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PLASTICITY OF CRYSTALS WITH INTERACTING SLIP SYSTEMS()

W. GAMBIN (WARSZAWA)

A new, non-conventional approach to the analysis of crystalline lattice rotations caused
by large plastic strains of crystals is presented. Only rigid-ideally plastic crystals are con-
sidered. Contrary to the theory based on the Schmid law, the proposed model assumes
that a yield initiation depends on stress states of all slip systems, i.e. interactions between
slip systems are taken intc account. In the paper an interaction rule, founded on micro-
scopic observations, is governed by one integer constant ». For n = 1, the crystals satisfy
the Mises criterion with a quadratic yield surface. For n — oo, the crystals are described
by smooth (with rounded-off corners) yield surfaces tending to those generated by the
Schmid law. For a fixed =, the interaction rule determines constitutive relations in terms
of the strain rate tensor, the plastic spin tensor and the stress temsor. Three additional
constitutive equations for the plastic spin components lead to an explicit descriptions of
lattice Teorientations. A generalized plastic potentiial for the strain rate and the plastic
spin is introduced. A smooth yield condition generated by this potential enables to for-
mulate a complete system of equations for the model, what considerably simplifies the
numerical analysis. The f.c.c, crystals in tension and compression are examined in detail.
The presented strain paths demonstrate a predominant influence of interactions between

slip systems on the lattice reorientations.

1. INTRODUCTION

The plasticity of crystals formulated by HILL and RICE [8] (an extended
review is given in ASARO [11)}) is based on the Schmid law and the constitu-
tive relations between slip rates and the resolved stress rates. According to
the Schmid law, apperance of a slip in a certain slip system depends only on

{1)Paper presented at VII-th French-Polish Symposium "Recent Trends in Mechanics of Flasto-
Plastic Materials”, Radziejowice, 2 — 7, 07, 1990. ’
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the value of the shear stress component in that system. Influence of stress
states in other slip systems is not taken into account. One can say that the
theory assumed a model of a crystal with independent slip systems (with
respect to the plastic yield onset}.

The independence of slip systems leads to the ambiguity of the crystal
kinematics — various combinations of slip rates give the same strain rate of
the crystal. The proper choice of active slip systems needs to satisfy an
additional criterion — the minimum slip rate (TAYLOR [3]) or the maximum
plastic work (Biswopr and HILL [4]). Because the number of uknowns of
the model exceeds the number of formulated equations, the theory is not
represented by a complete system of equations. An analysis of real crystals
based on searching of active slip systems is very complex. On the other hand,
experimental data for f.c.c. and b.c.c. crystals indicate some deviations from
the Schmid law. Paper by DIEHL [5] on copper has shown that values of the
critical shear stress are higher than the expected ones when similar values
of the resolved shear stress appear on several slip systems. It indicates, that
interactions between slip systems take place.

The aim of the paper is to formulate a model of a rigid-ideally plastic
crystal at large strains, which takes into account interactions of a various
degree between slip systems. Particularly, if the interactions are sufficiently
weak, the model should give the results close to those obtained from the Hill
and Rice theory for the case of rigid-ideally plastic crystals.

In the next section, a short summary on kinematics of erystals at finite
strains and large lattice rotation is given. Later, an interaction rule for slip
systems will be introduced. It will be shown that the constitutive behaviour
of crystals is fully determined by this rule.

2. BASIC KINEMATICAL CONCEPTS

Crystal deformed by slip only are considered. Slips may appear on some
crystallographical planes with normal versors n{) and some crystallograph-
ical directions m{"(r = 1,...,M). A pair composed of a family of parallel
slip planes and one slip direction creates a slip system. Formally, a slip
systern may be defined as a dyad m(”) @ n). A set of all slip systems of a
crystal {m() @ n(");r = 1,..., M} forms a system of slip systems.

