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NONLINEAR INTERACTION BETWEEN TWO SHEAR
WAVES IN ELASTIC MATERIAL

Z. WESOLOWSKI (WARSZAWA)

The investigations are based on the successive approximation method for the Maurnaghan’s
material. Two one-dimensional shear waves of arbitrary profiles propagate in the opposite
directions. The correction terms are calculated analytically. One numerical integration is
needed for the calculation of the interaction terms. The correction and the interaction terms
represent the longitudinal and the transverse waves. For the wave profile of the form exp{—z?)

the correction terms and interaction terms are calculated.

1. SUCCESSIVE APPROXIMATIONS

We base here on Chapter V of the monograph by GREEN and ADKINS
[1]. The displacement u; is a function of coordinates z* and time t
u; = u;{w*,t). The stored energy W is a function of the deformation
tensor ey; (isentropic process), and we have the following relations

(L1) 2€ij = Ui j + Uji + Unithr,j,
.1 ; . OW oW
1.2 " = =(6,; ) HT Y= —
(1.2) 2( i+ Uje) 0 ey + deji
where 7 is the stress tensor. The equations of motion have the form
B
ij ]
(1.3) = Po*ét—z:

where p, is the initial density of the body. Tensor #7 is, in fact, the first
Piola—Kirchhoff stress tensor.
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We expect the following form of the displacement u(z¥,1):

w = 26°K(z,t)+ 2e*P(a,t), ug = 0,
(1.4)
ug = ed(x,t) +*M(z, 1)+ e*R(x,1), T =,

where ¢ is a small parameter, The functions K,..., R will be calculated
in the following chapters. Note that ug is of the order ¢, in contrast to
u; which is of the order £2. The function @ represents the fundamental
_ motion, and the remaining functions are the interaction and correction
terms. We pass to the derivation of the equations of motion. In accord
with Eqgs.(1.4) and (1.2), we have

) U] = 261K, + 263 P, Uy = 262K + 26°P,,
(1.5
ugy = €®,+ &M, + 'R, ugy = e®; + 2 M; + €*Re.

The remaining derivatives of u; are equal to zero. The strains are

2ey = X(4K, + B%) + (4P + 28, M,),
(1.6)

Z2e13 = 2e3 =P, + 2 M, + g3R,, remaining e;; = 0.
The strain invariants are defined to be

(LT Ji=2e,, J2=2(emess— €rs€rs ) J3 = 8 det e,,.

Further calculations will be perfomed for the stored energy function
proposed by Murnaghan

(1.8) W = Aepess + 2ptersers + 201 T2 + 28T + 2773,

which is the simplest self-consistent generalization of the function W of
linear elasticity. The material constants XA, j, @, 3, v are assumed to be
given.

Performing the calculations of the relations (1.2), we obtain

H" = e {4(\ + 2p) Ko + (A + 20 — 40) @3}
A+ {4(A + 2p) P + 2(A + 2p — 40) B M, },

(1.9) HZ = {4\K. + (A - 4o — 47)2}}
' +&% {4AP, + 2(\ — da — 47) P M, },
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(1.9)  H¥ = {4AK, + (A — 4a)®2} 4+ * {4AP, + 2() — 40)®, M, }

[cont.]
H? =& 4pL; +%uQ,, H® =0,
HY = ¢-2u®, + *2uM, + & {2uR, — 1600, K, — 4a®?};

2t = & {4\ + 2u) K, + (X + 2 — 40) B2}
+e¥ {4(A + 2p) Py + 2(\ 4 211 — 40)®, M, }

2% = & (4K, + () — da — 47)®2)
+&* {4AP, + 2() — 4o — 47)B, M, },

2438 = g2 {4AK,, + (A +2u— 4a)¢'§} + et 4P,
(1.10) 2t =24 =& . 4pl, + - 4pQ,,
267 = £2u®,+e 2 M+ {2uR, + 4(n — 40) 8. K, — 403},

2% = e 2p®, + % 2uM, + €* {2uR, + 4(A + 24 — 40)®. K,
+(A + 2u — 8a) Y},

8 =2 =,

Note that ¥ is not symmetric: £ s£ /¢ |

Substitute now Eqs.(1.10) and (1.4) to obtain two equations of mo-
tion (equation for j = 2 is satisfied identically). Due to the small para-
meter &, they can be decomposed into a hierarchy of equations. As the
coefficient of & we obtain

(1.11) 10,y = p,By.

