X 1 vectors representing, respectively, the constraint
torque and force acting at joint & on link k& + 1. The corresponding spatial
force is defined to be a 6 X 1 vector and is denoted by m}c" = [——Tf -—F}c"]T,
where T is a transposition operation. Superscript + indicates that the vari-
able is calculated at a point on the link k + 1 adjacent to joint k. This
operation can be interpreted as a limit operation on the left-hand side of
the point located exactly on joint k. RODRIGUEZ in [17] denotes this oper-
ation as on the "positive” side, toward the base, of joint k.

T, and Fy are 3 X 1 vectors representing, respectively, the constraint
torque and force acting on link k at joint k on the "negative” side, in an out-
ward direction, of joint k. The — superscript indicates that the correspond-
ing variable is evaluated at a point on link k adjacent to joint k. This operat-
ion corresponds to a limit operation on the right-hand side of a point located
exactly on joint k. The spatial vector will be denoted 2 = [T Fi J%. Let
us notice that Newton’s third law implies z¥ = zj. Next, we will denote
all vectors without superscript 7%, Fk, and zg, respectively, with the same
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meaning as above. We believe that the double notation is not confusing and
ig very useful in the proof presented in the next section.

T.. and F,; are, respectively, the external moment and the force acting
on link k at its mass center.

wi and vz' are 3 X 1 vectors representing the angular and linear velocities
of link & + 1 calculated on positive side of joint k. The spatial velocity is
defined as Vk"" = [w;" vz‘]T. We have assumed that the coordinate system
associated with link &+ 1 is located on the negative side of joint £+ 1. The
corresponding velocities are expressed in this coordinate system.

wy and vy are 3 X 1 vectors representing, respectively, the angular and
linear velocity of link & on the negative side of joint k. The corresponding
spatial velocity is denoted as V;” = [wy v;]7. To be consistent with the
notation introduced above, we can omit the superseript to obtain the corre-
sponding vectors wg, vk, and Vi with the same meaning. Let us notice that
all vectors defined in this point are specified in a coordinate frame attached
to the link k.

Finally, we have come to the definitions of spatial accelerations. A} =
[oF 9817 is a vector of angular and linear accelerations of link & + 1 at the
positive side of joint k. Similarly, A,y = [&; 9] is a vector of accelerations
at the negative side of joint k. These accelerations are expressed in link k-1
and link k coordinates, respectively. According to the convention discussed
above, vector A; denotes the spatial acceleration of link k.

In spatial notation, inertia matrices are expressed as 6 X 6 matrices. An
inertia matrix for each link is defined in its own coordinate system. For link
k, this matrix My, is defined as

Mk=[ Ikh mkpk}’
—mgpr U

where I, is the inertia matrix of link k about joint k; pp is the position
vector of the center of gravity of link k from the k-th coordinate’s origin, px
is the 3 X 3 matrix equivalent to the cross-product operation pj, x (-); and
U is the 3 x 3 identity. Because I} and p; are defined in coordinate system
k, matrix M} is constant.

For subsequent derivations, it is convenient to define the following 6 x 6

matrix Ui
_ km
¢k,m = [ 0 U ] 3

where I; ,, is the vector from joint k to the joint m and fk,m is the 3 x 3
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matrix equivalent to ., X (-). This matrix is called a transition matrix
which originally was defined in discrete linear systems [5, 11]. Let us notice
that I, x—1 is a vector from the origin of a frame fixed in link & to the origin of
a frame fixed in link k — 1, and matrix ¢y ;1 is the position matrix between
two adjacent links. In general, the orientation of a spatial kinematic vector
from one coordinate system to an adjacent one may be accomplished by
making use of the following spatial orientation matrix (6 x 6)

Hlp 0

where k"',:R is the 3 x 3 rotation transformation between two coordinate
systems. Some authors [1] combine these two matrices into one spatial
transformation matrix. Rodriguez has defined the transition matrix in order
to formulate the equations of motion using the discrete linear state space
approach.

To continue with the symbol definitions presented in Fig.1, ki is a unit
vector along joint axis k (not necessarily the 2z axis), Cy denotes the mass
center of link k, and g; is the joint variable which is positive in the right-
hand sense about Ay joint axis. Next, H ,’f is a 6 X 1 vector of the following

h . -
form: H E = k ] when joint k is rotational and H g‘ = when joint

0

0 b

k is translational, 0 denotes a 3 x 1 zero vector. Finally, 7 is the actuated
torque of joint k.

On the basis of the definition of the spatial quantities we now review the

inverse and forward dynamics algorithms.

3. DEVELOPMENT OF THE MAIN ALGORITHMS

In this section we will develop a new algorithm for computing the bias
spatial forces. Next we will prove the equivalence between the two inverse
dynamics algorithms presented in [17] and [20], respectively. In some equa-
tions, where it is necessary, we will use the orientation matrix Ay or its
inverse A;l.

