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ON THE KINEMATICALLY ADMISSIBLE SOLUTION
APPLIED TO THE THEORETICAL ANALYSIS OF
SHOVING PROCESSES

W. TRAMPCZYNSKI and A. JARZEBOWSKI
(WARSZAWA)

The paper concerns a simplified theoretical analysis of such complex soil shoving processes
as, for example, the process of moving walls in a way similar to heavy machine tools (e.g. bucket
of a loading machine). Assuming the material to be rigid-perfectly plastic with strain behaviour
governed by the Coulomb-Mohr yield criterion and associated flow rule, simple kinemafically
admissible solutions were found. It was shown that, using this technique step by step, it was

possible to analyse complex processes and even to find more effective loading paths.

1. INTRODUCTION

The problem of passive and active pressures exerted by a granular
medium on a rigid wall under plane strain conditions has often been
analysed in numerous works. Several theoretical solutions were obtai-
ned within the theory of plasticity under the assumption of the rigid-
perfectly plastic behaviour of a granular material [1, 2, 3]. Quite often
the method of characteristics was used to solve static and kinematic
equations [1]. Although a number of boundary value problems were so-
lved in this way, there exist several limitations in obtaining complete
solutions or even kinematically admissible solutions. The applicability
of this technique to the analysis of soil shoving problems was discussed
in [4, 5]. It was shown that, apart from other limitations, Hmitations
concerning the shape of a free boundary practically restrict possible
- solutions {(complete and kinematic ones) only to the incipient motion
and convex free boundaries. So it is not possible to follow in this way
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more complex processes as, for example, the process of moving walls in
a way similar to such heavy machine tools as bulldozer blades or loa-
der buckets. Since a theoretical description of such processes can have
great practical importance, in this paper another simplified technique
was used to describe it. Assuming the rigid-perfectly plastic behaviour
of a material and the associated flow rule, kinematically admissible me-
chanisms for such a process were studied. According to the limit load
theorems [3], such solutions give only the upper bound for forces neces-
sary for the realization of such a process. As it was shown in [6], using
only three typical kinds of mechanisms, solutions very close to complete
ones and statically admissible ones could be obtained in this way. So it
can be assumed that such kinematically admissible solutions can give a
rather good estimation of real processes. In the present paper the pro-
cess of the wall shaped similarly to the bucket of the loading machine,
with motions in a way similar to loading machine tools, was studied.

The proposed solutions were obtained under the assumption of the
rigid-perfectly plastic material behaviour coupled with the associated
flow rule. In several papers [7, 8, 9] it was shown that the associated
flow rule for the Coulomb-Mohr material is not a good approximation
of the real material behaviour (experiments were performed mainly on
sand). It also concerns the dilatation effect, which is overstimated by
this theory, as well as the calculated plastic zone range. So the non-
associated flow rules should be used for proper material description.
Also, the assumption of material rigid-perfectly plastic behaviour reflects
real behaviour only in a broad qualitative sense [10].

Thus, the results obtained in the way presented in this paper should
be treated as qualitative ones, and as such will be compared (in the
future) with experimental data. It should be emphasized, that there
does not exist now any other simple method to follow such complicated
processes as the ones considered.

2. KINEMATICALLY ADMISSIBLE SOLUTIONS FOR WALL PRESSURE
PROBLEMS

Let us assume the material to be rigid-perfectly plastic and the pla-
stic strain to obey the modified Coulomb-Mohr yield criterion, where
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Fig. 1. The modified Coulomb-Mohr yield criterion for plane strain conditions
in the ¢ — 7 axes.

its linear part (Fig.1-IXC) is described by the following equations:

(00 = 0y)* + 472, = (02 + 0, + 2H)* sin? @, H =c- ctgp,
(2.1)
I7l = c+0 tgp,

with material strength subject to uniform extension limited to S; [11],
where ¢ — material cohesion parameter, ¢ - internal friction angle;
the associated flow rule takes the form

(2.2) gy = Ap—

According to the limit load theorems [3], any statically admissible so-
lution defines the lower bound of the limit load and any kinematically
admissible one defines the upper bound. So, if it is not possible to find
complete solutions of a certain problem, one can try to find the upper
or the lower bound of the limit load (or both). If the difference between
such two solutions (kinematic and static ones) is not too large, a good
estimation of the complete solution may be found.