As the coefficient of €2 we obtain two second order partial differential
equations:

”Mx:!: = PoMt:
(1.12) |
Q(A -+ 2}.1.)Kg:;,; + (/\ + 2,(1, — 40!)@_1,@333: = 2}90[{&;
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and as the coefficient of £* - two equations

2()\ + 2Py + (A + 2u — 4a)( B My + PoMer) = 2000,
(1.13)  2pRep + 4\ +2p — 40)(Ppe K + ®. K )
+3(A + 2p - 80")@3@:3 = zpoRﬂ-

In a purely static context Eqs.(1.1) and (1.12) were used in [3].
Introduce the notations

2= B ol = A2
“"‘()0? Po b

— A+24y —
M=A+2% dor %=3(45Z 8a)

The above equations assume now the simple form

(1.14)

(1.15) By — By = 0;

Mtt - CQMMJ = 0:
(1.16)
Ktt - azK:c:c = bl(ﬁz@zx;

Rtt - CQR:I):E = 4b1(@zsz + (ﬁsz:c) + bzq’gém,
(1.17)
Py~ GZP:M: = bl(éx:ﬂMx + (ﬁa:M:cz)

Note that there exist two wave speeds: ¢ in the equations for &, M, R
and a in the equations for K, P. Obviously,

(1.18) a>e

2. ONE PULSE

Let us pass to the solution of Eqs.(1.14)—(1.16) and look for the
solution representing 1) one wave -+ correction terms, and #) two waves
+ correction terms.

The solution of the notation (1.14) representing a pulse has the form

(2.1) O(z,t) = flz — ct),
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where f is an arbitrary function with continuous first and second de-
rivatives. This solution represents a constant profile wave running to
the right (+x direction) with the constant speed ¢. In order to find the
correction terms, we must solve Eqs.(1.15). If we assume that the entire
initial disturbance is described by @, then we must take the function

(2.2) M=0
which satisfies Eq.(1.15);. Equation (1.15), takes the form
(2.3) Ky — a®K,p = byf'(z — et} f'(z — ct).

It is well known (cf. e.g. [2]) that the solution of Eq.(2.3) consists
of two parts

(2.4) K(z,t) = K(z, 1)+ K (,1).
The function K(z, 1) takes into account the right-hand side of Eq.(2.3)

and the function K (z,t)} is a solution of the corresponding homogenous
equation taking into account the initial data given in advance. We have

— z4-al
(29) K (5,0 = 3lo(e +at) + oz — o] + 5- JRCZ
Here _ B
(2.6) o(2) =K (5,0),  ¥(z) =K1 (2,0).

Since we are looking for the correction terms only, confine the cal-
culations for K ,M,P,R to the algebraically simplest case. This case,
however, does not correspond to ¢ = 1y = 0, as will be seen later.

Pass to the function K(x,t). We have (cf. [2])

_ b, t z+a(t—7)
@7 K@t)=g [dr [ fE—en)f'(€-er)de.
0 z—a{i—7)
Integration with respect to £ leads to the expressions
_ bl i g z4e(t—1)
2.8 Kz, t) =~ [dr[f'(€ —ct
(28)  K(i)=g [drife-el|

]

= :—;fdr {[f’(ac ta(t—7)—er) ~[f(z—aft—7) - CT)]z}.

0
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Define the function .
(2.9) F(z) = [[f'(§)d¢
O}
and perform in Eq.(2.8) integration with respect to 7. We have
(2.10) K(z,1)
- o FG =)~ o)~ LR~ alt— 1) = er)
=l ate z+a(t—71)~cr P r—a(t—7)—cT
bl by

“mf’(m —ct) + ™ {%HF(Q: + at) + ;i—CF(z - at)} )

The correction term for the pulse f(z —ct) is therefore not a function
of x — ct. The profile of the correction term changes in the course of
time. Diagrams of function K(z,t) for

1

0

1
(2.11) flz —ct) = —6~exp[—3(:c — et)?),
and for four fixed times ¢ = 1,2, 5, 10 are shown in Fig.1, For = smaller

T

M e

) K4 72 “ 15 B 20 22 M X
T T T T i ki T T T 4 i 1 T T [ | T
t=5 ></ t=10 /

Fig. 1.

than ¢(# — 1) we have 10% = 2.5, and for = larger than ¢(2t + 1),
u = 0. The calculations were performed for a = 2, ¢ = 1, and the curves
sketched for &, = 1. For the same values of the parameters, function
K(z,1) at fixed points = = 2,5,10 is given in Fig.2. For t < /2 — 5 we
have u = 0, and for ¢ > 2 + 1 we have 10% = 2.5.