The sequence of spatial velocities satisfies the following equations

(3.1) Vit, = bW, k=mn,...,1,
(3.2) Vi = AW+ HEG, k=n,..,1.
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Eq. (3.1) describes the spatial velocity propagation within a link k from
{its inner joint to its outer joint. Eq. (3.2) updates the spatial velocity in
irection from the positive side to the negative side of joint k. In crossing
the joint k it is necessary to use the orthogonal transformation. The initial
condition for the Eq. (3.2) can be written as follows:

) vt =o.
f;'i‘he accelerations satisfy the closely related recursion:

(3.4) Moy = k-1 M
(3.5) Mo o= A7V (N + )+ HE g
(3.6) At 0,

il

where ng is the bias acceleration

w'i" X k+1th ék
3.7 nE = k k i .
(3:7) l 'u,‘c" X k+k1th qr

Let us notice that when joint & is translational,

0
37! ne. = . .
( ) k l w,': Xk+,:th gk ]

: The recursive relationships (3.4) and (3.5) can be stablished by appro-
- priate time differentiation of (3.1) and (3.2) in an inertial frame. As before,
Fq.(3.6) describes the initial condition for Eq.(3.5) and index & varies from
n to 1. To perform a differentiation operation one has to remember that, by
definition, appropriate vectors are expressed in local coordinate systems.
Now, referring to the original work done by RODRIGUEZ [17], we review
the two-point boundary-value problem. The sequences of spatial forces and
spatial accelerations satisfy the following set of equations

(3.8) zy = Prk—1 Ti_y + M AL + bk,
(3.9) sy = af,

(3.10) Mg = ‘i%,k-l Ak s A=0,
(3.11) Ao o= MAH Gt

(3.12) T = Hpxg,

(3.13) gy = 0,
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where by is the bias spatial force

Wy X Trw, + mipr X (w,: X ’U;) — T — D1 X Fop
mi [w:? X v Fwig X (Wi X Pk)] — Fe

(3.14) bp = [

The expression for the bias spatial force is true regardless of the type of
the joint. Let us notice that for a planar robot wy X liw, = 0. To sim-
plify Eqs.(3.9) and (3.11), we have skipped the orientation transformation.
Eq.(3.8) is based on the rigid-body equations of rotational and translational
motion for link k. Eq.(3.9) reflects the equivalence of action /reaction torques
and forces at joint k. Equation (3.13) states that the initial joint 0 is not
under the influence of any external torques and forces. In [I7] the state
equation (3.8) is not correct because of the wrong expression for by (other
equations (3.9) - (3.13) are correct). Below we give a corrected proof of
Eqs.(3.8) and (3.14). _

First we consider the equation of rotational motion for link k about its
mass center

(315) wek X Topwer + Tpwer = Nk— + N:—l + Teke

(-1 — pry X Fiby —pe X Fi,
where w, is the angular velocity of link & (notice that wer = wy }, Lek is the
link inertia tensor about its mass center, N and F are, respectively, the
torque and the force acting at joint k, T,;"_l and F,;"__l are the torque and
the force acting at joint k — 1, and Tex and Fey are the torque and the force

acting at the link mass center.
The translation of the link k mass center is described by

(3.16) Fy = mybox — Fi_y — Fox

where ¥, denotes the acceleration of the mass center. Let us notice that
the velocity of the mass center can be written in the following form: vy =
vy 4wy X px. Differentiation of the last equation with respect to the inertial
frame gives
(3.17) 9 = 9 +wp X vp +wp X pr @ X (Wi X Pr)

= U + W X Uk +Wg X Pk-
Substitution of Eq.(3.17) in Eq.(3.16) results in

(3.18)  Fy = my[f +wj X v + @y X px +wip X (Wi X p)] = Fy — Fe
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Substitution of the right-hand side of Eq.(3.18) in Eq.(3.16) leads to

: (3.19) Ickgb; +wp X Ipwy + mipy X [0 +wp Xvg +@0p X e
+wy X (wy X pr)) = Ny + Ny + Tk + lee—1 X Fry + pi X Figee

 The quadratic terms pi X (wy X px) and px X {wp X (wy X pi)) are eliminated
" because the moment of inertia tensor I is expressed about the coordinate
" ‘gystem origin located at joint k, instead of about center of mass I.x. We use
.~ the following relations [24]:
. wy X Lawy + mipe X [ X (Wi x )] = wp X Twp
~and

Loxtoy, + muepie X (W % pi) = Loy + [pRey — prlpacoy )lmi
= Iy + [PREC; — pepedy Ik = {Ik + (PLE — prpr)mi}ooy = Ty,

- Equation (3.19) can be rewritten as

: (3.20) Ikd),': +uwp X Ikwk- + Mppr X O + mEp X (w,: X ‘D;)
| =T, + Ty + lop-1 X iy + Tep + pr X Foge

- From the last equation we calculate T} to obtain

- (3.21) T, = Lw, +wp X frwp + my [pk X v + pr X (w; X 'v;)]

—TF | — e g1 X F_y — Tor — P X Feg.