In the present paper the kinematically admissible solutions for a
process similar to that of filling a bucket of a loading machine were
studied. By kinematically admissible, we mean an arbitrary solution
satisfying all kinematic constraints and the positive dissipation energy
equation
: (2.3) Ty éij 2 0
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in all points of the field under consideration.
Let us discuss the problem of the wall pressure shown in Fig.2.

Fig. 2. The rigid wall (shaped similar to the bucket of a loading machine) pressure problem
and its kinematically admissible solation.

A simple kinematically admissible mechanism consists of rigid trian-
gle ABCD motion along the slip lines CD and BC. The force value
P necessary to realize the incipient motion can be determined from the
following energy dissipation equation:

(2.4) P x Vy = D¢gp+ Dpe + Dg,
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-.:where Dep — energy dissipated along the slip line CD, D — energy
‘dissipated along the slip line BC, D¢ — energy dissipated in the process
of rigid triangle ABCD lifting (for v # 0).

It is possible to show [3], that for the associated flow rule (2.2) and
‘modified Coulomb-Mohr yield criterion (2.1)s the velocity vector along
‘a slip line is inclined by an angle ¢ to this line and the energy dissipation
per unit length along the slip lines (as CD and CB) can be described
by the following equation:

.(2.5) Dy = ¢ xcosp x Vi,

‘where V[, — velocity vector along the slip line (Fig.2 — Ve, Veop). Energy
dissipation due to gravity forces can be expressed in the form

(2.6) DG = VG X G,

where G — ABC'D weight, Vi - lifting velocity. So the P (upper bound)
value can be determined from the equation

(2.7) PxVy=cxcospx VepXCD+cxcospx Ve X BC+G xVg.

Kinematically admissible solutions for the incipient motion of different
wall shapes were discussed in [6]. It was shown that using only three
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Fig. 3. Kinematically admissible solution of the rigid wall pressure problemr: for different wall
shapes.

simple mechanisms (Fig.3a — four slip lines solution, Fig.3b — solution
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with logarithmic line, Fig.3¢ — two slip lines solution) for walls sha.ped_-'
similarly to heavy machine tools, solutions close to complete ones and-
kinematically admissible ones (assuming the associated flow rule) could:
be obtained.

A wide discussion of kinematically admissible solutions applied toiz-':f
earth moving processes was presented in [12]. 5

3. SOIL SHOVING PROCESS BY A RIGID WALL SHAPED SIMILARLY TO
THE BUCKET OF A LOADING MACHINE-THEORETICAL
DESCRIPTION

3.1. Solutions for the material obeying the Coulomb-Mohr yield cri-
terion .

Let us discuss the process shown schematically in Fig.4. It can be

a

Fig. 4, A model for the loading machine working process,
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- considered to be a model for a working process of the bucket of a loading
- machine. Two basic phases could be distinguished: 1) the tool pushing
' phase (Fig.4a,b), 2) the tool filling phase (Fig.dc). At the beginning,
* the problem shown in Fig.2 has to be solved. Assuming the material
- to be rigid-perfectly plastic with the plastic behaviour governed by a)
 modified Coulomb-Mohr yield criterion (Fig.1) and b) associated flow
rule (2.2), energetically most efficient solution was searched. Kinemati-
-~ cally admissible solutions were limited to the types schematically shown
in Fig.3.

