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VIBRATION OF MULTI-CHAMBER SHELL STRUCTURES WITH
DISCONTINUOQUSLY VARIABLE CROSS-SECTIONS

JDREWEKO and MSPERSKI (GDAI"{SK)

The paper presents the general integral of a sei of differential equaticns describing
yibrations of a multichamber prismatic shell made of a linear-elastic orthotropic material.
The solution is used to construct the equations of forced vibrations of a structure consisting
of a series of interconnected shells of various cross-sections. Displacement amplitudes of
such shell structures subject to stationary vibrations have been found, together with the
esonance frequencies and the principal vibration modes.

1. INTRODUCTION

The problem of creating a simple mathematical model allowing to de-
scribe the motion of complex engineering siructure, is being extensively
. explored. Due to simplicity of calculations and clear description, the bar
“models are in common use. The possibility of obtaining the exact solution
 of differential equations of motion {or equilibrium) of a given structure is
. one the merits of these models. However, the results obtained differ from
© the real ones because the model cross-seciions are assumed to be rigid, while
~ in practice they are usually deformed.

Following the development of computer technology, discrete models with
- many degrees of freedom have been developed leading to application of the
finite element method. In spite of the fact that this method made it poss-
ible to solve many practical, problems, it has many disadvantages such as,
for example, long time of calculations and the necessity of using powerful
computers. Application of the finite element method usually leads to ap-
proximate solutions. In the case of vibrations, description of the phenomena,
is not so clear as in the case of the bar models.

The disadvantages of the bar models and the discrete models of many
degrees of freedom resulted in developing other calculation models, more
accurate than the bar models, less time-consuming and more clear than
the discrete models of many degrees of freedom. One of these models is a
frame-shell mode! proposed by V.Z. Viasov [1] for the static calculations
of thin-walled structures of closed cross-sections. Practical advantages of
the Vlasov theory decided on its application to the static calculations of
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shell structures of complicated multicircuit cross-sections [2, 3], and to the
description of vibrations [4].

Construction of a possibly accurate and effective method of integration
of the systems of differential equations which describe the motion or equi-
librium of a structure is one of the basic problems connected with the appli-
cations of Vlasov’s theory. The step methods [2, 3, 4] which have been used
thus far proved to be misleading when applied to the structures of more
complex forms and, moreover, the methods are approximate like the finite
element methods.

This paper presents an analytical solution of the system of differential
equations written in the matrix form and describing steady harmonic vi-
brations of a multi-chamber prismatic shell. Determination of this solution
made it possible to extend the practical applications of the frame-shell the-
ory to the complex structures of discontinuously (jump-like} variable cross-
sections.

2. INTEGRATION OF EQUATIONS OF MOTION

The basic feature of the Viasov theory consists in projecting the displace-
ment vector of a point of the middle surface of a shell onto three directions:
binormal, tangent and normal to the cross-section contour, and in writing
them in the form of polynomials of two variables:

N R R
(2.1) w=3 v, v=y %, w=y Xk,
k=1

=1 k=1

where @;, %k, Xk , called the shape functions, are assumed to be given, while
the functions v;, ¥ of position z and time ?, called the generalized Vlasov
coordinates, are to be determined. Such a description, with appropriately
selected shape functions, takes into account the effects of deformation of the
cross-sections of a structure [4]. N is the number of the coordinates de-
scribing the longitudinal displacements, R is the number of the coordinates
defining the displacements in the transverse directions.

The equation of amplitudes of the Vlasov shell structure, made of linear-
elastic material and performing steady forced harmonic vibrations, is as
follows [4, p.473}:

(2.2) By"+Cy'+Gy=g,

where y is a column matrix of the amplitudes of the generalized displace-
ments v;, Y, g is a column matrix of the generalized excitation forces,

PO 0 H G, 0
B: C: ) G:
[OR]’ KB] UGQ]
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are square matrices of real constants elements depending on the geometry of
: the cross-sections, the distribution of masses and the material characteristics
. of the structure,

Gi=w?'U-8, Gy = w!Z -E

- Symbol w denotes the angular frequency of vibrations; the primes denote
- derivatives with respect to the variable z. The matrices B and G are sym-
metrical, while the matrix C is anti-symmetric. It is easily seen that for
w = 0 Equation (2.2) describes the state of equilibrium.