' Rearranging of the formula (3.18) leads to

0 (322) Py = mupdp 4 mpdp 4 malwp X g X (wp X )l - L - Fa.

- Equations (3.21) and (3.22) combine into

T; U Dt || -TH Ly mupe || @
3.23 k| = y k=1 + . o
(29) [Fk ] [ 0 v ]{_Flj-—l] l-mkpk m U D,
L wp X Iewy + mepr X (W X vp ) — Top — o X Fe
mpw, X vy + mpwy, X (Wi X pr) — For

 Recalling the symbol definitions from Sect. 2, we have shown that Eq.(3.23)
. is a more detailed version of Eq.(3.8) with the bias forces given by [14].

o We have already stated that there are several errors in the original reports
written by RODRIGUEZ [17, 18]. In the second row of Eq.(4.11), in [17], the
- term mpwy X (W X pi) is missing. In a later paper [18] the first term in the
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second row of Eq. (3.7) is wrong. Also the translation equation of link & - |
(Eq.(8) in [18]) is not correct, since the time differentiation is performed with
respect to the inertial reference frame. As a resuit, the bias spatial forces .
are not calculated correctly. In a subsequent work [19] the bias spatial forces
are given in a correct form, similar to those calculated earlier in this work;
however, in the outline of the proof for the propagation of the spatial forces
the references [17] and [18] are cited without apparent correction of the :
erTorIS. : .

In [17) RODRIGUEZ has proposed a very interesting interpretation of the
set of Eqs.(3.8) to (3.13). According to his interpretation, the set of Eqs.(3.8) '
to (3.13) forms a two-point boundary-value problem in the sense that the
boundary conditions are satisfied at two distinct points in space: the initial °
joint at the tip of the system and the terminal joint at the base. The
spatial forces vanish at the tip and the base is, by definition, immobile.
This two-point boundary-value problem is analogous to these encountered in
optimal control and estimation theory of linear systems [5]. Thus Egs.(3.1) -
(3.14) completely describe the kinematics and dynamics of a robotic manipu-
lator with both translational and rotational joints. The results presented by
Rodriguez have been extended to both sliding and rotational joints.

Below we present a set of recursive Newton - Euler equations in terms of
the spatial definitions described in Sect.2 (for this reason we use the double
notation, the derivation of the set can be found in [20]).

(324) Vn-l—l - 0,

(325) Vi = dfapVentHid, k=n,.,1,
(3.26)  Anyz = O,

(3.27) Mo = Phgapdesr F HidGe+8, k=m0,
(3.28) zg = 0,

(3.29) 2 = g1kt + Midp+be, k=1,.,m,
(3.30) T, = Hizg,

where @y, is the bias acceleration given by the following expressions

hiq ' . . .
(3.31) ap = W1 X ek for rotational joint ,
wit1 X (@r1 X et ,k)

0
wrt1 X (Wit X ek + 2hids)

(3.32) a,; = [

] for sliding joint ,
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" and by is the bias spatial force defined as

T WE X Ikwk
.33 by =
3 ) . k mgwi X (Wi X Pr)

or both sliding and rotational joints. Equations (3.24) - (3.33) completely

escribe the kinematics and dynamics for an arbitrary manipulator with

oth types of joints.

*In the next step we will prove that the set of Eqs.(3.1) — (3.14) is equiv-

alent to the set of Eqs.(3.24) — (3.33). first we consider a robot with revolute
joints only. Substituting (3.1) in {3.2) for index & + 1, we get

3.34) Vi =t Vg, + Hdx

with the initial condition V.7, = 0. For convenience we skip the rotational
transformation in Eq.(3.2). From Eqs.(3.34) and (3.25) it is clear that V~
V. Substituting Eq.(3.4) in Eq.(3.5) for index k£ + 1 and omlttmg the
otationa,l transformation, we get

- (3.35) Ap = Grpaips + HE G + e

with the initial condition A7, = 0. Substituting Eq.(3.9) in Eq.(3.8) for
“index k — 1 results in

(3:36) e; = rp125_, + Mpdg + by

~with the initial condition 25 = 0.

i For convenience we skip the terms including the gravity force and the
~gravity torque acting at the mass center in the bias spatial force b. We will
“show later that it is not a restriction. We rewrite the bias accelerations and
forces for the two sets of Eqs.(3.35), (3.36), and (3.27), (3.29).