To describe the lattice orientation, one can choose a certain crystallo-
graphic plane with a normal a; and a crystallographic direction a, lying on
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this plane. Let ag be a vector-product of a; and az. A triad of orthonor-
mal vectors {a;,as,a3} will be called a lattice frame. An orientation of the
frame {a,} with respect to the fixed system of coordinates {e;}, is given by
the orthogonal matrix R,; (expressed by three Euler angles ¢y,)

(2.1) ’ ay = Rai($m) € -

Consider @ lattice motion during a deformation process. For crystals
deformed by slip only, elastic strains of a lattice are neglected. Then, a
lattice motion is described by a rotation of its frame. A rotation rate is the
same at each point x from the space occupied by the crystal

(2:2) aa(t) = whgag (),
where
(23) wq,LJ = RiaRja

are components of the lattice spin.
During the crystal motion, the system of slip systems is rigidly connected
with the lattice frame. Then, for r = 1,..., M

(2.4) m@) = @) aa(),
(2.5) () = alda,(t),

where M) and Al are constants describing the geometry of the lattice.
Note that for r, s =1,..., M
mT () (8 () ~(T) (f) PO
(2:6) ™) TG ) Mo tig) >
where (4, 7) denotes symmetrization with respect to ¢ and j.
It means that the left side of Eq.(2.6) does not depend on the lattice

orientation.
Time derivative of Eqs.(2.4) — (2.5) and the rule (2.2} lead to the relations

(2.7) mit) = wh(t)mit),
(2.8) i(t) = whi(t)ni(t) .

The motion of a material element of the crystal, in vicinity of a point x,
is a superposition of a rigid body motion with the spin w; (t) (the same for
all material elements) and simple shears (on motionless shp systems) with
rates 4{")(x, t). Observe that such a motion is isochoric.
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Consider a motion of an infinitesimal fiber of a crystal, parallel to a vector
dx, with the origin at a point x. An increment of a velocity vector along
this fiber is the following:

M
(2.9)  dvi(x,) = wh(t) doj + |5 4O (x, ) m7 (@) n(1)| de; .
r=1

A tensor field

(2.10) LP(x,t) = % 4")(x,£) m™) (¢) @ nt")(2)

r=1

is a plastic part of a velocity gradient field and plays an essential role in
further considerations.

Components of the tensor LY may be decomposed into the plastic strain
rate and the plastic spin ones

M
5540 (mnf) + mPnf?)

M
5 40 (mn) = m{Pal) .

Equations (2.9) and (2.11) — (2.12} yield the following decomposition of
the total velocity gradient field

(2.11) d; =

(2.12) wh =

b = B | -

(2.13) vi;(x,1) = wj (t) +d (x,t) + wg(x, t).

In the above, w; (t) is expressed by three Euler angles ¢,,() descnbmg the
actual lattice orientation. Observe that three components w; (t) may be
found from Eq.(2.13) if the total velocity gradient and its plastu: part are
known. Then, for a given velocity field, six constitutive equations for the
plastic strain rate components dP and three additional constitutive equa-
tions for the plastic spin components wf; should be prescribed.

If the velocity gradient field

(214 Lij{x, ) = vi,3(x,t)
is given, the_I_'; the compatibility equations should be satisfied

Lijk €5km =10,

the antisymmetric permutational symbol.
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3. AN INTERACTION RULE FOR SLIP SYSTEMS

Looking for a rule describing interactions between slip systems the fol-
lowing empirical relation (HuiL [9]) should be considered:

k
v T
3.1 - = —
( ) Yo (T 0) ’
where v is the mean velocity of dislocations moving on a certain slip plane,
r is the shear stress on that plane, and 79 is the shear stress producing the

velocity vo (usually 1 cm/s). Parameter k is a material constant; for the
madterials tested, & has varied from 1 (Cu) to 35 (Fe-3%Si) (see Fig.1).
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TIG. 1. Some typical data showing the dependence of dislocation velocities on applied
shear stress (after GILMAN [7]).

In the relation (3.1), values of v should be positive and smaller than the

shear wave velocity vmax - The above rule remains valid for

(32) ~ Vmax < ¥ < Vmax ’
if » and 7 are of the same sign. It is possible when
(3.3) k=2n-1, for n=1,2,3,....

Let o;; be the Cauchy stress tensor, and

(3.4) T(r) = U;jm(r) ngr)

1'
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will be a resolved shear stress acting on the r-th slip system. If 75 () produces
the mean velocity of dislocations v , then (") leads to

T(T) n—1
(3.5) o =y (—W) , for »=123,...
To

The quantity o("} is connected with the slip rate on the #-th slip system
4} by the relation (Huwy [9])

(3.6) ) = pr) NO) o) |

where b(") is the Burgers vector modulus, and N (*) is the number of moving
dislocations on the slip system considered.