By substituting y’ = z, this equation can be presented in a form of the
system of the first order differential equations,

(2.3) x'=Ax+d,

where
x:{Y?z}T ’ d:{oaf}Ts f,_—_B'"lg

are the column matrices, and

0 0 I H
0 0 0 I
A=1p 0o 0 Q
0 R Qu ©

is a square matrix of dimension n = 2(N + R), (twice the number of the
generalized Vlasov coordinates), whﬂe I is a unit matrix, P; = -P71Gq,
Ri = —R1G;, Q) = -R7K, Q; = P 'H. The elements of matrix A
are continuous and, in the case of a prlsmatic shell, they are constant. A
homogeneous system of the differential equations corresponding to Eq. (2.3)

(2.4) . x' = Ax
is equivalent to the system [6, p. 130]:

X
(2.8) — = AX,
where
(2.6) X =7,

is called the integral matrix of differential equation (2.4). The matrix expo-
nential function on the right-hand side of Eq. (2.6) is defined as follows [5,
p.105)

o Ak
_ A A
(2.7) exp A=e _12 R
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The determinant of the integral matrix (2.6), according to {6, p.149),
equals

det X = det €% = THA% = |

because in our case, the trace of the matrix A is

(2.8) TrA =Y Au=0.

i=1

From Eq.(2.8) it is evident that the sum of the roots of the characteristic
equation (eigenvalues) of matrix A is equal to zero,

n

(2.9) E A =0,

=1

Among many methods of calculation of the eigenvalues and the eigen-
vectors of matrices, the iterative method of Francis, called the QR method"
[7, p. 369] proves to be the most accurate and the fastest one. Application
of this method is connected with the necessity of reducing the maftrix A
to the Hessenberg form {7, p. 367). Relation (2.9) enables us to control
of the accuracy of solution. It has been ascertained that real and complex
numbers, and also multiple roots, can appear among the eigenvalues of the
matrix A. The investigated system has always the eigenvalues [A| < 1. The
root A = 0 appears only when the matrices Gy and Gy are singular, what
happens when w = 0.

The integral matrix of the Equation (2.5) may then be presented in the
form [6, p. 151]

(2.10) X =QD,

where @ is a non-singular square matrix of constant elements, selected in
such a way, that

(2.11) Q7' AQ = gdiag [T (M) Fom ()]

and where
e i), i=1,2,...,m

are the elementary Jordan matrices {9, p. 357]; pi — the dimension of a
matrix, m — the number of the elementary divisors of the matrix A.

Substituting (2.10) into (2.5) and taking into account the relation (2.11)
we obtain the equation

dD .
(212) *'E; =g dlag [jpl(Al), ...,me(Am)] D.
In this way, the system of n differential equations (2.5) has been separated
into m groups,
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did,;
dz

In each group of the equations the diagonal elements of the matrices J,;(A;)
" are equal to the corresponding characteristic values A;, the near-diagonal
- elements over the main diagonal are equal to 1, and all the remaining ele-
. ments are equal to 0. The integral matrix of the Fquation (2.12) has then
© the form

(2.13) = J,i(A)D,;, i=1,2,..,m.