3 _ | @ X b

wrp X Lwwp + mp X (Wi X o)
mpw, X v + mpwp X (Wp X pr)

and

: h > _
(338) A = Wiyl X hpgy b= wr X Tpwy .
] W1 X (Wet1 X leg1k) mywi X (Wr X Pr)

 From the two pairs of Eqs.(3.35), (3.27), and (3.36), (3.29) it is clear that
‘A; = M and 27 = @ when the corresponding bias spatial forces and
accelerations defined by Eqs.(3.37) and (3.38) are expressed by exactly the
- same quantities. Note that this can be achieved when we remove the term
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wg Xv, from the bias spatial force by, to the bias spatial acceleration, namely,
we rewrite ng as follows:

= Wiy X hrge

(3.39) Ll I if:qlk +wp X v |
To complete the proof of the equivalence it is also necessary to rearrange -
the second row of a new bias spatial acceleration ny, as follows:
v X hidr +wy X vp = vy X hadr — vy Xwy = v X [rede —wy ] = wi X vp, :
where we have used the equation w, = w,':' + hp g which is true for rotational :
joints. From Eq.(3.1) for index & we have 'v;c" = Wi,y X legrke + Vg and
wi = wgy,. Thus we can write "
(3.40)  vf 4 hrd +wp X v = Wiy X (Wipy X ler1) F Wy X Vg |
Now we prove by induction that Eq.(3.27) implies Eq.(3.35). Rearranging :
Eq.(3.40), we obtain |
(3.41) Wi X (w,:_{_l X lpp1k) = ’U;: X hygy +wp X v — Wy X Veyq- |
From Eq.(3.27), for k = n, we get A, = H,{é;l because Apyy1 = i, = 0. At -'
the same time A, = H[Tg;. For the k-th induction step '

+ I3
w X hey1grs
A = ¢'T ¢T M 2+HT q + k+1. - B
k+1,k YPh42,k4+1 %+ k+19k+1 ”!.c'-+1 X hip1de1 + Wi X Vg1
+ .
.. wy X hid
+H{qk +t o+ hed f _ — .
vg X hpde +wg X v — wey X Vg1

From the last equation it follows that the terms which are underlined
cancel out because of the particular form of the matrix ¢’{+1,k' This allows
to construct Eq.(3.35) for the k-th induction step, given the bias spatial
accelaration defined by Eq.(3.39).

To prove that Fq.(3.27) follows from Eq.(3.35), we rearrange Eq.(3.40)
as follows:

(342) o + hedr = wiyy + (Wipy X ler1) F Wiy X Ve, — Wi X VL.
From Eqs.(3.35) and (3.27), for k = n, we have \;; = HY¢;,. Hence for the
k-th induction step

_ 4T T - T .
Ak = Ghg {¢k+2,k+1 Aprz T Hep @i

+ Wrta X Pet1des
Wipz X (@pa X Ik k1) +Wipa X i = Wips X Y

+HI’{";’1¢ + _ _ wi:+1 X hft_lk : .
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From the last equation it follows that the terms which are underlined cancel
sut due to the structure of the matrix oT +1,% (we have used Eq. (3.42)). To
btain Eq.(3.27) it is necessary to move the term —w; X vy through the
matrix My to the bias spatial foree-b;. In this way we get bx. Thus we have
btained Eq.(3.29) with the bias spatial force defined by (3.38). We have
roved the equivalence of Eqgs.(3.35), (3.27), and (3.36) (3.29) by appropriate
switching of the term w} X vy, which can be done due to the structure of the
matrices My and ¢, +1,k- Thus we have proved that z; = z; and Ay = Ap
for a manipulator with rotational joints. In order to obtain the same result
“for a manipulator with translational joints, the bias spatial accelerations n
should be written in the following form:

= 0
3.43 ng= . — e -
_ ) k w;: X hpgy +wp X v

' Note that when joint % is translational, the following relationship is true
(3.44) wp xvp + w;f X hpgr = wiyy X (w;+1 X letak + 2hede)

| HWip X Vgyye
. Using Eqs.(3.43) and (3.44) we can prove in a similar manner the equivalence
_ between two pairs of Eqs.(3.35), (3.27), and (3.36), (3.29). _
| The results obtained in this section can be easily extended to a manipu-
" lator with arbitrary combination of rotational and sliding joints. Thus we
" could prove for an arbitrary manipulator that =z, = zx and AL = A;. We
' observe that the bias spatial forces by combine the centripetal, Coriolis, and
gravity forces, We have to realize that, as a consequence of calculating the
spatial accelerations from Eqs.(3.4) - (3.6), the term w;” X v, has been omit-
 ted. As a result of removing this term from by, it is necessary to calculate
the bias accelerations according to Egqs.(3.39) or (3.43). The appropriate
force and torque caused by acceleration w; X v) appear in the equation of
the spatial forces (3.8) because of the special structure of the matrix M.
Both computational schemes for the inverse dynamics algorithms pre-
~ sented in this section have been checked against each other for several in-
* dustrial Tobots. The results were exactly the same.