The incipient tool motion can be described by a simple solution
with two lines (Fig.2}, which is energetically most efficient (the lowest
pushing force was obtained). Although processes based on different slip
line position are just as efficient energetically (for example the dashed
lines ST and TR in Fig.2), only slip lines starting from the tool were
experimentally observed [4]. Optimal slip line inclinations (o and p
values) were searched for at every moment of the process. In the case
shown in Fig.2 they are o = p = 57°. For the material described by
the following parameters [13]: ¢ = 19.6 kPa, ¢ = 26°, v = 19.6 kN/m?
the situation after displacement Uy is shown in Fig.8. The rigid triangle
ABCD has moved to a new position AB"C"D”. Because of sliding
along the slip lines, the regions 2 and 3 contain a material with density
different from the virgin one 1. This is due to the fact that for the
associated flow rule, two processes having an influence on the material
parameters appear on the slip lines: dilatation and shear. In order to
describe such an influence, two different parameters were introduced:

for the dilatation — parameter Ijrn:
(3.1)1 - Up= dem

for the shear — nondiminishing parameter Us:
(3.1)q Us= 11U,
where dU, and dU, were defined according to the corresponding displa-
cements dn and ds (Fig.5), where by is thickness of the material layer
cut at each single linear step of the process. It follows from geometri-
cal considerations that the first process influences density according to
following equation:

(3.2) y =0
Un +1
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Fig. 5. Dilatation and shear processes on a slip line in the case of the associated flow rule
assumption.

where «yy denotes density of the virgin material. It was assumed that the
second one influences material cohesion ¢ (in the Coulomb—Mohr yield
criterion) according to the following assumed relation [14]:

(3.3) ¢ = (cg — cg) X exp(— U, X A) + ¢g,

where ¢y — cohesion of the virgin material, cg — residual cohesion value,
A - material constant,

C
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Fig. 6. The material cohesion parameter c.

Relation ¢ versus I}s was graphically shown in Fig.6 for the following
parameters: ¢y = 19.6 kPa, cg = 3.92 kPa, A = 0.8, assumed for the
considered material.

Similarly, tensile strength of the material subject to uniform exten-
sion .9; is also assumed to decrease according to the relation

(3.4) St = (i, — Sir) X exp(~ Us xA) + Sir,
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where S, and S are its initial and residual values. They were assumed
to be, respectively, 14.7 and 2.94 kPa. Let us assume that the process
shown in Fig.2 is carried on step by step with the unit displacement U/
(Fig.7). Then, the parameters Un and U, are given by the following

Tig. 7. The material velocity on the tool edge.

equations {see Fig.7):

oo — _snpeos(o—y)
" cosa sin(a + p — 2¢)’

(3.5)

JU7CP cosy cos(p — ¢)
f cose sin(a + p — 2¢)’

and for the slip line BC:
cos(a + Q2 — @) sing

dUBC —
" cosw sin{ec + p — 2p)’

(3.6)
cos{a + 2 — ) cosp
cosa sin{a + p — 2p)’

dUur° =

It is worth to mention that for the DC line, after every unit displacement
the slip line is realized within a "new” (virgin) material. In the case of
the BC line the same material shears and dilatates all the time.

Let us consider several subsequent steps of the pushing process, all
with the constant lateral displacement U , limiting the types of kine-
matically admissible solution to that shown in Fig.3.
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Fig. 8, The kinematically admissible solution at a certain stage of the rigid wall pressure
process (first step).

Fig. 9. The kinematically admissible solution at a certain stage of the rigid wall pressue
process.

Fig. 10. The kinematically admissible solution at a certain stage of the rigid wall pressure
process.
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Fig. 11. The kinematically admissible solution at a certain stage of the rigid wall pressure
process (advanced tool displacement),
(84]
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Fig. 12. The kinematically admissible solution at a certain stage of the rigid wall pressure
process (after advanced tool displacement}.

Some following phases are shown in Figs.8-12 (it was found that the
mechanism shown in Fig.2 was energetically most effective during the
entire process considered ).