(2.14) D = q diag e‘IPI (A])Z, .",erm(Am)z] y
where [6, p. 151}

i 2lpi=1) 1

1 =z (—Tpf“l)l
zpi 2
Ti00)e _ Nz 1 (pz 2)!
(2.15) Dyi=e pildi)z = g
0 .
i 1 |

In order to comstruct the matrix Q defined by Eq.(2.11) it is necessary
to solve the systems of equations

(2.16) (A-xT)ql) =0,

(A-2Dd) = ¢\,

(2.17) . ) )
§=2pi, i=1,.,m,

() @ ,

in which q;”’ is the eigenvector corresponding to the eigenvalue A;, q;

the main vectors corresponding to this eigenvalue. Vectors q( ) . qf”), bemg
the columns of the matrix Q, constitute the basis of the space C™ for the
matrix A. ‘

The problem of solving Eq.(2.4) consists then in calculation of the eigen-
values, the eigenvectors, the elementary divisors [8, p. 528] and the principal
vectors of the matrix A. The cage-like structure of this matrix makes the
task considerably easier. Once the eigenvalues, eigenvectors and the princi-
pal vectors of the matrix A are known, one can construct the matrices D
and Q according to the formulas (2.14) - (2.17). The following function is
the solution of the differential equation (2.4):

(2.18) x = QDec,
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where ¢ denotes a vector of arbitrary constants. In our case it is the in-
tegration constants vector following from the boundary conditions. For a
prismatic shell structure, the boundary conditions are separated and written
in the form of a system of first-order differential equations [4, p. 470]

(2.19) Mpx(z;)=pr, Mpx(zp)=pr,
where My,, Mp are the rectangular matrices of constant elements, and

(2'20) P= {Pls"',pNa q1,-- QR}T

is the vector of amplitudes of the generalized forces {4, p.469] acting on the
end cross-section of the shell. Indices L and P correspond to the left (z = L)
or right-hand (z = P) boundary of the structure. The following system of
algebraic equations is obtained from the relations (2.19), (2.18)

(2 [nranin] © = (o)

enabling the calculation of the integration constants e.

If the integration constants are known, one can calculate the amplitudes
of generalized displacements (2.18) as well as their derivatives at a cross-
section of an arbitrary coordinate z, and then the real displacements (2.1)
and the stresses [4, p. 363] at arbitrarily chosen points of the structure.

3. DESCRIPTION OF VIBRATIONS OF A MULTI-SHELL STRUCTURE

Once the solution of a single shell is known, it becomes possible to de-
scribe the motion of a system of shells of different cross-sections joined to-
gether. The motion of every shell representing a segment of the structure,
is described by an individual set of the Vlasov generalized coordinates and,
consequently, by a separate system of differential equations of different or-
ders. The problem then consists in formulation of the boundary conditions,
expressing relations among the generalized coordinates on the contact sur-
faces between the shells.

The natural boundary conditions (2.19) for the terminal cross-section of
a given shell can be wriiten in the following form: :

(3.1) Mx = p +p*,

where p is the vector of amplitudes of the applied generalized forces acting
on this cross-section, while p* is the vector of the generalized elastic forces
exerted by the neighbouring shell. Presenting the elastic forces in the form
of a distributed load acting on the cross-section contour [4, p. 463]

. f Gu* ou* . [Ou* Bt
92 = x [ * 2T = *
(3.2) b E1(32+V2155)’ 9s G(Bs+6‘z)’
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where
N R*

(3.3) =3 vt o= SO
=1 =1

denote, according to Eq.(2.1), the binormal and tangent displacements of
- the points of the contour of the neighbouring shell, we can calculate the
generalized elastic forces {4, p. 469]

(34) p= fqbgo,-ds y Q= f(qawkds , i=1,2,.,N, k=12,..,R.
3 s

On the basis of Eqs.(3.1) — (3.4) we obtain the relation between the
generalized coordinates of the contact surface of two shells,

(3.5) Mx = Nx*+p

in which x* denote the vector of the generalized Vlasov coordinates describ-
ing the motion of the neighbouring shell; here

_[Pp 0 0 o
N=|lo r @ 0]

is the rectangular matrix of dimension (N + ) x 2(V + R) and of constant
elements

%=£ﬂw%a, szf@mwa,
S

* ar a(P* % oy 3@’?
ij—gGT/Jk—agldsy n:S/E‘Pi B3 ds .