Finally, notice that the gravity forces have the same representation in
both expressions for calculating by and bi. In order to reduce the number
of arithmetic operations for calculating the gravity forces we assume A} =
Ang1 = g, where g is 6 X 1 vector describing spatial gravity acceleration.
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Next, we will review the forward dynamics equations based on reference -
[18] (the derivation of these equations can also be found in [18]). The prob- -
lem is solved by applying the sweep method [5]. According to this method,
the state z; and costate Ay are related by the equation :

(3,45) zp = 2k + Pear,

where 2z, and Pi can be determined by means of the recursive equations
that emerge upon substitution of Eq.(3.45) in Eqs.(3.8) — (3.13). There, 2z
will play the same role as the predicted state estimate plays in the Kalman ;
filter. Similarly, P, will play the role of the corresponding state estimation
error covatiance. '
Below we sumarize the forward dynamics equations.
Filtering
(3.46) initial conditions 25 = 0, PF =0,
(3.47) state prediction £ ¢k,k_1z;c"_1 + b,
(3.48) inertia prediction P b1 P Bh k1 + Mi,

il

(3.49) joint axis inertia Dy = HgPJ Hf,

(3.50) Kalman gain G, = Py HL /Dy,

(3.51) innovations e, = 7Tp—Hpzy,

(3.52) state update 7= Az + Gregl+ Ptay,

(3.53) residuals ef = e /D,

(3.564) inertia update Pr = Al - GpHi Py ATt
Smoothing

(3.55) terminal costate Moo= 0,

(3.56) costate propagation A, = $pi1A% s

(3.57) joint acceleration G, = ef —(AGRT(M +m),

(3.58) costate update A = AN a4+ HE g, -

Let us notice that the above set of equations is true for both types of
joints. We have included the appropriate orientation transformation in all
equations associated with the link crossing operations.

In the next section we will consider the computational complexity of the
forward dynamics algorithm.

4, COMPUTATIONAL REQUIREMENTS

In this section we present the scalar operations (multiplications, additions
and divisions) required to compute the inverse and forward dynamics algo-
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sithms presented in Sect.3. This work extends the results obtained in [18].
The calculation of the number of arithmetic operations is based on several
:assumptions. First, we assume that the link-to-link coordinate orientation
transformation is the modified Denavit - Hartenberg orientation matrix. The
distance between two origins of successive coordinate frames is defined to be
the spatial transformation matrix. We further assume that the manipulator
hias both types of joints and that the twist angle o may take any value.
For the spatial transition matrix we assume that it has, at most, 6 nonzero
clements except the diagonal elements.

Next, we implement the concept of customizing the dynamic equations
to reduce the computational requirements. The customizing procedure was
borrowed from [13]. According to this convention, the nonzero elements
of a vector or a matrix are denoted by subscribed variables, and the zero
and unity elements by a 0 and 1, respectively. We propagate the nonzero
‘elements as variables and the zero elements as zeros. This customization
procedure guarantees that every two mathematically equivalent expressions
are denoted by the same variable name. Using the customization procedure
results in longer but faster computer programs. The direction cosine matrix
‘can be split up into two planar rotation matrices. If we realize that every
matrix has an invariant part with respect to planar rotations, we shall see
that we significantly save on the number of operations.

4.1. The inverse dynamics algorithms

‘We now consider the number of arithmetic operations for the new inverse
dynamics problem developed in Sect.3. This number of operations is given
in Table 1.

The computational requirements of the general purpose implementa-
tion, given in Table 1 as left-hand columns of multiplications and addi-
tions/subtractions, respectively, incorporate the savings obtained by zero
elements of the orientation matrices Ay, the sparse Hy vector, the zero ini-
tial conditions with regard to the force and torque acting at the mass center
of each link, and the gravitational acceleration Al = g of the manipulator
base,

An n degrees-of-freedom manipulator with rotational joints only {which
is the worse case) requires 142n — 151 multiplications and 109n — 134 addi-
tions/subtractions (Table 1). For six degrees-of-freedom manipulators, the
computational requirements are 701 multiplications and 520 additions [sub-
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Table 1. Number of arithmetic operations per link for the inverse dynamics

problem
Recursions Multiplications Additions/Subtractions
bi, mi 74n —83,  58n —766 44n ~ 58 36n — 42
Eqs.(3.7), (3.14) ’
Costate .
propagation 6n — 10, in—6 6n — 10, in—6
Eq.(3.10) :
Costate
6n—1 8r—6 15n — 11n - 11
update Eq.(3.11) 16n — 11, " n - 15, "
State :
propagation 30n — 31, 28n — 27 36n — 43, 34n — 39
Eqgs.(3.8), (3.12)
State update :
-16, 8n-8 -8, -4
Eq.(3.9) 16n | n 8n 4in
Total 142n — 151, 106n — 113 | 109n — 134, 89n — 102

tractions. The computational requirements of the Newton - Euler algorithm
are documented in the literature {10, 12, 13]. For example, Khosla [13]
cites 678 multiplications and 521 additions/subtractions. Note that com-
putational load is comparable to this general-purpose implementation. For
n < 6 the new inverse dynamics algorithm summarized in Table 1 is faster
than the algorithm presented in [13].

Most of the existing manipulators have adjacent axes which are either
parallel or perpendicular. For this orientation of the axes (twist angle oy is
equal to 0°, 90° or —90°), we can reduce computational load. Thus, for an n
degrees-of-freedom manipulator the computational load is 106n — 113 multi-
plications and 89n—102 additions/subtractions and is depicted in right-hand
second columns in Table 1. A six degrees-of-freedom manipulator requires
523 multiplications and 432 additions/subtractions. Khosla quotes 500 mul-
tiplications and 403 additions/subtractions. Still in this case computational
load of the new inverse dynamics algorithm is comparable to that of paral-
lel/perpendicular axes.