The soil shape after the step was marked with solid lines in each of
the figures and before the step with dashed lines. Assume that during
each step slip lines translate parallely through the material (for example
from position CD to C'D’ in Fig.8). The front of the CD slip line before
each step was marked with a dotted line. Using the same kinematically
addmissible mechanism, new positions of the slip lines (& and p values)
were searched for after each step of the process referring to the minimum
energy value (Eq.(2.7)). Nonetheless, while searching for the minimum
value of the right side of Eq.(2.7), the positions of the slip lines following -
the increment step were used (cf. Figs.9-12). The total thickness of the
cut layer was assumed to be (Fig.8) H = 35cm. The CD slip line di-
rection changes during the process (the « value increases) while the BC
slip line direction remains constant (compare C'D', C"D" and CYDY
lines and B'C', B"C" and BVCY lines in Figs.8-10). Such a process
produces different material zones with different material parameter va-
lues. This was taken into account while searching for optimal slip line
positions after each step. For example, after the third step (Fig.10) one
can distinguish seven zones: ’

l:¢ = 19.6 [kPal: Su = 14.7 [kPa),
2:0c = 441 S = 3.33,
3: cg = 3.94 Sig = 2.95 3
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4 Cq = 4.31 514 - 3.23 ,
5250 = 3.93 S = 2.94
6:¢c6 = 4.30 S = 322,
T:cr = 3.92 S o= 2.94.

Slip line CD changes its orientation into a more and more vertical
one to reach the step shown in Fig.11 when the slip line position CX!
H' turns out to be energetically more efficient than the position CX!
DXL From this moment the process starts to be nearly periodically
repeatable (it would be fully repeatable for the weightless material) -
the second step is similar to the first one, the next step to the second
one (compare Figs.11 and 8, and 12 and 9). Zone CX.J' DXMH" con-
sists of the virgin material, like triangle ABXICXU DX (Fig 11). Zone
CX J DX DXICXI consists of several zones with different material pa-
rameters what, for simplicity, was not indicated in Figs.11 and 12. Of
course, in the real process the C'D slip line position would change smo-
othly at the beginning (simultaneous translation and rotation) to jump
rapidly into the new position after some horizontal tool displacement.
In any case the characteristic scale - shaped rigid zones generated during
cohesive soil cutting can be described using the presented model.

In Sect. 3.2 of this paper a similar solution for the material obeying
the Tresca yield criterion was presented.

As it can be observed in Fig.8, the wedge B'B”"D" is pushed out
during the pushing phase. It can slide down as a result of several me-
chanisms. Three of them are shown in Fig.13. In the first case it was
assumed that the slip occurs along the slip line B'E (Fig.13a). Com-
paring the energy disspation, the i value necessary to realize such a
process can be calculated:

(3.7) VoxG1+VexG3 =V xcospxc; X FE+V X cosp xcy x B'F,

(3.9) h= (cosga [cl ( L sing )

cosar cos(p — p)sin(a + p)
sing 1 sin{fa+p—¢) 1
+C3cos(p — p)sin(a + p)])/(cos(a +¢) 2 sinfa+p)  cos(p—p)

sin{a + p — p)cosp sing
x Ay ]
cosacos(p — ) cos(p — @)
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Fig. 13. Different mechanisms for the soil wedge sliding process.

In the second case it was assumed, that the slip line B'FE in not
a straight one and an additional slip line B"F' occurs during material
sliding. The kinematically admissible mechanism and the velocity ho-
dograph for such a case are shown in Fig.13b. The regions B'B"F’ and
B"EF' consist of materials with different parameters. From the energy
dissipation equation

(3.9) Vo1 X Gi+ Vs x Gs = Vi x cosp x ¢y X EF'
+V3 X cosp X ¢g x F'B' + Vi3 X cosp x ¢z x F'B”
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according to some simple geometrical formulas, one obtains

(3.10)  h =2cosp { c ccos{og — ap — p— ) [ 1

cosayy cos(p — ) Bcosay
sin(og — o) { B
cospoos(as — o — p— (p)” / [cos(en + ¢)(tger + tgp) 5 e
cos(ag — ag ~ p ~
+cos(as + @) (tgas + tgp) (@3- =p=y) 735

(B + 1)cos(p + )

where a; and o are the slip lines position angles (cf. Fig.13b), and
the wedge height % is calculated as a sum of h; and hz. Its minimum
value turns out to be for a; = a3 = 19°. This means that the mechanism
concerned translates into the previous one with the straight slip line
B'FE. The values h calculated from these two mechanisms (Eqs.(3.8)
and (3.10)) are equal, and for typical material parameters for clays [13]
they exceed standard tool height for such a sclution.