Let k) will be the critical shear stress on the r-th slip system. Let us
make two additional assumptions: a) 7'0 {r) 4 proportional to k(r) , b) for a
fixed plastic strain, b N(*) is inversely proportional to k((,- e
Taking into account the above assumptions, the Eqgs.(3.5) — (3.6) lead to

the relation

(1.) 2n—-1
NG P Al
1) T (k&”) ’

where ) is a positive function (proportional to the number of moving dislo-
cations), the same for all slip systems.

It means that a slip rate on the s-th slip system is connected with a slip
rate on the 7-th slip system by the relation

| £ Fe)\ 1
(5) — 4(r) ¢ -
(3.8) T =7 (kgs)) (1__(,.)) )

where

(3.9) 7 =

e
o770

According the above rule, all slip systems are active from the beginning
of plastic yielding. The distribution of slip rates between slip systems is
governed by the parameter n. For n large enough, 4N =1, M;s#7)
are negligibly small in comparison with 4() , and the slip distribution is
close to that predicted by the single slip theory. Then, the parameter n
describes the slip systems independence degree.

Concluding, one can introduce the following
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DEFINITION. A crystal will be called a crystal with interacting slip sys-
tems of the n-th independence degree (n = 1,2,3,..), if

(1)) s (M) (M)
7 < _ - '7 c -
(310) W_‘I ... = _—"—[f(M)]Zn—l = A 2 0.

The relation (3.10) is the interaction rule sought for. It will be treated
as a phenomenological assumption, disregarding the previous physical mo-
tivations.

Assuming that A is a material constant we have to do with rate-dependent
materials. For further considerations A will be regarded as a function of the
loading process, which follows from the assumed yield condition. It means,
that crystals with interacting slip systems will be considered as a class of
ideally plastic, rate-independent materials.

4. CONSTITUTIVE RELATIONS AND A GENERALIZED PLASTIC POTENTIAL

Multiplying both sides of Eq.(3.7) by a dyad m?)ng-r) and summing up
for r = 1,..., M , one obtains

2n—-1
) mn) = 1 {0 ", (r)
(4.1) z 47 m; =\ Z k(r) [ (T)] m,( )nj .

The left-hand side of Eq.(4.1) is the plastic part of the velocity gradient,
and the right-hand one may be expressed by the Cauchy stress tensor. Then,
the following constitutive relations yield from Eq. (3.7)

Mo mi oy w7 et
(4.2) Lf; =X =3 [_k_(’;l_l] mﬁ")nﬁ’) :
r=1 kc kc
where A is a non-negative, scalar function.
Nine equations (4.2) can be divided into two groups:
a) six equations for the plastic strain rate

M ) g, ]2
(43) df = %1&) [m o l [0 4wl
r=1 ¢ c

b) three additional equations for the plastic spin

(), (r)72n=l
m TLi n T T r T
(44) wf =2 2_; %m [ ne) ] [mg Ial) — m{ )] .
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The above approach to the constitutive description of crystals has been
introduced in my previous paper (GAMBIN [12]) as a practical realization of
the theoretical proposal of MANDEL [6].

Similarly to the classical theory of plasticity, one can introduce potentials
for the strain rate and the plastic spin. Note that m() and n{") depend
on three Euler angles ¢,. Then, the components Lg,dﬁ and wg may be
regarded as three-parameter functions of the stress state. The following
three-parameter function of nine stress components

(r) ]
(4.5) Fn(ﬂijs¢m) ~ 9n ’; [ kc(:.) ] —-—m¢ ,

will be called the generalized plastic potential. The quantity m in Eq.(4.5)
depends on n only, and it will be determined later. One can see that

(4.6) LE = ) gi ’: , |

(4.7) d;, = ,\% (%+§£ﬁ:) :

(4.8) wh = A % (% - gi':) .
Tntroduce now a smooth yield condition

(4.9) faloij; dm) = Fu (5’—;& ;¢m) =0,

associated with the flow rule (4.3).

The case n = 1. For cubic crystals (k. is the same for all slip systems)
the interaction rule takes the form
(4.10) L2

() M) T M

where ) is a non-negative, scalar function. The considered case has been
examined in my previous papers (GAMBIN [13, 14, 15]). The constitutive
equations and a smooth, quadratic yield criterion take the form

(4.11) Lf; = A Hijuion
(4.12) oi; Hijriow = m
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where "
1
(4.13) Hiju = 2 3 m{ o) mfl) o7,
r=1

and m is a material constant. Here, the components of H;; are fully de-
termined by the lattice geometry and its orientation.