The calculation of the two-point boundary-value problem seems to be
slightly slower due to the notation introduced in Sect.2, which recognizes
spatial quantities on both sides of each joint. For this reason the compu-
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tational load resulting from Eqs.(3.24) - (3.33) is exactly the same as that
presented by Khosla. ARMSTRONG and co-authors {2] point out that the
genera.i purpose implementation requires 1560 calculations (multiplications
and additions), for 6 degrees-of-freedom manipulator. One can incorporate
nested categorization into a set of Eqs.(3.1) — (3.14) in order to obtain a
smaller number of operations similar to the number of operations given by
Kuosta [13).

4.2. The forward dynamics algorithms

General solution for the forward dynamics problem consists of the two
parts: filtering and smoothing. Filtering is based on Eqs.(3.46) — (3.53);
smoothing calculates the joint accelerations and is based on Eqs.(3.55) —
(3.58). The author believes that it is worth calculating the number of oper-
ations for the forward dynamics problem for an arbitrary n-link manipulator.
Some preliminary results obtained by the author are presented in {14,
15]. In [14] a general planar chain example has been considered which ex-
‘tends the results presented by RoDRIGUEZ in [18]. The bias forces and the
“ bias accelerations are not necessarily zero. The computational load for the
forward dynamics algorithm for an arbitrary n-link manipulator with par-
allel/perpendicular axes has been considered in [15, 16]. Results obtained
. in [14] and [16] have been extended in the present work to an arbitrary
n-link manipulator. The computational requirements of the forward dy-
namics problem based on the set of equations (3.46) — {3.58) are presented
# in Table 2.

 From Table 2 it follows that for an arbitrary n-link manipulator with
revolute joints only the total number of arithmetic operations is 534n — 770
- (this is the worse case). For six degrees-of-freedom manipulators the com-
. putational requirements are 1261 multiplications/divisions and 1173 addi-
_ tions/subtractions (total 2434 FLOPS). A very efficient forward dynamics
. algorithm presented in reference [4] requires 250n — 222 multiplications and
- 220n—198 additions, which results in 2400 FLOPS for six degrees-of-freedom
“manipulator. Notice that for n < 6 the forward dynamics algorithm pre-
“sented in Sect.3 is faster than the algorithm of Brandl and co-authors. This
- implies that the algorithm presented in Sect.3 is always more efficient than
~ the algorithms of WALKER, ORIN (23] and FEATHERSTONE [7]. For n > 6
- the forward dynamics algorithm is slightly slower than the algorithm of
- Brandl and co-authors. That is due to the spatial definitions of quantities
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Table 2. Number of arithmetic operations per link for an n-link manipulator -
required by Bryson- Frazier smoother

Recursions Multiplications | Additions/Subtractions Divisions

be, ni
Egs.(3.7), (3.14)
State propagation
Eq.(3.47)
Inertia propagation
- Lq.(3.48)
Kilman gain
Eq.(3.50)
Innovations
Eq.(3.51)
Residuals
Eq.(3.53)
State update
Eq.(3.52)
Inertia update
Eq.(3.54)
Costate propagation
Eq.(3.56)
Joint acceleration
Eq.(3.57)

Costate update
"Eq.(3.58)

T4n — 83 44n — 58 -

6n — 10 12n = 21 -

56n — 104 22n — 115 -

46n — 56 39n — 47 -

55n — 56 85n — 139 -

6n — 10 6n — 10 -

5n—2 6n—3 -

16n — 28 9n — 18 -

Total 264n — 349 264n — 411 6n — 10

on both sides of each joint.

It is also of interest to compare the above numbers of operations for the
forward dynamics algorithms with those required to compute the multilink
system inertia matrix and to invert this matrix numerically. The number
of arithmetic operations required for assembly of n-by-n inertia matrix is
18n2 + 92n — 110 (for details see [9]). Computation of the other terms
not included in the system inertia matrix requires 251n — 285 FLOPS. Fi-
Iia,lly, the solving of the linear equations for the joint accelerations requires |

3

3" + 22n - 1= i arithmetic operations. The total number of multiplica-
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tions and additions in this method is Ena + 20—1—n2 + 34111; — 395. This
‘method is more efficient than any of the techniques proposed by WALKER
‘and ORIN [23]. For manipulators with 6 degrees-of-freedom the total num-
ber of arithmetic operations is 2462. Notice also that for any n the forward
dynamics algorithm based on Kalman filtering and smoothing is more ef-
ficient than the above method. The totals given in Table 1 and 2 do not
include the calculation required to evaluate the sines and cosines.