The third mechanism (Fig.13c) is assumed to be a rigid material
rotation around point B’. The wedge size, described by the h value, can
be determined from the following energy equation:

(3.11) (G1 X r;+ Gy x Tg) X W= (0.5 X (B'F)z x Sp3 4+ 0.5%

X(B'E)* x Sy — 0.5 (B'F)? x Sy) x w,

where w - rotation velocity.

Thus
(3.12) h= (%( sing ))2(5t3 ~ 8n) + % ( ! )2511)

cos(p — p)sin{a + p cosQy

/ [@ ' (Si(i(oz(if;ﬁﬁ) - sin(ﬁ});ém) ‘ {(h tglo =)

+[ sing + l( 1 sing )]sina)
cos(p — p)sin{a 4 p) * 2\cosa”  cos{p — @)sin(a + p)

/3— [ sing + 1( r sing )] 'naf}
cos(p — p)sin{a+ p) ~ 2\cosa  cos(p — ¢)sin{c + p) .
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(3.12)

[cont.]
1 sin{a + p — )sing « ¥, {( 1 singsina )
o - - htg(p — - .
2(cos(p— pNtsin(a+ p) WL O S = phsinta + p)

/35— 1 sing — sina }
2cos(p— p)sin(a+p) )|’

In that case hpy;, is comparable with that for previous solutions.
None of the sliding down processes mentioned before can occur. Let us
stop the tool pushing phase at the moment shown in Fig.12. In general
the filling process can be realized basically in two ways:

a) as tool rotation around point O,

b) as tool rotation around point C
(as there is a material under the bucket, this is impossible in the case
when horizontal motion of the bucket occured before).

B™ D~

0 C

Fig. 14. The kinematically admissible solution for the tool rotation process.

In the first case (Fig.14) the stiff block OKC rotation (KC - loga-
rithmic discontinuity line) and material tear along line KD’ are realized.
A theoretical description of the first process was given in [3]. For ma-
terial rotation around point O (Fig.15) the discontinuity vector V is
perpendicular to the radius r, and the slip line AB is inclined to this
vector by an angle . Hence the discontinuity line AB is a logarithmic
curve (for ¢ = 0 - circle) described by the equation

(3.13) r =1y X exp(Gtang),
and the velocity discontinuity V}s is defined by the relation
(3.14) Vi = V}} % exp(Otany).
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Fig. 16. The kinematically admissible mechanism for the stiff wall rotation process.

Let us discuss a strain process shown in Fig.16a. It consists of n-
rigid blocks (OAB, OBC, OCD,...} moving with constant velocities
and sliding on each other along the discontinuity lines OB, OC, OD...
and AB, BC, CD.,... . The velocity hodograph in such a case is shown
in Fig.16b. For n — oo

(3.15) V = Vj x exp(Gtanyp).

Energy dissipated along the slip lines
for OC...
(3.16) DOC =cXryX Vl x AO
and for BC'...
-A
(3.17) Do =cx ('r2 O) W, - cosp,
cosp

and, integrating Eq.(3.17) along the logarithmic curve AR (r =
roexpftgep), |

(3.18) Daor = Dag = 0.5x cx Vg xrox ctgp x {exp(2 x 8 x tanep) —1}.
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Thus, energy dissipation in the region O AR during rigid rotation around
point O can be expressed in the form

(3.19) Daor = ¢ x Vo.x 1o X ctgp x {exp(2 x © X tang) — 1}.

Although this is the same basic mechanism, the relations for the rota-
tion process shown in Fig.14 are more complicated because of ¢ value
variation from one region to another. Therefore the energy dissipation
in this case was calculated numerically.

The material tear process along the K I’ line is similar to that shown
in Fig.13c.

