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ON IRREDUCIBLE NUMBER OF INVARIANTS AND GENERATORS
IN THE CONSTITUTIVE RELATIONSHIPS®)

S. JEMIOLOandM. KWIECINSKI (WARSZAWA)

The Pipkin-Rivlin method for determining the generators of a polynomial represen-
tation of a symmetric isotropic second-order tensor-valued function is modified. Gener-
ators of an anisotropic and orthotropic symmetric second-order temsor-valued function
are thus shown as dependent on a finite number of symmetric second-order tensors. The
obtained results coincide with those arrived at by Boehler, Next, irreducible invariants
of anisotropic scalar functions, depending on a single symmetric second-order tensor are
found. Types of anisotropy are considered in which the material symmetry group is de-
scribed by means of vectors and symmetric second-order tensors. The anisotropic scalar
functions derived can be used to construct the constitutive equations for nonlinear elas-
ticity of Green’s material as well as potentials and yield conditions in plasticity. As an
example, the equations are derived for a material reinforced with two orthogonal families
of bars.

1. INTRODUCTION

The theory of tensor functions together with the theorems on their repre-
sentations have been recognized to be an efficient mathematical tool for the
formulation of constitutive relationships to describe an arbitrary behaviour
of a continuum. This approach is found to ensure both the desirable ana-
lytical clarity and the required generality of the equations in question. It
also allows to account in a straightforward manner for the invariance re-
quirements of the principle of isotropy of space and the material symmetries
as well as additional internal constraints such as inextensibility in certain
directions, plane states and so on. Construction of a representation of a
constitutive relationship consists in the determination of the types and the
number of tensor generators as well as of the invariants of the polynomial
or functional basis. The polynomial basis is termed irreducible if none of
its elements can be expressed in terms of a polynomial dépending on the
remaining invariants. PIPKIN and WINEMAN [8, 19] proved that the as-
sumption of a polynomial type of a representation is not essential. Thus the

{1)Paper presented at VIT-th French-Polish Symposium "Recent Trends in Mechanics of Elasto-
Plastic Materials”, Radziejowice, 2-7.07.1990.
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necessity arises to determine, for given arguments, an irreducible functional
basis whose set of invariants is in turn irreducible, provided any other in-
variant of these arguments can be expressed as an arbitrary scalar function
of the invariants of the basis. The generator is said to be irreducible if it
cannot be expressed as a linear combination of other generators, the coefli-
cients being: polynomial functions of polynomial basis invariants in the case
of polynomial representation, or arbitrary functions of the functional basis
in the general case.

In the paper two types of nonpolynomial representations of anisotropic
tensor functions will be considered: a scalar function and a syminetric
second-order tensor-valued function. The three-dimensional Euclidean space
is assumed as a convenient frame of reference. Among many types of ma-
terial anisotropy there are such whose material symmetry group is charac-
terized by unit vectors and symmetric second-order tensors. Classification
of those groups, together with the corresponding sets of parametric tensors
is given by I-Su1n Liv [6]. Complete list of parametric tensors for all classes
of crystals is shown by SEpov and LokHIN [7, 11},

Let g denote a group of material symmetry

(1.1) 9={Q€G:Qe, =,QM, Q" =M,},

p=1,...,n, r=1,...,m,
where Q is an orthogonal tensor, QQT = QTQ = I, I stands for unit
tensor, e, are unit vectors, M, denote symmetric second-order tensors, G

is subgroup of a full orthogonal group O of all rotations and reflections.
Representations of scalar function

(1.2) | t=f(Ay)

and a symmetric second-order tensor-valued function

(1.3) T = F(Ay),

where Ay, k = 1,2,...,a denote symmetric second-order tensors, are sought
such that, for VQ& g, the following relations be satisfied:

(1.4) : t= f(QA,QT),

(1.5) QTQ" = F(QA,Q").