5. SIMULATION RESULTS

. The inverse and forward dynamics algorithms presented in Sect.3 have
been coded in the TURBO PASCAL 5.0 language and run on the IBM
PC compatible computer {9, 15]. The modified Denavit-Hartenberg nota-
tion has been used. The software programs have modular structure which
allows for extension of existing software packages. The programs which
solve the inverse and forward dynamics problems are called INV.DYN and
‘FORW_DYN, respectively. Sine and cosine functions have been discretized
‘over the range from 0° to 90° with an interval 0.1° (repeated time-consuming
calculations of sine and cosine functions have been omitted thanks to putting
the discretization results in look-up tables). Software packages have bheen
written in a user-friendly manner with all necessary information presented
on the screen. The simulation results can be presented both in graphical
and numerical form. The programs allow the user to simulate the inverse
and forward dynamics for any manipulator with maximum 10 degrees of
freedom. The user has to specify the joint trajectory (in the simulation
‘process we have assumed fifth-order polynomial trajectory for each joint).

Next, we have to specify dynamic parameters for each joint. The inverse
::dyna.mics algorithm has to be run first in order to calculate the joint torques
or forces. These data are used as input for the forward dynamics program
'_Which results in joint accelerations. The latter are exactly the same as the
‘accelerations generated by the trajectory generator at the very begining of
the simulation process.

Several examples have been run in order to test the software packages.

Varius examples can be found in reference [9]. There have been considered
the inverse and forward dynamics models for such robots as DDA (Direct

‘Drive Arm) I and II [13], Puma 560 [15] and others.

“ As a representative example let us consider the dynamic model of the
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1y

FiG. 2. The robot PUMA 560 with coordinate systems according to the modified
Denavit - Hartenberg notation,

PUMA 560 robot. The PUMA manipulator has been presented in Fig.2.
Notice that in Fig.2 we have used the modified Denavit - Hartenberg notation
and the link numbering system starting from the tip of the manipulator
toward the base, according to the convention introduced by Rodriguez. '
The mass parameters of the links have been enumerated in reference [15]
and we are not going to describe these parameters in detail. All joints of -
the manipulator were moved simultaneously in a time period of 4 second.
The total movements of joints were respectively:
joint 1 in the range from —150° to 150°
joint 2 in the range from —90° to 90°,
joint 3 in the range from —130° to 130°,
joint 4 in the range from —246° to 70°,
joint 5 in the range from —220° to 40°,
joint 6 in the range from —150° to 150°,
with zero initial conditions for velocities and accelerations. For each joint
300 data points were recorded. A comlpete set of joint displacements ¢; and
their derivatives ¢;, ¢; as well as joint torques 7; can be found in [15].
In this paper we show the torque of joint 5 (Fig.3). Joint 5 has been
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- chosen because interactive forces and torques are the sirongest between the
‘first three links of the PUMA 560 manipulator.

Nm
64.6

Jaint §

434

215

-21.0

T

-43.0 -

~64.0 -

Fia. 3. Joint 5 torque for the PUMA 560 manipulator.

- The results have been compared with these presented by Vuscovic and
~co-authors [15}, which were obtained by making use of the standard Newton -
Euler formulation. Qur results are exactly the same. This substantiates the
“present author’s belief that the algorithms presented in Sect. 3 are correct.
It is known that the model based control of a manipulator [1] requires
‘a"dynamics model (i.e. an inverse dynamics algorithm) to be calculated
in real time., In the presented example the torques for the PUMA 560
“anipulator were calculated with the frequency 200 Hz on the IBM PC
~compatible computer with 80386 processor and 80387 coprocessor. The
minimum required frequency of cited in the literature is 50 Hz. One can
‘notice that the new inverse dynamics algorithm presented in Sect. 3 satisfies
“these requirements. At the same time we have measured the frequency of
calculating the forward dynamics algorithm presented in this paper. For
~our example we have obtained the frequency around 100 Hz. These results
have been compared with the minimum number of arithmetic operations
“presented in Sect. 4 and the clock frequency of the computer. The frequency
calculated from these data, i.e. the number of arithmetic operations and the
~clock frequency, is the same as the frequency obtained experimentally for
several examples presented in [15].

- We can conclude that the necessary number of arithmetic operations
presented in Sect. 4 for the inverse and forward dynamics algorithms is
correct.,
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6. SUMMARY AND CONCLUSIONS

In this paper, we have reviewed the inverse and forward dynamics prob-
lems which have been originally solved by Rodriguez. We have presented a

new proof for the bias spatial forces. Also we have proved the equivalence

between the standard Newton - Euler formulation and the inverse dynamics
algorithm derived by Rodriguez. We have presented the computational com-
plexity of both inverse and forward dynamics algorithms based on Kalman
filtering techniques and compared it with the computational complexity of
the methods described in literature. Both algorithms are very efficient, in
comparison with the standard methods excluding parallel algorithms for
robot dynamics computation [8].