Note that we may assume the functions ¢ and % in (2.5) to obtain

= b 1

a_CF(;c—at) ,
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and, finally, the formula
by
2(a® - ¢?)
The initial values of K and K; corresponding to the above solution

are not equal to zero. Note that basing on the numerical data given in
Fig.1 and Fig.2 it would make it rather difficult to arrive at the simple
expression (2.12).

_ Let us now pass to the equation (1.17). For M given by the function
(2.2), the right-hand side of Eq.(1.17); vanishes and we assume

P(z,t}) = 0.

(2.12) K=FK+K= F(x — ct),

Here again we take into account that the entire initial motion is descri-
bed by Eq.(2.1).
Equation (1.17); for K given by Eq.(2.12) assumes the form

Ry — Ryy = b3 [f'(z — )] f" (2 — ct),

by = by — 0Ly,

a” —c

(2.13)

As before, we represent R as R+ 1:5{ where R satisfies the homogenous
equation, and '

by ¢ &-te{t—7)

(2.14) R=g [dr [ dElf'(€— el f(E~er).

0 z—c(t—7)
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Integration with respect to £ leads to

z+e(t—7)

¢
= 3
(2.15) R= b "z — ct)]
6c 0/ z—c(t—T7)

_6_3j { e +ct— ZCT)]a—[f(a:—ct)]S}.

Denoting

(2.16) G(z) = [1f(2)) dz,
0

we have

= b3 b3 '
. =—[- - t)] — =tG'(x ~ ct).
(2.17) R= 155 [-G(z — ct) + G(z + ct)] » (z ~ ct)

We find now R(z,t) annihilating the terms in the square brackets.
Finally, taking into account Eq.(2.16), we obtain the second-order cor-
rection displacement

(2.18) R= —-g—% [F(z — ).

The presence of the multiplier ¢ forces us to confine the calculations
to sufficiently small time. Application of similar calculations makes it
possible to consider in the analysis of Eq.(2.1) the function g(z + ct)
instead of the function f(z — et).

3. TwoO PULSES

Consider now two pulses running in the opposite directions
(3.1) P(x,t) = fz — ct) + g(z + ct),

where f and g are sufficiently smooth functions. It is tacitly assumed
that both functions are localized near  — ct = 0 and z + ¢t = 0. The
collision of both pulses takes place at ¢ = 0 near the point z = 0.

For the reasons discussed above we take

(3.2) M =0.
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Equation (1.16), assumed the form
(3.3) Ky — a*Kyz = bi[f'(z — ct) + ¢'(z + c)][f"(z — ct) + ¢"(x + ct)].

The special case of that equation corresponding to ¢ = 0 was considered
earlier, cf. Eq.(2.3); however, the functions used here are different from
those used in Chapter 2. B

Decompose K into K and K as in Eq.(2.4). We have (cf.[2])

(3.4) =0 / j:“(T D de[f(E - er)

a(t—r) .
+o' €+ ) (€ —er)+ 4" (€ + c)]

Integration with respect to £ leads to the formula

t 9 zta(r—7)
(3.5)  K(z,%) j —er)+ g/ (E+er)] )
a4 z—alt—7
t
_Zl—j fletalt—7)—cr)+d(z+alt—7)+cr)]

0
—[flzg—at—1)—cr)+ g (z~alt—7)+c7)]}.
The general considerations performed in the previous chapter can
not be repeated for Eq.(3.5) because the arguments of f and g are
different. Simnple results may be obtained for the exponential functions
which, however, are not interesting. The sine function requires numerical

integration for a/¢ not equal to an integer.
For

f(2) = g(z) = exp(-32?),

3.6
(3.6) a =2, c=1,

the numerical integration of Eq.(3.5) was perfomed. For ¢t =1,0.2,0.5,1
the function K/b; is shown in Fig.3. At X = 0 we have K = 0. For
large t the profiles are entirely different, see Fig.4. Oualy near the points
z = ct and x = at the value of K is not constant. For & < ct —m and
& > at+m, m =const we obtain K = 0. This fact is evident from Fig.5,
where the heavy lines mark the values of #, 7 for which (for given t) the
arguments in (3.5) are zero. Since f and g decrease rapidly with z, the
functions in Eq.(3.5) are different from zero in narrow strips shown in
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Fig.5. For z slightly larger than af, the integration path does not touch
the strips and K = 0. For z slightly less than ct the integration path
crosses two strips but the integrals are of different signs and K = 0.