A general form of the quadratic yield criterion for crystals has been pro-
posed and examined by Misgs [2].

The case n — oo. For increasing values of parameter n the degree of
interactions between slip system decreases. In the limiting case one can
state only that, for 7 = 1,..., M, ¥0) and 7(") are of the same sign, i.e.

A,(r)

(4.14) = A",

T(r)

where independent functions A(") take non-negative values. This is the case
of independent slip systems.
The relations (4.14) lead to the following constitutive equations

M
(4.15) 15 =3 X050 m0pf) |
r=1

where functions A{") remain undetermined.
Symmetrization of Eq.(4.15) yields the following flow rule:

1 = r) (r ) (r
(4.16) df = 5 32 A0 [mnf) 4 m{Dn?)

r=1

For a single slip on the r-th slip system,

afr)
b ) 2
(4.17) dij = A doi;
where 5
(4.18) £ = [f(r)] 1.
In the stress space, the equation
(4.19) =0

describes a pair of parallel hyperplanes. The strain rate vector is orthogonal
to each of them. A set of such hyperplanes, for r = 1, ..., M, is a boundary
of the domain described by the system of inequalities

(4.20) [F) <kl for r=1,..., M.
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Then, the crystals with independent slip systems, which obey the orthogo-
nality principle, satisfy the Schmid law. On the other hand, these crystals
may be regarded as a limiting case of crystals with interacting slip systems.

Concluding, the model of crystals with interacting slip systems may be
used as an approximation of the model based on the Schmid law. The above
observation will enable a determination of the parameter m in the definition
{(4.5).

5. A SMOOTH APPROXIMATION OF THE SCHMID YIELD CONDITION

A smooth previously introduced yield condition can be obtained in a
purely phenomenological way. For this purpose let us observe that the square
shown in Fig.2a and described by the equation

(5.1) max (lz],ly}) =1,
may be approximated by the sequence of curves (Fig.2b)

a b
gﬁ ’ iy 4&

~y
=y

ot |

FIG. 2. A smooth approximation of the square: a) the original figure,
b) its approximations for » = 1,2,35.

(5.2) ey =1, for n=1,2,3,...

In the similar way, one can approximate a multi-plane yield surface.
Consider a classical Tresca yield condition

I} |7l lfal)
3 max (LM T2 1) -
(5 ) } T1,T2,73 (ko ’ ko ? ko 1,
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where 71, T2, T3 are the maximum shear stresses, and ko is their critical value.
Denoting by o1,03,03 the principal stresses, and by og their critical value,
the Tresca yield surface is described by the equation

(5.4) max

T1,72.03

) ?

(|01 —oa} |og— o3| |oa-— 011) —1
(o)) ap ag )

The multi-plane surface (5.4) may be approximated (with accuracy to a
scale parameter m) by the sequence of the smooth surfaces

(55) (0'1 —_ 0,2)211. -|— (0’2 — 03)21; + (0'3 - 0‘1)2“' = mcrg" .

Assuming that in the simple tension test {4 = op, 02 = 03 = 0) both
conditions (5.4) and (5.5) are satisfied, one can obtain

(5.6) m=2.

For n = 1, the quadratic Huber - Mises yield surface is obtained. When
n — oo, the Tresca yield surface appears.

Similarly the yield surfaces for crystals may be considered. The Schmid
yield condition can be written in the form

|T(r){ B
5.7) %, S b
or in the form
Josgm{n{")]

(5.8) AT

For a fixed lattice orientation, the equation (5.8) describes a convex,
multi-plane yield surface. With an accuracy to a scale parameter m, this
surface may be approximated by the sequence of smooth surfaces

M [ oij m(r)n(f)

(57.9) >

] =m, for n=1,2,3,...
r=1

c

Looking for such a value of m which gives the best approximation of
Eq.(5.8), assume that for the pure shear on the s-th slip system both the
conditions (5.8) and (5.9) are satisfied. It is possible for the following stress
state .