Such a dependence of the functions (1.2), (1.3) on the parametric tensors is
aimed at that the relationships (1.4), (1.5) hold true for ¥ Q€ O. Then the
functions sought are isotropic functions with respect to arguments A; and
parametric tensors as well. Isotropy of thus constructed functions within the
group g can be found in [6]. For the general case of arbitrary functional re-
lationships RycHLEWSKI [10] proved that it is always possible to select such
parameters that the constitutive relation be a universal rule conforming to
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the principle of isotropy of the physical space. In our case it is sufficient that
such e, and M, exist, defining g, which lead to the following relationships
being satisfied:

(1.6) VQ O, t=f(QAQ7,Qe,, QM Q")
(1.7) QTQ” = F(QA,QT, Qe,,QM,Q7)
and

vQ e G, Qe, = e, QM, QT = M,.

Determination of the representation of functions (1.2) and (1.3) consists
in finding the representation of a suitable isotropic scalar function and an
isotropic symmetric second-order tensor-valued function depending on the
arguments Ay, e,, M,. Since the parameters e,, M, are not variables, the
determined invariants of the functional basis and the sets of generators are,
according to the theorems given by Wana [16, 17, 18], SmITH [12, 13] and
BoOEHLER [1], generally reducible. That is why a direct analysis of invariants
and a representation of generators is always necessary, possibly in a chosen,
most simple, Cartesian frame of reference oriented with the body considered.
Tt is perfectly reasonable since the physical space is a Euclidean one for which
all the considerations can be made in the Cartesian coordinates. Reduction
of invariants and, in particular, generators, in the case of nonpolynomial
anisotropic tensor functions is usually very cumbersome and not infrequently
too complicated to be performed. '

2. GENERATORS FOR ANISOTROPIC AND ORTHOTROPIC SYMMETRIC™
SECOND-ORDER TENSOR-VALUED FUNCTION

Irreducible nonpolynomial representations of the functions (1.2} and (1.3)
for the cases of general anisotropy, orthotropy and one of the types of trans-
verse isotropy are given by BOEHLER in [3, 4, 5]. In what follows a different,
simpler way will be shown to obtain the generators of the function (1.3) for
the cases of anisotropy and orthotropy. The obtained coincidence of results
is by no means incidental; the proposed method can be employed in all those
anisotropies whose material symmetry groups are finite ones.

Following BOEHLER [3, 5], two corollaries can be formulated as below:

2.1. CoroLLARY 1

In the three-dimensional space a complete and irreducible representation
of an arbitrary anisotropic scalar function (1.4) has the form

(2.1) 1= (p(tl‘Mn Ap, trMaog Ap trMaz Ay, trMi2 Ay, tI‘M13Ak,tI‘I\/IQ3Ak)
= (P(lAk )’
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where M;;=e;Qe;, 1,7 = 1,2,3, ttMi; A, = trMj;Ag. For example, the
representations of tensors My and M2 are as follows

100 010
Myz=|00 0|, Mpg=|[000
000 00 0

2.2. COROLLARY 2

In the three-dimensional space a complete and irreducible representation
of an arbitrary orthotropic scalar function (1.4) has the form

(2.2) t=19(a, M) i=1,2,3, M;; = e; ®e; (no summation),

where Iz, \1;; denote all the invariants combined from one, two or three
variable arguments Ay as shown in Table 1.

Table 1. Functional basis for orthotrepic scalar function.

Variables Invariants
1 2
trMu A, trMa A2 tTA?
A trMaz A, tl‘Mngz,

tIMagA, tIMsa A2 ,

trMuArAg, trAlA,, trA; A2

AjAl trMao A Az,
trMas Ay As,
A1,A2,Aa tIAlAQ Aj

In order to establish an anisotropic nonpolynomial representation of the
second-order tensor-valued function (1.3), an auxiliary anisotropic scalar
function « is first assumed,

(2.3)  a=trCT,

which remains linear with respect to the symmetric second-order tensor C.
T is a function sought. Assume that

(2.4) a:cph(lAk) l%;, h=1,...,6,

where the dummy, or summation, index h = 1,...,6, % stand for linear
invariants of the tensor C determined in accordance with CoROLLARY 1.
The function T to be found will be calculated from the formula

O oIk
(2.5) T=7c" en(lay) 58‘ = pn G
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We finally obtain

(2.6) T = o1 Mn + ¢2Maz + p3Maz + @a(Mi2 + M)