The moment necessary to start a rotation process (Fig.14) can be
calculated from the following equation:

(3.20) My x w= Mg xw+ Mr xw+ Dock,

where Mg - moment due to gravity forces, Mr - moment due to the tear
process along the K'D' line:

(3.21) Mrp =05 x (0D)? x 85 — 0.5 x (OK)? x S,

Dock - energy dissipated in the region OCK.

In the case of tool rotation around point C (Fig.14), a material
tear along a straight line (for example CH') can be assumed to be a
kinematically admissible mechanism. The moment necessary to start
such a process can be calculated from the following energy equation:

(3.22) MCXW=MT><W—M5-(.U,
where My - moment due to the tear process for CH' line:
Mr=10.5x (C.H’)2 X Stg,

M - moment due to gravity forces.

However, material tear along the BC line (S = 2.94kPa) turns out
to be an energetically most effective mechanism. In that case, a low
filling tool volume efficiency of such a process makes it inacceptable for
practical use (an analysis similar to that leading to Eqs.(3.8) and (3.10)
shows that the material wedge created in region CBB*Y DXV does not
slide down). So the tool filling process should be realized as rotation
-around point O.
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A more effective tool filling process, from both the energetical point
of view and tool volume efficiency can be proposed. This process consists
in material sliding along the CH' slip line (Q = 7/2— (a-+¢)) and then,
rotation around point C. In the first part (sliding), material cohesion
on the slip line diminishes to the residual value ¢ = ¢y = 3.92 kPa
(St = Sir = 2.94 kPa) according to Egs.(3.3) and (3.4). Hence, for the
following tool rotation around point C, material tear along the straight
line CH’ appears to be the energetically most effective kinematically
admissible mechanism.

3.2. Solutions for the material obeying the Tresca yield criterion

It seems to be important to point out, that the solution for the layer
cutting problem with scale - shaped rigid zones could also be obtained
for other types of materials.

Let us consider a rigid-perfectly plastic material obeying the Tresca
yield criterion:

(3.23) 7| =c,

and the associated flow rule (2.2). With such an assumption no volume
change could be observed and quite good agreement between the theore-
tical solutions and experimental data was reported. It was assumed that
the material cohesion parameter ¢ decreases according to Egs.(3.3) and
(3.1); along the slip lines and some characteristic values of the process
(Fig.4) are similar to those discussed before (H = 35cm, ¢; = 19.6kPa,
cg = 3.92kPa). As an example, the tool pushing phase (Fig.4a,b) will
be discussed.

A kinematically admissible solution with two slip lines BC and CD
and a moving rigid triangular zone BC'D, as well as the solution after
the first step of the process, is presented in Fig.17 (the angles o and p are
equal to 45°). After the first step of the process one can distinguish two
separate material regions: B'C"D" and C'D'D"C" with different ma-
terial parameter values (the cohesion parameter ¢ decreases according
to Eq.(3.1)3 ). Figures 17-20 illustrate the situation after subsequent
steps of the process. The dashed line indicates the configuration before
the step and the solid line the configuration after the step. For the CD
slip line position before the step a dotted line was used. The configura-
tion after the second step and three different material parameter regions
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Fig. 17. The kinematically admissible solution at a certain stage of the rigid wall pressure
process (for the Tresca yield criterion material) - first step.

cece

Fig. 18, The kinematically admissible solution at a certain stage of the rigid wall pressure
process (for the Tresca yield criterion material).

were presented in Fig.18. The region indicated by ”1” consists of the vir-
gin material and ¢; = ¢y = 19.6kPa while in the region ”2” ¢y = 4.84kPa
and in the region "3” ¢3 = 4.02kPa. In Fig.19 the subsequent slip line
CD position after the first five steps was presented. At the beginning
its orientation became more and more vertical {(compare the positions
c'p', ciptt cVpV, ¢VIDVIL ¢XPX and the position CXIDXL in
Fig.20). At the moment shown in Fig.20 the slip line CD jumps rapidly
to the position C*M DX with orientation equal to the position CIDE
(o = 45°). Next, the region consisting of the virgin material (K EHF
in Fig.20) is cut off, while the material parameter distribution within the
zone, KF™ HJDXV G' C*V s rather complicated. From this moment
on, the layer cutting process begins to be repeatable.
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C OOV CY CAg

Fig. 19. The kinematically admissible solution at a certain stage of the rigid wall pressure
process (for the Tresca yield criterion material) — advanced tool displacement.