(5.10) o5 = k) [mPnf 4 mPnl] .
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Introducing Eq.(5.10) into Eq.(5.9), one obtains the following value of m
(denoted temporarily by m* )

MOLED 6 e0]
(5.11) m =3, [2 @ 6 )] '
r=1 ¢
Taking the mean value of m* over all the slip systems, we have
LR SRR "
(5.12) - L z; z-:l [ e mnl) mf) (;)] _

According to Eq.(2.6), the quantity m does not depend on the lattice
orientation.

Concluding, one can state that for the parameter n large enough, the
yield surface

(r) (") M M () 2n
giim; n - k ORI GG
(5.13) 5_:1 { } 5 2P [ (i) i (})}

k) s=1 r=1 k()

is arbitrarily close to the Schmid yield surface.

As an example illustrating the accuracy of the approximation consider a
case of f.c.c. crystals. The Schmid yield surfaces, for three orientations of
the lattice with respect to the principal stress axes, are shown in Fig.3, and
their approximations — in Fig.4.

FiG. 3. Schmid yield surfaces of f.c.c. crystals for three orientations of the direction a3 @

a) [o01], b) [011}, ¢) [111].

One can observe the rounded-off corners of the surfaces in Fig.4. Their
curvature increases to infinity for increasing values of the parameter 7.
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FiG. 4. Smooth yield surfaces for f.c.c crystals for three orientations of the direction o3 :
a) [001], b) [011), ¢} [111].

Consider the lattice orientation shown in Fig.3a. Denote by og and o,
the critical values of the principal stresses according to the Schmid law and
its n-th approximation, respectively. Then '

o — O
(5.14) A, = |22

Go

will be the relative error of the approximation. A dependence of A, on the
parameter n is shown in Fig.5.
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Fig. 6. A relative error of the Schmid law approximation for f.c.c. crystal, as a function
of parameter =n.

Compare the results obtained with the experimental data. The influence
of lattice orientation on the values of critical shear stresses 1., for copper
crystals subject to tension is shown Fig.6 (DienL [5]). Orientations towards

FiG. 6. Orientation dependence of 7, of copper crystals. Values in MNm—?
(after DIERHL) [5]).

the center of the stereographic triangle give nearly constant values of 7, but
values of 7, are much higher for orientations approaching the boundaries of
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the triangle. The same conclusion follows from the proposed model — the
vield stresses for orientations [011} and [111] are much higher than those
predicted by the Schmid law.

Note that the rule Eq.(5.14) and Fig.5 enable us to determine the par-
ameter n for a crystal with the Schmid yield point og. For the monocrystal
extended in the direction [001] it is sufficient to measure the value of ¢, in
the uniaxial tension test.

6. A COMPLETE SYSTEM OF EQUATIONS FOR THE MODEL

Consider a rigid-ideally plastic crystal with interacting slip systems of
the n-th independence degree. Properties of the crystal are prescribed by:
density p, critical shear stresses k) and constants i ), A (see Eq.(2.4)),
forr =1,..,M and o = 1,2,3. Denote by f; components of a vector of
body forces acting on the crystal. During the deformation process, the state
of the crystal is described by: three components of the velocity field v;(x, 1),
three Euler angles ¢,,(t) and six components of the stress field oy;(x,1). To
determine the above quantities and an auxiliary function A(x,t), we have
at our disposal a set of thirteen equations (including the incompressibility
condition)

(6.1) , oii +pfi = pv;,
o AD (601" 6 :

(6.2) Vij = )\E ('r) T" A;J,' (¢m)+Ria(¢’m)Rja(¢m)a

2n 2n

Mo AR (bn) | 1 LI ED A03)

3 X [T S L |20 e ™ :
where
(6.4) AL = (),

In the case of non-uniform crystal deformation, its shape and initial-
boundary conditions for v;(x,?) and o;;(x,t) should be given. Due to the
"geometrical softening effect” (see Asaro [10]) kinematical conditions will
be preferred. Moreover, it is necessary to prescribe the initial conditions for
the Euler angles ¢, .



318 : W. GAMBIN

7. THE CASE OF UNIFORM DEFORMATIONS

The case of uniform deformations of crystals caused by uniform stress
fields is important. Then, for quasistatical processes in absence of body
forces, the equilibrium equations are satisfied identically. The remaining
equations (6.2) — (6.3) may be expressed in terms of the stress deviator, the
strain rate and the total spin components

1

(7.1) sij = O~ 3 Ok bij
1

(7.2) dij = 5 (vij+vig)
1

(7.3) wij = 5 (vig —vid) -

For rigid-ideally plastic crystals, the strain rate tensor d may be identified
with the plastic one dF, which is described by five components df-;.