+ips{Mys + Map) + @e{Mas + Maz).
Remember that ¢ = @p(la, )-
Similarly, to determine a nonpolynomial representation of an orthotropic
symmetric second-order tensor-valued function T, see Eq. (1.3), an auxiliary
orthotropic scalar function # is again assumed,

(2.7) B=tCT,
which stays linear with respect to C as before. Its form is the following:

(2.8) B = Tl)y(lAk,Mii) I%J.M.'."

where the summation index g = 1,...,s and I, 5, = are linear invariants of
1 [1]

the tensor C determined according to COROLLARY 2. These invariants are
given in Table 2.

s ' H g
Table 2. Linear invariants IC,M,»,-'

Variables Invariants

C tI‘MnC, tIMzzC, trM3:C

C, A My CA, trMoCA, trMasCA, t1CA*?

C, A, Ay trCA1 A2

The orthotropic function T can be found from the formula

/.

MG ..
(2.9) T= 8C Yolla, M) M PG

ac

Simple calculations lead to the set of generators G¥ which are shown in
Table 3.

The above generators appear to coincide with those given by BOEHLER
in 3, 5].

It is worth noting that the application of the method put forward above,
which can be looked upon as a certain generalization of the Pipkin- Rivlin
method {9] valid for polynomial representations of isotropic symmetric sec-
ond-order tensor-valued functions, leads for transverse isotropy to the results
different from those given in [3, 5.



246 J. JEMIOLO and M. KWIECINSKI

Table 3. Set of generators.

Variables Generators
- Mz, M2z, Maa
Mui A + AMy, A®
A Mz A + AMa
Maz A + AMas
Aa, As AAr 4+ AxA,

3. FUNCTIONAL BASIS FOR CERTAIN ANISOTROPIC SCALAR FUNCTIONS

We shall now deal with an irreducible basis of invariants for a scalar
function (1.6). The considerations will be confined to one argument A only.
Theorems of WANG [17] and BoEHLER [5] enable the invariants to be formed
for particular material symmetry groups and their number to be reduced.
Relevant results are shown in Table 4.

In the first column the names of crystallographic systems or type of
anisotropy are given whereas the second column provides the names of ge-
ometric symmetry classes within each system together with suitable para-
metric tensors (after [6]). The third column supplies the minimal numbers
of irreducible invariants. Their determination consists in the reduction of
invariants obtained from appropriate theorems for isotropic functions [17,
5]. Let us demonstrate that, taking for example sphenocidal class of mono-
clinic system (Table 4, case 4b), there are only 8 invariants, out of 34, that
constitute an irreducible set.

Proof. Inthe Cartesian frame of reference the following relationships
are known to hold good:

e-ep =1, e -Mue =e -Me =0, trNZI=-2
trMaye = trM2, = trtM3, = 1, ttMg,N? = trtM3,N? = -1,
(3.1) trM2,N¥ M, Ny = 0,
e; - N7e; = Mye; - Nje; = Mi,e; - Nyey = M, Nje; - Niey = 0,
Ae; - Mase; = Ae; - Nyje; = A%e; - Njey = A?Nje; - Nye; = 0.

This means that the above invariants are reducible and, in addition,
since MZ, = My, the invariants trAM%;, trA?M3Z, trAM%;N; are also
redundant.

The irreducible set of invariants is:
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Table 4. Sets of irreducible invariants.