C CICR OOrCee O

Fig. 20. The kinematically admissible solution at a certain stage of the rigid wall pressure
process (for the Tresca yield criterion material) — after advanced tool displacement.

4. CONCLUSIONS

It was shown that using quite simple kinematically admissible solu-
tions one can study such a complicated process as that similar to the
heavy machine tools working process. Such results cannot be obtained
using the characteristics methods or any other simple technique.

Referring to the simple solutions of the theory of plasticity, characte-
ristic scale-shaped rigid zones generated during the cohesive soil cutting
process were predicted without any additional assumptions about crack
initiations and energetical criteria of propagation.

Although the associated flow rule creates some difficulties as to the
interpretation of material dilatation (density in the region 3, Fig.12),
in this paper such an assumption was made as the first approximation.
Further investigation for such solutions are necessary. On the other
hand, a solution with different material parameters within different re-
gions seems to be reasonable for the soil cutting process,
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Although it is difficult to assess in this way the complete solutions
for such a problem, some advice on how to find more efficient ways of
the tool moving process can be given (for example, for the tool filling
process).

10.

11.

12.

13.
14.
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STRESZCZENIE

0 PEWNYCH ROZWIAZANIACH KINEMATYCZNIE DOPUSZCZALNYCH DLA
ZAGADNIENIA NAPORU SCIAN O KSZTALTACH ODPOWIADAJACYCH
NARZEDZIOM MASZYN DO ROBOT ZIEMNYCH

W pracy przedstawiono proste rozwiazania teoretyczne dla zagadnienia przesuwu gruntu
wywolanego naporem takich narzedzi maszyn budowlanych, jak lyska ladowarki. Zakladajac
sztywno-idealnie plastyczny model oérodka, ktdrego plastycznoéé opisuje warunek Coulomba-
Mohra oraz stowarzyszone prawo plyniecia, znaleziono rozwiazania kinematyczne problemu.
Pokazano, Ze stosujac ig technike krok po kroku mozna bylo opisaé tak zlozone procesy, jak
proces napeiniania narzedzia oraz znaleéé bardziej efektywne drogi obciazenia.

PeszrnomMme

O HEKOTOPBLIX KWHEMATHYECKKUX JOIIYCTHUMLIX PEHIEHMAX JI/IA
ITPOBJIEMBI HATICPA CTEH C ®OFPMAMM OTBEYAIOHIMMH HHCTPYMEHTAM
MAIHNHWH K SEMHBIM PABOTAM

B pafoTe mpeacTaknensl HPOCTEIE TeOPeTHYECKHEe DEMIEHRS JUIA TpoGieMs] HepeMela-
HHA TPYNTA, BHI3BAHAOTC HANOPOM TAKHX KHCTPYMEHTOR CTPOHTENbHLX MAINAHE KaK KOBII
norpysounoll MamuHh. Ilpemmonarad XecTKO-HAEANEHO INACTHYECKYID MOJENL CPEIH,
NRACTHYHOCTS KoTopoid omAckiBaeT ycnosue Kymona-Mopa H acconupobammLIll 3aKoH Te-
4eHAM, Halilenbl KMHeMaTwyeckue pemeHus opobremel. IlokasaHo, YTO DPHMEHAL 3TY
TEXHAKY IOar 33 MaroM, MOYKHO OOMCATE TaK CAOMCHBIE IIPOLIECCH], KK Npolece HADOTHe-
HES MHCTPYMEHTa U HalTh Somee appeKTHBHEIE NYTH HAaCPYKeHmus,
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