The asterisks indicate the material characteristics, the shape functions and
the generalized coordinates of the neighbouring shell. Integration is ex-
tended over the part of the contour common for both the shells.

The rule of passage across the interface between two shells (segments of
the structure) with the numbers §, 7 + 1, may be written in the following

form:

(3.6) Mpjxp; = Npj+1xpi41 + Ppj

and

(3.7 Mri+1%pi1 = Np;jXp; + Prj1

where symbols P and L indicate the right- or the left-hand boundary of the
segment.

According to Eq.(2.18), the integral of the amplitude equation of the j-th
segment of the structure can be presented in the following form:
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(3.8) x;(2) = Xj(2)e;
where x; (z) is the column matrix of generalized coordinates and their deriva-
tives at the cross-section of coordinate z; X; = Q;D;(2) — the integral ma-
trix of the differential equation describing the motion of the j-th segment;
c; — the column matrix of the integration constants in the j-th segment
( =1,2,...M; M is the number of the segments of the structure).
Subst1tut1011 of the solution (3.8) into the boundary conditions (3.6), (3.7)
makes it possible to construct the system of linear equations determining
the integration constants c;

(3.9) E=A"'p,
where

- T

c = {01,62, weuy CM} ]
{P1L:P1Ps - PMP}T

o
ll

Miy1(0)

Mpi1(1) —=Nz2(1)

—Npi(1) Mp,(1)
Mpy(2) ~N_za(2)

A= —NPZ(Q) ML3(2) ’
MP3(3)
Mzn(N - 1)
i Mpn(N)
Mp;(k) = Mp;X;(z), Mp;(k) = Mp;X (2},
Npi(k) = Nz;Xj(zx), Np;(k) = Np;X;(z),

j=1,2,.,M, k=01,2.M,

zi. denotes the coordinate z at the right-hand boundary of the k-th segment
(k = 0 indicates the left-hand boundary of the first segment).

When the integration constants are known, it is possible to calculate the
amplitudes (3.8) of the generalized coordinates x;(z) at a cross-section of
an arbitrarily chosen coordinate 2, and then the real displacement (2.1), the
derivatives of dlsplacements W1th respect to the variable z, as well as the
normal and the tangential stresses at arbitrary cross- sectlons

If the frequency of the excitation forces is equal to one of the natural
frequencies of the structure, then the system of differential equations (2.2)
has no solution; the amplitudes of the generalized displacements become
infinitely large. At the frequencies of the applied forces close to the resonance
frequencies, the amplitude of the node lines of the structure assume the
form of the principal modes of vibrations [4]. Approximation of the results
of calculations with various frequencies w enables the determination of the
resonance frequencies and the corresponding principal modes of vibrations.
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4. EXAMPLES

The algorithm presented above was the basis for a computer program
enabling the automatic generation of the matrix equations of motion of the
particular segments, of the boundary conditions at the interfaces between
the segments and at the outer boundaries of the structure, and then en-
abling integration of the system of equations derived. The first order Viasov
functions [4, p. 473] have been used to express the displacements. The
calculations were carried out by a IBM/AT/XT microcomputer.

The constraints imposed on the motion of the cross-sections of the indi-
vidual segments of the structure may be described by means of the boundary
- conditions (2.19), (3.5), constituting the system of differential equations in
the matrix form. According to the support conditions and the types of joint
between the segments, these conditions may be formulated in many ways by
using the methods of the calculus of variations [4]. '

Let us consider the motion of a thin-walled structure with free ends
composed of three shell segments, to illustrate the influence of deforma-
bility of the cross-sections on the behaviour of the system during vibra-
tions. Dimensions of the particular segments are presented in the Fig.1.
- The structure is made of isotropic material with the modulus of elastic-
ity E = 2.1 X 105[M N/m?], shear modulus G' = 8.08 x 10* [M N/m?] and
~ density p = 0.0078[M Ns%/m1]. '

" 50 20 o
=
<3
& ™ S
- )
% 2 S e ?
0 10 10
FiG. 1.