S A(T) qu e v
(7.4) = A Z k(r [“ﬁ%_—)] AN (@)
=] c

(7 5)W13 = /\TZ]. k("')

M A() -
(7.6) Z[ kil (T§¢)

2n—1
A ™m T ;
[SL_]:#] ALY (bm) + Ria(dm) Rial($m) ,

1 XX g ()()2n
_szl 0 ") e )] ’

r=1 s=1 r=1
where
i _ L @ ) (), ()
:  _ 1 7, (r) (r), (r)
(7.8) ALy = 5 [l - w7

for 17 unknowns: s;;,dij,Wij, Pm, A

One can assume that 5 out of the 10 components s;; and d;; are prescribed
during the deformation process. Imposing adequate constraints on the total
spin components w;;, one can obtain the 3 lacking equations. To explain
this, consider two uniaxial stress states: tension and compression. One can
assume the following constraints

for tension:

1a) material fibers parallel to the direction of tension N before deforma-
tion remain parallel to this direction during the deformation;
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for compression:

1b) material planes orthogonal to the direction of compression N before
deformation remain orthogonal to this direction during the deformation.

Denote by N and N two different directions orthogonal to N. Let
dx, dx(), dx(? be the infinitesimal fibers parallel to three distinguished di-
rections, and dv,dv{l) dv{?) — increments of velocity along these fibers.
Then, the introduced constraints take the analytical form

for tension
(7.9) N® dv; =0, for k=1,2;

for compression
(7.10) Nidv® =0, for £=1,2.

Introducing Eqs.(7.2) — (7.3) into Eqs.(7.9) - (7.10), two equations are
obtained
for tension

(7.11) N (dij +wi;) Ny=0, for k=1,2;
for compression
(7.12) N® (dj—wi) Nj=0, for k=1,2.

The last lacking equation can be obtained from the following constraint
(the same for tension and compression):

2) any straight line parallel to N is not a rotation axis of the crystal.

This condition can be written in the form

(7.13) N,'Eijk Wik = 0 N

where ¢;;), is the antisymmetric permutational symbol.

Equations (7.11} - (7.13) complete the system (7.4) - (7.6) for the con-
sidered stress states,

In should be remembered that the lattice rotation which accompanies
compression is not simply the opposite of that which occurs in tension. The
reason is a difference between constrains (7.11) and (7.12) imposed on the
total spin components. Moreover, it is necessary to stress that the problem
of uniform deformations has been formulated as independent of a shape of
the crystal.
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8. TENSION AND COMPRESSION OF f.c.c. CRYSTALS

Consider a f.c.c. crystal of the n-th slip systems independence degree,
with 12 slip systems {111} < 110 > and a critical shear stress k.. The
crystal is uniformly extended (compressed) in the direction N. The tension
(compression) is realized kinematically, i.e. the actual length (heigth) of the
crystal I(t) is known. The uniform stress field in the crystal

(8.1) ai;(t) = o(t) Ni(?) ni(t),

is described by an unknown loading parameter o(f).

111 111
n=5

a0t o1t 007 an
FiG. 7. Reorientations during extension of f.c.c. crystals with maximum elongation
100%, for = = 1,5,10,15. The distance between successive dots corresponds to the strain
3.5%.

Assume that a lattice frame constitutes a fixed system of coordinates.
We are going to look for the change of direction N during the deformation



PLASTICITY OF CRYSTALS WITH INTERACTING SLIP SYSTEMS 321

process. Since '

: {
(8:2) N; = (de'j Twij Ty 6,--) N;
one can obtain from Eqs.(7.4) — (7.6)

> (Mg af)

. l r=1
(8.3) N; = 7 " T — b ¢ Nj.
PRLAZEA

It is essential to observe that the result is independent of k., and that
k, was assumed to be constant. It means that lattice reorientations do not
depend on isotropic hardening of f.c.c. crystals.

111 Vi)
n=5

ao1 on

o071 on 001 on
T'1q. 8. Reorientations during compression of f.c.c. crystals with maximum length
reduction 90%, for n = 1,5,10,15. The dostance between successive dots corresponds to
the strain 3.5%.