Type of Geometric
anisotropy, | symmetry
crystallo- class, Irreducible invariants
graphic parametric
system tensors
1 2 3
1) a}
Transverse | e, Nj = trA, trA?, 1A%, e1.Aey,
isotropy ex®es - es® e e1-Ale, ‘trAszAN]
b) trd, trA? trA°,
e ey-Aey, e1 A% ey
<) trA, trAZ trA® trANY,
N, trA’N3, trtA’NIAN,
Bl
d) trA, trA®, trA?, trAMy,,
Mii = e1®e trA?Myq
2) Mz = ex®@ey, trA, A% trA®, trtAMazg, ttAMa,,
orthotropy | Mas = ea®es trAMas, trA?Mas
3) a} predial
triclinic class, e, ez, @3 COROLLARY 1 {3, 4]
system b) pinacoidal
class, N3, Np = trA, trAN?, trANZ, trAN; N,,
=e;Qes - ea® e | irANZN,, trAN,; N2
4) a) domatic trA, ez Aey, ex- Aey,
monoclinic | class, es, €3 es-Ae;, es-Aes, €2-Aeg,ex-Ae;
system b) sphenoidal trA° e;- Aey, e;-Ae;, trAM,,,
class, ey, trAzMgg, trAZNEANl, trAMa Ny,
Mazz, N trA*M,, N,y
c) prismatic trA, trA%, trA°, ttAM;,, trA"M,,,
class, Mzz, N] tI‘A.NQ, tIAQNgAN]_, tIA2 M22N1
5) a) pyramidal trA, trAZ, trA% trAM;;, trAM;s,
rhombic class, e;, M, e1- Aey, e Aley
system b) dipyramidal
class as in row 2)
e;-Ae; = An, trAMay = Ay, trAMpN; = Ay,
e - A’e; = A} + AL+ AL = An,
(32) trAZMy; = Al + Ad, + ALy = Agg,
trAMgeN; = A 4+ AL + A2, = Az,
tI‘AZN%ANl = A23(A22 - A33)
+  (A12A1s + A2 Ags + Az3Asz)(Aza — Aga),
trtA® = A}, + A, + Ads + 34n (4], + AD)

247

+  3Ag2(A3; + ALy) + 3Asa(Ad; + As) + 641243 As3.

The remaining invariants are reducible since they can be expressed in terms
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of Eq. (3.2). These are:
trA = ey - Aey + trAMag + trAMaz Ny,
tIAN%Mgle = —trAMy Ny,

(3.3) trA? = e; - AZe; + trAZMy, + trA?My, Ny,
trAN% = —(trAMgj; + trAM,;N,),
trA?N? = —(trA?Mg + ttA’MnNy).

The obtained nonpolynomial representations of anisotropic scalar func-
tions can be used in the formulation of, for instance, yield criteria for
anisotropic continua or elastic potentials as bases for the derivations of con-
stitutive equations for nonlinearly elastic Green’s materials exhibiting the
material symmetry groups (1.1). Then the variable A should be identified
with the symmetric siress or strain tensors.

4. EXAMPLE

As a simple example of using one of the results given in Table 4, a pro-
cedure will be shown to obtain the constitutive equations for nonlinear elas-
ticity and the yield criterion for an isotropic matrix reinforced with two
orthogonal straight families of bars, each having different mechanical prop-
erties.

4.1. Nonlinear elasticity

Let versors ey and eg coincide with the directions of reinforcement. The
elastic potential is assumed to exist and have the form

(41) W = f(£9M227M33)?

where ¢ is the small strain tensor. Function (4.1) is, according to row 2 of
Table 4, dependent on seven invariants Ix, k = 1,...,7. If the two families
of bars are nonorthogonal then the elastic potential is determined in row 4a,
Table 4. The stress tensor ¢ can be derived from the rule

L OW(L) _ W dL,

4.2 = .
(4.2) e 8, o
On finding that 7
3[1 612 . 0l a.2
2% -0 @TE T
al a1,
(43) 6—: = ey®ey, -5?5'382®882+828®32,
ol oI,
e - ez® ey, gzes®583+638®83a
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the nonlinear elasticity law assumes the form

(4.4) &= atl + 2a8 + 30!382 + qqer ® eg
+as(e; ® £e2 + e2e ® e3) + ages @ ez + as{ez ® ge; + ese ® e3),
where a7 = (L), k,i=1,...,7.
In addition, the following property must hold good:
0oy _ da
on, — oL’

To linearize Eqs. {4.4) with respect to &, we have to assume: ag = 0; as, as,
a7 as constants; o), oy, g as linear polynomials in the invariants Iy, Iy, .
Assuming the existence of neutral state € = 0 = ¢ = 0, we get

a1 = MTE+ aye; - geq + ages - €e3
az = M, az = 0,

(4.5) g = oq1tre + be; - gey + boes - £eg,
a; = ¢, a7 = ¢,
g = ustre + baeg - ey + baey - £ea,

where A, p are Lamé’s constants for the matrix, a1, az,b1,b2,b3,¢1,¢0 are
parameters to be determined from suitably planned experiments.