Linear distribution of displacements between the nodes of the contour
is assumed, shape functions of the first kind being used.” The system of
differential equations (2.2} describing the vibrations of the first (and also
the third) segment is a system of the 16-th order (N = 4, R = 4), whereas
the order of the system of equations describing the vibrations of the middle
segment (N = 6, R = 5) is équal to 22,
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By imposing appropriate constraints on the node displacements and their
derivatives at the end cross-sections of the segments, several variants of the
boundary conditions {2.19), (3.5), corresponding to the following models of
structure were formulated:

I. The structure with non-stiffened boundaries with direct (non-stiffened)
joints of the segments,

IL. The structure, in which the end cross-sections are undeformable (they
move like rigid bodies), while the remaining cross-sections and the joints
between the segments are deformable.

III. The structure, in which the end cross-sections and the cross-sections
joining the segments are underformable in the transverse directions, but
they are subject to warping.

IV. The structure, in which the end cross-sections and the joint cross-
sections are undeformable (rigid partitions at the boundaries and at the
joints of the segments).

V. The structure with the undeformable partitions at the ends and at
the joints of the segments, in which the middle cross-sections of the first
two segments (dotted lines in the Fig.1) are additionally stiffened by rigid
partitions.

In order to demonstrate the differences between the presented frame-
shell theory and the commonly known bar theories, the natural frequencies
and the natural modes of the system have been determined, assuming the
following calculation models of the described structure.

VI. The system of thin-walled beams taking into account shear according
to the Timoshenko hypothesis;

VIL. The system of thin-walled Vlasov beams (with underformable pro-
jection of the cross-section on the transversal plane, neglecting the effect of
shear due to bending).

The results of calculations are shown in the Tables 1 and 2. In all the
cases the first natural frequency is equal to zero — therefore it is omitted in
the tables.

Table 1. Transversal vibrations in the vertical plane.

Models . Natural frequenci es[s"l]

2 3 4 B 6 T

LILIII | 52.48 | 129.03 | 222.20 | 294.57 380.85 469.20
IV,V 54.51 | 133.63 | 226.15 | 310.06 395.51 487.80
VI 55.16 | 134.44 | 221.40 ; 308.35 | 395.3%1 482.26
VI 78.59 | 236.21 { 471.86 | 732.69 { 1086.58 | 1514.60

According to the frame-shell theory, the cross-sections of the middle seg-
ment are deformed during transversal vibrations in the vertical plane. Adop-
tion of the calculation models (I, 11, IIT) allowing for such deformations leads
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to the determination of the sequence of the lowest natural frequencies (Ta-
ble 1) . Introduction of the partitions in the joints of the segments (model
IV and V) increases the natural frequencies of the system by 1.2% - 5.3%.

The frame-shell model with partitions at the end cross-sections and in the
joints of the segments (IV, V) leads, in the case of transversal vibrations,
to results close to those based on the Timoshenko model (VI); in case of
the first seven natural frequencies, the differences are not greater than 3%.
On the other hand, elimination of shear distortion in the motion equation
(model VIT) leads to results considerably different from those based on other
models, because at the small slenderness ratio of the beam structure (in this
case 1 : 5.3) the effect of shear distortion is not negligible.

Table 2. Transversal vibrations in the horizontal plane coupled with
torsional vibrations and with deformation of the cross-sections.