One can apply the above considerations to the problem of a drawing of
single crystals. The stress state during this process is a superposition of an
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uniaxial tension with a hydrostatic pressure. Since the hydrostatic pressure
does not influence the plastic yielding, one can investigate large extensions
of the crystal under the stress field (8.1). Results may be shown on the
inverse pole figures. Reorientations during extensions reaching up to 100%,
for various values of the parameter n, are given in Fig.7.

Analogous results for compressed crystals with a thickness reduced up to
90% are presented in the Fig.8.

Note that, except for the case n = 1, axes of compression of the crystals
tend to the direction [011], as predicted by the Schmid law.

For crystals subject to tension, the situation is more complicated. When
n is greater than 10, most of the longitudinal axes move towards the direction
[112], as predicted by the Schmid law. However, when n takes smaller values,
additional directions [001] and [111] appear.

REFERENCES

1. E.ScaMID, Proc. Int. Congr. Appl. Mech., 324, Delft, 1924,

2. R.MISES, Mechanik der plastischen Formdnderung von Kristallen, ZAMM, 8, 161,
1928,

3. G.I.TAYLOR, Plastic strain in metals, J. Inst. Metals, 62, 307, 1938.

4. J.F.W.BisHoP and R. HiLL, A theory of plastic distortion of & polycrystalline
aggregate under combined stress, Phil. Mag., 414, 1951,

5. J.DIEHL, Zugverformung von Kupfer-Einkristallen, Z. Metallk., 47, 331, 1956.

6. J.MANDEL, Généralization de la théorie de plasticité de W.T.Koiter, Int.J.Solids
Struct., 1, 273, 1965,

7. J.J.GILMAN, Micromechanics of flow in solids, McGraw-Hill. Book Company, 1969.

8. R.HiLL and J.R. RICE, Constitutive analysis of elastic-plastic crystals at arbitrary
strain, J. Mech. Phys. Solids, 20, 401, 1972.

9. D.HULL, Introduction to dislocations, Pergamon Press, 1975.

10. R.J.ASARO, Geometrical effects in the inhomogeneous deformation of ductile single
crystals, Acta Metall., 27, 445, 1979,

11. R.J.ASARO, Crystal plasticity, J. Appl. Mech., 50, 921, 1983,

12. W.GAMBIN, A model of rigid-ideally plastic crystals, J. Techn. Phys., 28, 309,
1987.

13, W.GAMBIN, Plastic behaviour of crystals, in: Proc. Int, Sym. on the Inelastic
Behaviour of Sclids: Models and Utilizations, Besangon 1988,

14. W.GAMBIN, A simplified model of rigid-ideally plastic erystal, J. Techn. Phys., 29,
155, 1988. '




PLASTICITY OF CRYSTALS WITH INTERACTING SLIP SYSTEMS 323

15. W.GAMBIN, Plasticity and lattice rotations in crystals {in Polish], IFTR Reports,
10, 1988.

STRESZCZENIE

PLASTYCZNOSCG KRYSZTALOW ZE WZAJEMNIE ODDZIALYWUJACYMI
SYSTEMAMI POSLIZGOW

Przedstawiono nowe, niekonwencjonalne podejécie do analizy obrotéw sieci krysta-
licznej spowodowanych duzymi odksztalceniami plastycznymi krysztaléw. W przeciwie-
" fstwie do teorii opierajacej si¢ na prawie Schmida, w proponowanym modelu przyjmuje
:: sie, 7e poczatek plastycznego plynigcia zalezy od stanéw naprezenia na wszystkich syste-
- mach poélizgu, tzn. uwzglednia sig oddzialywanie migdzy systemami poslizgéw. Przyjete
w pracy prawo oddzialywania, uzasadnione obserwacjami mikroskopowymi zalezy od jed-
nej stalej calkowitej n. Dla n = 1, krysztaly zachowuja si¢ zgodnie z kryterium Misesa
o kwadratowej powierzchni plynigcia, Dla = — oo, krysztaly opisane sa przez gladkie
(2 zaokraglonymi narozami) powierzchnie plynigcia dazace do tych, ktdre generuje prawo
Schmida. Dla ustalonego n, prawo oddzialywania determinuje zwiazki konstytutywne
wiagace tensor predkoéci odksztalced i spin plastyczny z tensorem naprezenia. Tray do-
datkowe réwnania konstytutywne dla skladowych spinu plastyczrego umeoiliwiaja jawny
opis reorientacji sieci. Wprowadzono uogdlniony potencjal plastyczny dla predkosci od-
ksztalcen i spinu plastycznego. Gladki warunek plastycznodci generowany przez ten poten-
cjal nmozliwia sformulowanie kampletnego uktadu réwnasi modelu, co znacznie upraszcza
analize numeryczna. Szczegélowo zbadano rozciaganie i sciskanie krysztaléw typu Al
Przedstawione na odwrotnych figurach biegunowych drogi odksztalcen wskazuja na duiy
wplyw oddzialywari miedzy systemami poélizgu na reorientacje sieci.