Equation (4.4), linearized with the help of Egs. (4.5), turns out to be
_ identical with the physical relationships obtained by SPENCER [14] for the
same type of composite material.

4.2. Perfect plasticity

In the scope of the ideal plasticity theory it has recently been realized that
the yield criterion can be arrived at by insisting that the relation between the
stress and strain rate tensors must be zero-degree homogeneous with respect
to the strain rates. Thus the yield criferion appears to be an additional scalar
relationship for the stress invariants. In our case the seven invariants of the
stress tensors are involved, namely

(4.6) f(Je) =0, k=1,...,7,

where J, are determined in row 2, Table 4.

Assuming quadratic form of the invariants and replacing the trace of
the second power of stress tensor by the corresponding expression for stress
deviator S, S = o — 1(iro}I, we obtain:
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(4.7) t182 + ¢ trie + cz(ez - gey)? + caes 0'83)2

Fegey - Gles + cses - 0res + cotra(ey - 0ey) + crtra(es - ges)
+eg(ez - oey)(es - gea) ~ 2% = 0,

where ¢z, k = 1,...,8 are material constants, k is the yield point in shear of
the matrix. When the hydrostatic pressure is incapable of making the mate-
rial yield plastically (¢, = cg = ¢7 = 0), we get the generalization of the well
known Huber - Mises yield criterion for the considered composite material.
The classical Huber - Mises yield criterion clearly results in insisting that all
the c¢}-s vanish simultaneously.

5. APPENDIX

In his paper [6] I-Su1H LIv used two parametric tensors Mg and Mas
to determine orthotropic tensor-valued functions, whereas BOEHLER in his
papers [2,3,4,5] employed additionally a parametric tensor Miy;1. The former
anthor maintains that the two tensors he uses completely determine an
orthotropic group of material symmetry and goes on to say that the tensors
used by Boehler do not define this group in an appropriate manner. TELEGA
in his paper [15] writes that I-SuIH Liu’s statement is not well grounded
but he supplies no examples of orthotropic functions whose sets of invariants
and/or generators are not equivalent.

In what follows it will be shown that for the functions (1.6} and (1.7)
considered in this paper, dependent upon a finite number of symmetric
second-order tensors, the assumption of the parametric tensors as done by
I-Sumn Liv in [6) leads to the equivalent set of invariants and generators in
accordance with BOEHLER'S results [2, 3, 4, 5].

With the use of the theorem on the isotropic scalar function, given in
[1, 3, 17, 18], of arguments Ay, &k = 1,...,8,Mj3, Mas, a certain set of
tensorial invariants can be obtained in which the number of irreducible ones
amounts only to 7a -+ 5(3) + (). This appears to be a result of the following
simple relationships:

Mi = My, MyMpm =0, tMj=1, i=1,23, I,m=2,3,

Invatiants of the type trA?AZ (trA 2A2 = trAZAR) k,m = 1,...,4a, the
number of which is (%), prove to be reducible. This fact can be readily
acknowledged by using the manner of reduction given by BOEHLER in {2].
Final results are shown in Table 5, column 2. As to the generators of a
symmetric second-order tensor-valued function, let us employ, similarly as
in Egs. (2.7) and (2.8), an auxiliary orthotropic function together with the
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Table 5. Functional basis and generators for orthotropy with parametric
tenasors of I-Sum Liv [6].

Variables Invariants Generators
1 2 3
- I, Mzz, Msa
irA, trA? A% A, A?
A irMag, tIMngz, Moy A 4 AMs,
teMaa A, trMaaAﬂ, Mas A + AM;,

trhihy, trAZA,, trA AL, | AvAs + AqA,
Ay Ay, irMas Ay Ao,
ir MasAj A,

Ay, Al Al | trA A Ay -

formula (2.9) and take suitable invariants from Table 5, column 2. The
resulting generators are given in column 3 of the Table.

In turns out that the irreducible set of invariants for an orthotropic scalar
function (Table 5, column 2) is equivalent to the set shown in Table 1. This
is due to the following relationships:

trA = tI’MHA + ti‘MggA -+ tI'M33A,
trA? = tIM11A2 + tI‘MggAz + tI‘M33A2,
trA1As = trMp1AAs Mo AL Ay + triMaz A1 A,

Moreover, these two sets have the same number of invariants.