Natural Model Dominant
freq. [1/s] i 11 1T 1V V Vil form

2 35.11 — — | — T — — delormations
3 52.52 52.49 53.73 | 53.60+ .'53.70 75.74 bending
4 96.11 | -89.88 — — { — | deformations
5 ] 100.93 | 100.90 98.97 99,01 99,11 | 100.27 torsion
6 ©{ 125,70 | 125.37 | 125.46 | 128.79 | 128.87 | 220.31 bending -
7 -181.22 | 156.63 — — — -— deformations
8 200.89 | 196.94 | 224.55 | 22540 | 226.30 | 234.41 torsion
9 214.09 | 213.22 | 211.92 | 215.28 | 215.58 | 410.07 bending
10 237.62 | 217.80 — — — — deformations
11 291.32 | 289.19 — — — — |'deformations
12 300.79 | 299.98 | 299.80 | 301.95 | 302:35 | 666.00 bending
i3 314.24 | 311.01 | 310,00 | 308,02 | 309.99 | 321.60 torsion
14 369.87 | 361.84°' | 356,76 | 349.50 — — delormations
15 385.85 | 385.51-] 382.16 | 388.60 | 387.16 | 991.60 bending
16 407.72 | 407.70 | 416.20 | 416.40 | 414.92 | 418.52 torsion

In the equations based of the frame-shell theory, the effect of bending of
the examined structure in the horizontal plane is coupled with the effects of
the torsion and the deformation of cross-sections. Nevertheless, looking at
the principal modes of vibrations corresponding to the determined resonance
frequencies, main effects may be distinguished.

The results of calculations carried out with the aid of various models are
presented in the Table 2. The frame-shell models (I ~ V) and the Vlasov
model lead to similar results concerning the natural frequency series (5, 8,
13, 16) connected with torsion. The natural frequencies (3, 6, 9, 12, 15)
corresponding to bending, calculated by means of the frame-shell models,
differ considerably from the frequencies determined by means of the bar
model, according to which the effect of shear distortion in the equations of
motion of thin-walled bars is disregarded.
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In addition to the natural frequency series connected with classical bend-
ing and torsion of the structure, known from the bar theories, the frame-shell
theory disclosed an additional series (2, 4, 7, 10, 11, 14) corresponding to
various deformations of the cross-sections. Numerical values of these series
are small in the case of non-stiffened structure {model I), and they increase

when additional stiffenings are added to the cross-sections (the models
II - V).

P S S I Y SO [N UV R B |

o 20 40 &0 80 w0 20 M0 460 80

f1a. 2. Example of a multichamber thin-walled structure built from five segments:
a) the view, b) the cross-sections.

a5

U 1

Amplitudes of verfical displacements

F1q. 3. Principal modes of transversal vibrations of the structure, determired on the
basis of the frame-shell theory.

Let us discuss the results concerning forced vibrations of the structure
with free ends representing a simplified model of a hull of a ship (Fig.2), as
an example showing the practical applications of the frame-shell theory. The
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structure consists of five prismatic shell segments. Each segments is made of
orthotropic plates of various thicknesses and material characteristics. Fig.2b
shows the contours of cross-sections of these five segments.

A vertical harmonic force applied to the end part of the last segment,
acting in the plane of symmetry of the structure, produces transversal vi-
brations of the system, coupled with symmetrical deformations of the cross-
sections. The structure gets into resonance at the following frequencies of
the applied forces: wy = 0, wy = 14.01, w3 = 33.00, wy = 55.52, ws = 79.42,
we = 98.71,...., [s71], equal to the natural frequencies of the system. The
principal modes of vibration (Fig.3) known also, as far as the vertical dis-
~ placements ate concerned, from the beam theory, correspond to the deter-
mined resonance frequencies. The differences between the beam models and
the Vlasov frame-shell model consist in exhibiting, according to the latter
theory, the longitudinal deformations of the cross-sections. Deformations of
the end cross-sections of the consecutive segments of the structure, corre-
sponding to the third resonance frequency, are shown in Fig.4.

Poos 2t

Fici. 5. Structure response to the vertical harmonic excitation of frequency w =2 [3"1] .

|

— — ?
Pcos 50t

FiG. 6. Structure response to the vertical harmonic excitation of freqiiency w = 50 [3_1}.