Apart from that, we have investigated the computational improvements
which result from the application of fast algorithms such as factorization
methods [3]. In particular, we have used the Agee and Turner factorization
method, for the inertia prediction equation (3.47). However, the application
of this technique has not rendered satisfying results as far as the computa-
tional complexity is concerned, due the special form of the matrix Hy. The
details of this analysis can be found in [9]. _

The forward dynamics equations are also not well suited for the fast
Kalman techniques [16); however, we are still investigating this problem.
Simulation results for both inverse and forward dynamics algorithms have
been tested on several industrial robots and are reported in [15].

Much work is required to establish the computational complexity for the
closed-form inertia matrix inverse algorithms which have been developed in
[18]. The studies of the computational complexity of the flexible manipulator
inverse and forward dynamics [21] have still to be conducted. It will be the
subject of future publications of the present author.
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STRESZCZENIE

NOWE ALGORYTMY DLA DYSKRETNEGO FILTRU KALMANA W
ZASTOSOWANIU DO ROZWIAZANIA ZAGADNIENIA ODWROTNEGO ORAZ
PROSTEGO DYNAMIKI MANIPULATOROW.

W pracy udowodniono rownowaznoéé dwéch metod budowy modelu matematycznego
dynamiki manpulatora metody rekurencyjne} wywodzacej sie z réwnad Newtona-Eulera
oraz metody sprowadzajacej sie do rozpatrywania zagadnief kinematyki oraz dynamiki w °
postaci "dwupunktowego zagadnienia brzegowego”. Rozwiazanie "dwupunktowego zaga-
dnienia brzegowego” dla manipulatora o #» stopriach swobody prowadzi do réwnai filtru
Kalmana oraz wygladzania Brysona-Fraziera. W pracy przedstawiono analize poréwnaw-
cza algorytméw rozwiazania zagadnienia odwrotnego oraz prostego z dotychozas stosowa- |
nymi algorytmami pod wzgledem ich efektywnosci, tj. liczby koniecznych dzialani aryt- -
metycznych. Jako wynik szczegdlowy, w pracy pokazano, e zaleznosé¢ zlozonodci obli-
czeniowej algorytmu zagadnienia prostego dynamiki, opartego na filiracji i wygladzanin |
Kalmana, od liczby ogniw jest wiclomianem stopnia pierwszego. W pracy wskazano na
mozliwoéé praktycznego zastosowania poprawnych algorytméw w zagadnieniu sterowania -
robotem opierajac sie na jego modelu w czasie rzeczywistym. Wyniki badan symulacyj-
nych rozwiazania zagadnienia odwrotnego i prostego zilusirowano na przykladzie robota
PUMA 560.

PE3WOME

HOBBIE AJITOPUTMBI /I JUCKPETHOI'O $WILTPA KANIMAHA B
MPUMEHEHNW K PEIIEHUAM OBPATHOM U ITPAAMOM 3AZIAYM JUHAMVKU
MAHHIYIATOPOB

B paGore nokasaHa SKBUBANEHTHOCTE JBYX METONOR NOCTPOEHHR MAaTeMaTHYecKoH
MOJEeNnH IHHAMHKM MAHANYAATOPA H PEKYPPEHTHOrO MeTOAA, BLIBOAALIETOCA M3 ypap-
nenult Helorona-Diiaepa 1 MeTORA, CBOOANIETOCH K PACCMATPEHHIO 33/1a4% KHHEMATHKH
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1 OUHAMHKH B BHAE "[OBYXTOYeHYHOH KpaeBol sagauu”. Pewenme "asyxroueunoii
kpacBoll 3aKAUM" M MAHMNYNATOPa O n CTENERASX CBOGOOK NPHBOTMT K YHpasHe-
anaM dunsTpa KanoMasa u craaxusanus Bpaficona-Dpasnepa. B paboTe npepcrasnen
CpaBHUTENBHEIH AHANIU3 ANT'GPATMOB PellleHu s oGPATHOM M HpPAMOR 3a8AY ¢ IPAMEHEI-
AeMBIMHE [0 CHX TOP aJTOPHTMAMY 1O OTHOWEHKIO K X 83ddeKTHRHOCTH, T.¢. KOMH-~
“ecTBA HEOOXOOAMEIX apupMeTHUecKnX HelicTeHii. B pabore nokasaHo, Kak wacTHRIH
#esyubTaT, YTO 32BHCHMOCTh PACYETHOK CIOXKHOCTH A/IFOPUTMA NPAMOMN 30U IUHA-
MHUKH, ONMpaloLIeNica HA GUALTPALLNM H CcraXkusauuu KansMana, oT xonnuecTna 3Be-
fibeB SBAAETCH MHOroYlieHoM MepBol crenend. B paboTe yKasaHa BO3MOIKHOCTEL Hpak-
THYECKOTO NPHMEHEHHS NPABMIALHEIX AJTOPUTMOB B 3AflauaX yupaaieHus poBorom,
ONUpASch HA €ro MOMENh B OEHCTBHTeAhHOM BpeMeHH. PeaynnrtaThl Mopenmpylomux

EccaemonaHuil pemeHns obpaTHol M npAMoOl 3a8AY WINIOCTPHPOBAHEI HA TIPAMepe Po-
6ora ITYMA 560.
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