Similarly, the set of generators for a symmetric orthotropic second-order
tensor-valued function, given in Table 5, column 3, is equivalent to the set
shown in Table 3. This is, in turn, due to simple linear relationships

I = My + ll\/Izz + Mas,
24 My A+ AMy 4+ Mo A + AMaoy + Mag A + AMay .

The obtained representations of the considered orthotropic functions are
clearly equivalent.
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STRESZCZENIE

NIEREDUKOWALNA LICZBA NIEZMIENNIKOW I GENERATOROW W
ROWNANIACH KONSTYTUTYWNYCH

Zmodyfikowano sposéb Pipkina-Rivlina wyznaczenia generatoréw wielomianowej re-
prezentacji symetrycznej izotropowej funkcji tensorowej drugiego rzedu. Skonstruowano
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ta, metoda, generatory anizotropowej i ortotropowej symetrycznej funkcji tensorowej dru-
giego rzedu, zaleinej od skoficzonej liczby symetrycznych tensoréw drugiego rzedu. Uzy-
skano identyczne wyniki jak w pracach Boehlera. Wysznaczono takie nieredukowalne nie-
zmienniki anizotropowych funkcji skalarnych, zaleinych od jednego symetrycunego tensora
drugiego rzedu. Rozpatrzono te rodzaje anizotropii, ktérych grupa symetrii materialne)
opisana jest wektorami i symetrycznymi tensorami drugiego rzedun, Wyprowadzone ani-
zotropowe funkcje skalarne moga byé wykorzystane do budowy réwnai konstytutywnych
nieliniowej spresystodci materialéw Greena oraz potencjaléw i warunkéw plastycznosei.
Przykladowo pokazano sposéb otrzymania tych réwnafi dla materialu zbrojonego dwiema
‘rodzinami ortogonalnych wickien.

PEBIOME

HEHPMBA,HHMOE YHUCIO MHBAPMAHTOB ¥ TEHEPATOPOB B
OTPEIEAAIOHIMXY YPABHEHHUAX

OnuceiBaeTca MonrduKanua MeTona ITnnkuaa-PHBIRHA HAX0XKACH U TeHEPATOPOB
NOMHOMEAILEOTO NpeNcTABJEHUA cHMMeTpHUecKol u3oTponHoll Tensopuod ¢yHx-
1M ¥ BTOPOro panra. MeTo HCIONBb3YeTC [UIA NOCTPOCHKA MEHEPATOPOR ARNSOTPONHOM
H opToTponsolk cHMMeTpRUECKNH TeH30PHHX QYHKOHHK BTOPOTO PAHTA, OT KOHEYHOTO
YUCNA CHMMETPHYHLIX TEHIOPHEIX OepeMeHHLIX TOro ke panra. llomyuennbie pe-
3YBLTATHI TOUHO COBHAAAIOT ¢ HPHBeAeHHLIMM b paboTax Benepa. Haiimensl Takoie He-
NPHBAAKMLIE HHBADPHAHTEI 8EM30TPONAKIX CKAIaDHBIX $YHKOHH OAHOTO CHMMETPHY-
HOro TEeH30pa BTOPOT0 pAHra. PaccMOTpeHH Te BMALI AHH3OTPONMH, AAA KOTOPEIX
rpynna MaTepUanbEOll CHMMMETPH ONMHCHLIBAETCH BEKTOPAMH H CHMMeTPHMHBIMH TeH-
sopami BrOporo panra. [loiyueHHbie ARU30TPONHBIE CKANADHEIE QYHKUHK MOrYT
HCNOAB3OBATLECH AAA OOCTPOEHMS ONPENENAONIMX YpaBHeH U HeAnHeHOM ynpyrocTn
MaTeprasos Thna I'pHHA, & TAKIKE MAACTHYECKHMX MOTEHNHANOB H YCAOBRH Teykyde-
¢TH. B KauecTBe NpUMepa MOKA3AH NYTh NOAYYEeHHI STHX YPABAEHHH OJA MATepHATA,
APMHPOBAHHOrO ABYMA ceMelcTRAMHA OPTOTCHANLHLIX BOMOKOH.
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