Figures 5 and 6 show the responses of the structure to the excitation by
a vertical harmonic force of random frequencies. At low frequencies of
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vibrations (Fig.5) one can observe swinging of the entire structure which
moves as a rigid body, at the higher ones-the structure performs flexural
vibrations connected with the deformations of the cross-sections (Fig.6).
The horizontal harmonic force, acting at the lower part of the fourth
segment, produces flexural-torsional vibrations of the system, coupled with
longitudinal and transverse deformations (warping) of the cross-sections. In
this case, a new, infinite series of resonance frequencies has been obtained:
wi =0, wy = 10.25, w3 = 16.75, wi = 21.50, w; = 36.11, wg = 39.69,
Wi = 45,22, wi = 62.79, wh = 65.15, W], = 68.89, wi, = 79.62, w}; = 101.1,
Wiz = 103.33, wi, = 1327, wi; = 140.95, ..., s~ 1.

x177%h

ks
.-"T

W0 0 180

e

Amplitudes of displocements

<074

Amplitudes of displacements

Right- hand side

Fic. 8. Amplitudes of displacements of the upper nodal lines, caused by the horizontal
harmonic force, applied at the lower part of the fourth segment {z = 160 m),
penpendicularly to the axis of the structure, The displacements — vertical,

--- horizontal, - - - longitudinal.

Various principal modes of vibration correspond to each of the deter-
mined frequencies. Vibrations with the frequencies wj —wj are the two-node
vibrations (two points of the structure are immobile during vibrations), the
modes corresonding to frequencies wi — wj have 3 nodes, the modes cor-
responding to the frequencies w§ — w}, - 4 nodes, while the modes with
frequencies w3 — wis have 5 or 6 nodes. Figure 7 shows the transverse
and longitudinal deformations of the end cross-section of the third segment,
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corresponding to the first four modes of vibration.

The response of the structure to the excitation by a horizontal harmonic
force with the frequency w = 50 [s71], different from the resonance frequen-
cies, is a combination of the effects of bending in the horizontal plane, torsion
and deformation of the cross-sections. The amplitudes of deformations of
two upper nodal lines of the structure, caused by such an excitation, are
shown in Fig.8. Employing the computer program, the values of displace-
ments of all the elements of the structure along arbitrarily chosen nodal
lines or cross-sections appear on the monitor screen, The time needed for
solving the presented problem, including the automatic generation of the
motion equation matrices of the individual segments of the struciure and
integration of these equations on the IBM/AT microcomputer, amounts to 9
minutes. Ilowever, the attempts made to integrate the equations by means
of the step method did not succeed due to low accuracy of these methods.
The tests carried out on simpler examples (single segment structures with
cross-sections containing 4-12 nodes) showed that, in addition to a high ac-
curacy of the solution, the presented method of analytical integration of
differential equations considerably reduces the time of calculations, as com-
pared with that needed by the step method [2] consisting in expanding the
solutions into the series of Tchebycheff’s polynomials.

5. CoNCLUSIONS

The problem of numerical integration of the ordinary differential equa-
tions describing the motion or equilibrium of the system, is frequently en-
countered in engineering problems. In practice, in order to solve the equa-
tions system with a large number of unknowns, the multi-step methods [2, 3]
are usually applied; analytical methods are usually applied to the simplest
problems only. Determination of the general integral of the equation system
describing the harmonic vibrations and equilibrium of the Vlasov shell struc-
ture, was possible owing to specific properties of this set of equations. The
method of analytical integration of systems of ordinary differential equations
is known [6]. The novelty of the first part of the presented paper consists in
adopting the theory to_the computer calculations.