Figure 4 corresponds to large values of . For small values of ¢ the
proportions change, and already the point 7 = ¢ may be situated within
one or more strips. In view of this, the curves for small ¢ are entirely
different from those for large ¢, see Fig.6 and Fig.7.
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Fig. 6.

In order to eliminate the redundant displacement {(cf. the discus-
sion preceding Eq.(2.16)), consider now the cross terms of Eq.(3.5) only,
denoting

(87 Ky = ;—;fdr {(Fz+alt—7)—cn)d(z +alt - T) + cT)

+ @ —a(t—7) = er)g (2 —alt - 7) +e7)},

K= Kff + Kyy + ng-
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The remaining terms Ky + K, representing the correction terms
for & = g(z — at) and ® = g(z + ct) taken separately were already
considered. Several graphs of Kj,(x,t) are shown in Fig.8. For large ¢

WK/t
21
N
&
RN % )

Fig. 8.

the profile moves to the right with speed a, and with good accuracy it
coincides with the profile shown in Fig.8 for ¢ = 2. Therefore, the profile
is of the form ¢(z — at), and it satisfies the equation Ky — a?K,, = 0.
For z < 0 we obtain

(3.8) Kpy(—z,t) = —Kpy(z,1),

and the limiting profile has the form —@(z + af). We subtract now from
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K the limiting profiles to obtain
(3.9) K}, = K;iy — p(z — at) + ¢o(z + at).

The function (Kjf + Ky, + K},) satisfies Eq.(3.3) and represents the
other choice of the correction terms for Eq.(3.1). The function K7, for
t=1,2,...,8 is given in Fig.9. For ¢t > 1 and ¢ < .01, K}, is negligible.

34 K
0K /by

Fig. 9.

There exists a maximum of K}, at about z = 0.17. The largest value
(about 4) of this maximum is reached at ¢ = 0.265.
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STRESZCZENIE

NIELINIOWE ODDZIALYWANIE POMIEDZY FALAMI TOPRZECZNYMI W
MATERIALE SPREZYSTYM

Podstaws rozwazai jest teoria kolejnych przyblized dia materialu typu Murnaghana. Dwie
Jjednowymiarowe fale poprzeczne o dowolnych profilach propaguja sie w przeciwnych kierun-
kach. Wyznacza sig wyrazy korekcyjne dla kazdej z nich. W celu wyznaczenia oddzialywania
naledy przeprowadzié jednokrotne calkowanie numeryczne. Tak wyrazy korekcyjne, jak i od-
dzialywanie sa suma fal poprzecznych i podlusnych. Przedstawia sie odpowiednie Tozwiazania
dla fal pierwotnych w postaci funkcji exp({—a?).

PezwwMme

B3AHEMOJIECTBUE HEJIMHEWHEIX IIONEPEYHBIX BOJTH B MATEPHAITIE

Ocnopoit paccyKAeHHEIl ABAAETCE TEOPUS HOCTEROBATENbHEIX npuGauKeHnH ONA Ma-
TepHana TANA MypHarana.lne OfHOMEPHEIE TIONePEMHbIE BOMHH, ¢ NPOUIBONLEEIME npo-
$uIAMH, PacNpOCTPAHAIOTCS B MPOTHBONONOKHEX HaNPaBIeHASX. ONpefentiorcs xop-
PEeKIUOREEIE YIEHE UL KaXAoH #3 HUX, C LeNbIo ONpeNe/cHNA B3anMOIeHCTDAL ClexyeT
MPOBECTH OREOKPATHOE HHCHEHHOE HETErpEpPODanNe. Tak KOPPEKUMOHHBIE WIEHH, Kax
H B3aNMOZeHCTBHE SRIAKTCA CYMMoll MONEPeNHBIX ¥ WPOJONEHLIX BoXH., IToKasLipaeTes
COOTDETCTRYIONINE PEINEHN: JLNA NePEUYALIX BOAHR B BHAC GyHKimn exp(—z?),
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