PE3IOME

TIACTUYHOCTD KPMCTAJIJIOB CO B3AMMOJAENCTBYIOIIMMU
CUCTEMUAMY CKOJBXKEHUHA

TIpepcraBner HoBbIY, HEKOHBEHIMOHANBHEIN MOAXOM K AHANM3Y BpalicHHN KpHc-

TaNAKYecKoH permeTKH, BR3BAHELIX GOALIINME NAACTHYECKAMH AcdOpMALMAMH KPHC-
Tanaos. B mpormmopec x Teopuu, Gasupyouteil Ha saxone [Imupa, 3 npenmoxenno
MOMIeAN NPAHWUMAETCS, YTC HAYANO HAACTHYECKOr'O TeJeHMS SARMCHT OT COCTOARMH Ha-
NPAIKEHNA RO BCEX CHCTEMAX CKOJNbKEHHA, T.3H, YYHTHBACTCH BIaAMOOeHCTRHA MeX-
oy cucrTeMamu ckoasxenuit. IlpunsaTeill 8 pafore saakon B3auMopnedcTeud, ofocHosaN-
HEIH MHKDOCKONHYeCKMMY HaGNIOQeH UAMM, 3ABHCUT OT OAHOH HATYPANBHOW NOCTOfH-
Holt n. Jlad m = 1, KPHCTANNLI BESYTCA COrXacHO KpuTepuio Mnmaeca o KxBagpaTHOl
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moBepXHOCTH Tedenusa. JIf n — ©O, KPHCTAJIEI ONHCHIBAIOTCS FAAAKHME (¢ 3aKpy-
rACHHEIMH BepIIMHAMYM) HOBEPXHOCTAMH TeHeHHA, CTPEMSAUIEMHCHS K STHM, KOTODEIE
reseprpyeT 3akoH [IIMuna. Jing yCTAHOBNEHHOTO 1, 3AKOH B3aHMOReHCTBHA NpeAonpe-
MeAseT oNpefeidAiolide COOTHOMIEHHs, CBAILIBAIOIIAE TEH30P CKOpOcTH AedopManuii
H IJISCTHYCCKMM CHHMH ¢ TEeN30POM HANDAXKeHHA. TPH HONOJHHTEABLHBIX oifipefens-
I0IGAE YPABHEHHSA JUIA COCTABJAAIONIHX NAACTHYECKOrO CIIHHA JAIOT BOIMOXKHOCTH H-
BHBIM 06pA30M ONMCATE PEOPUEHTHPOBRKY pelieTKH. Beenen obolmennniii mitacTHYec-
Kuil MOTeHIHAN A1 cKOopocTH Aedopmaliuil K naacTHYecKoro cnuHa, [Taakoe ycaosue
HAACTHHHOCTH, FeHEePEPOBAHHOE BTHM NOTEHINAIOM, JAET BO3MOMKHOCTE chOpMYAn-
PORATE MONHYIO CUCTEMY YPaBHEHHI MOAENH, YTO 3HAYUTEALHO YN POILAET YHC IeHHRIH
aHaau3. IloapoGHo necaemoBanLl PACTAKEHME M c3KaTHe kpucrannos Tuna Al. Ilpen-
cTaB/ieHHLIE HA OODATHLIX NOAAPAX NYTH AedopManull yKaA3LIBAIOT Ha Gonpilioe BAKARE
paaAMoneHCTRUIH MeXKIOY CHCTEMAMH CKONLXKEHHS HA PEODHEHTHPOBKY pelleTKH.
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