The method of analytical integration proved to be several times faster
and more accurate in practical applications than the approximate methods.
One of the basic advantages of this method is the possibility of permanent
control of accuracy of the obtained solution. Contrary to the approximate
methods, the analytical method does not require repeated integration of the
same equations system in the case of change of the boundary conditions.
The equation of motion of the Viasov shell structure is an equation of a
continuous system with the non-symmetrical stiffness matrix. The problem
of integration of this equation is more general than that concerning the
discrete systems with symmetrical matrices.
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Once the general integral of the motion {or equilibrium) equations of
a single shell is known, the equations describing the motion of the system
containing several Vlasov shell structures may be coupled with each other
through the boundary conditions; consequently, the analysis of dynamics
or statics of a complicated engineering structure may be carried out on a
- personal computer. The calculations performed on a similar computer by
~ means of the finite element method, necessitates the solution of a system
of equations with several thousand degrees of freedom what, at the present
' state of the technology, is practically impossible. On the other hand, appli-
© cation of more powerful computers may prove to be expensive and highly
~ time-CcOnsuINing.

REFERENCES

1. B.3. Baacos, Tonkoctenubie ynpyrue crepycu, TUPMIL, Mocksa 1959.

2. J. DrEwko, M. SPERSKI and J. WIECKOWSKIL, Application of Vlasov's hypothe-
ais to statical analysis of thin-walled profiles fin Polish], IV Konferencja, Metody
Komputerowe w Mechanice Konstrukcji, Referaty Ogélne, 11, 45-48, Koszalin 1979.

3. 7. GORECKI and J. RYBICKI, A new method of calculating siresses and displace-
menis in elastic bars, Enging. Trans,, 35, 4, 226-242, 1987.

4. M. SPERSKI, Application of the shape functiona to vibrational analysis of thin-walled
profiles [in Polish], Mech. Teor. Stos., 25, 3, 461-481, 1987.

5. W. ARNOLD, Ordinary differential equations {in Polish]), PWN, Warszawa 1975,

6. R. GUTOWSKI, Ordinary differential equations [in Polish], WN'T, Warszawa 1971,

7. W.H. Parss, B.P. FLANNERY, S.A. TEUKOLSKY and W.T. VEITERLING, Numer-
ical recipes, Cambridge University Press, 1986.

8, N.M. MATWIEJEW, Integration of ordinary differential equations [in Polish], PWN,
Warszawa 1982,

9. G. BIRKHOFF and S. MAC LANE, Modern algebra review, PWN, Warszawa 1963.

STRESZCZENIE

DRGANIA WIELOKOMOROWYCH KONSTRUKCII POWLOKOWYCH
O PRZEKROJACH ZMIENNYCH SKOKOWO

Zmnaleziono calke ogdlng ukladnu réwnan rézniczkowych opisujacych drgania wielokomo-
rowej, pryzmatycznej powloki zbudowanej z liniowo-sprezystego, ortotropowego materialu.
Opierajac sie na tym rozwiazaniu, sformulowano réwnania drgafi wymuszonych konstrukcji
zlozonej z szeregn polaczonych ze soba powlok o réinych przekrojach. Wyznaczono am-
plitudy przemieszczen konstrukcji podczas drgan ustalonych, czgstoéci rezonansowe oraz
gldwne postacie drgan.
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PE3IOME

KOJIEBAHUA MHOT'OKAMEPHBIX OBQJIOYHLIX CYICTEM CO
CKAYKOOBPA3HO NNEPEMEHHBIM CEYEHVEM

Ilony4en ofmuii wmuTerpan marTpuyHore ypaOHeHws AMNAHTYR TrapMOHHYECKHX
koneGaHnfl MHOrokamepHoi ofonoukn Braacopa, Ha ocuose sroro pemennsa Gninu
¢hopMYIHDOBAHKS! YPABHEHNS BLIHYAACHBEIX Konebauuit tnueitno-ynpyrod cueTeMRl
cocToALeH H3 GONBIIOro XOMHYECTEA MEOIOKAMEDHRIX cTepikHed — ofono4ex paanuy-
HHIX ceveHuit. Onpefened OTKAHK KOHCTPYKIHH HA BRIHYXKOeHHWE MAPMOHHYECKHMH
CHIAMH, coGCTBEEHEIE YACTOThl M OCHOBHLIE POpPMBI KoMeGarmii.
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