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NONLINEAR SOLUTION METHODS FOR FEM ANALYSIS
OF CONCRETE STRUCTURES

G. GAJER (BRISBANE)

The essential objective of the nonlinear FEM analysis is the soluticn of a system of nonlin-
ear equations. Due to strain-softening nature of fracture processes, concrete structures need
a special attention in applying a suitable nonlinear solution procedure. New, sophisticated
material models and the need to predict limit points and post-peak behaviour of a structure
require methods capable of converging in the vicinity of such limit points. This paper reviews
several nonlinear solution methods with particular reference to the nsefulness in the nonlinear

analysis of concrete structures exhibiting strain-softening characteristics.

1. INTRODUCTION

The effective application of the numerical model of concrete requires
suitable nonlinear solution techniques to trace the equilibrium path of
a structure. Due to numerical problems encountered during fracture
processes computations, the use of the true incremental tangent stiffness
matrix is often undesirable. Thus the solution schemes have to rely
heavily on iterative procedures.

Historically, the most popular and widely used nonlinear solution
procedures have been the Newton-Raphson and the modified Newton —
Raphson methods {1, 2]. These methods, however, have proved to be
inadequate when the more sophisticated material models were introdu-
ced.

In the last decade considerable research effort has been expanded in
developing more efficient and stable solution procedures capable of fol-
lowing the nonlinear processes introduced by the fracturing of concrete.
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The requirements of a solution procedure for the analysis of structu-
res with such a strain-softening material differ significantly from those,
for instance, appropriate for analysis of structures featuring geometric
nonlinearity, where the tangent stiffness matrix remains continuously
variable.

In this paper, a few advanced solution procedures are reviewed with
particular reference to their usefulness in the analysis of concrete struc-
tures. The attention was focused on numerical solution techniques in
which iterations are carried out in displacement as well as load space.

2. METHODS BASED ON MODIFIED NEWTON—RAPHSON ITERATIONS

One of the first successful attempts at a variable load level iteration is
that of PIAN and TonNG [3]. Their method, however, requires some initial
modification of the global stiffness matrix. The method was simplified
by BaToz and DHATT [4]. In their displacement control method they
used the original global stiffness matrix.

In Batoz and Dhatt’s approach, the displacement increment vector
is composed of two parts:

(2.1) AU; = AT; + A\AUY,

where A); is the load parameter to be found from some constraint equa-
tion. The components of the displacement increment vector are expres-
sed as:

(2.2) AU; = K;'Ap;,
(2.3) AUr = K;'q,

where Ap; is the out-of-balance force vector in iteration ¢, and q is
some reference external load vector, and Kj is the tangent stiffness ma-
trix. The load parameter AJ; is obtained from the displacement control
constraint. If the j-th degree of freedom is to be constrained, then in
the first iteration A); is found as:

AUj - AU
(2.4) AN =2

' AUx

where AU} is the prescribed displacement for the j-th degree of freedom.
In further iterations, the load parameter A); is calculated from the
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condition that in subsequent iterations the displacement increment for
j-th degree of freedom is zero. Then,
AU
AUS

The performance of the method is demonstrated graphically in Fig.1.
Due to the constant displacement constraint, the method is not capable

q

(2.5) Al = —

Fig. 1. Direct displacement control method.

of converging in snap-back problems. The method was used successfully
by the author to trace the load-deflection curvein a numerical simulation
of the three-point-bent test and in the analysis of a notched concrete
beam in mixed mode fracture, both described in detail in Ref.[20}.

A very successful method was proposed by CRISFIELD {5-8]. The me-
thod uses the displacement increment vector decomposition of Eq.(2.1),
with the components of the vector calculated according to Egs. (2.2)
and (2.3). For the constraint equation, Crisfield used a modification of
a generalized arc length formulation. In its general form, the spheri-
cal arc length constraint was proposed independently by Riks [9] and
WEMPNER [10] in the following manner:

(2.6) UTU + AXqlq = AP,
where U is the incremental displacement vector, q is the total applied

loading vector and Al is the prescribed scalar controlling the length of

the displacement increment.
Crisfield discarded the loading term of Eq.(2.6) and used the follo-
wing, simplified constraint equation:

(2.7 UTU = A%
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The incremental vector in iteration ¢ can be expressed as:
(2.8) U;=0;1 + AU; + AMNAU7,

Fromn Egs.(2.7) and (2.8), the step length adjustment, A);, is obtained -
from the following quadratic equation:

(2.9) A1AXNE 4 AN+ Ay =0,

where

(2.10) A = AUZLAUYy,

(2.11) Ay = 2U;; + AU AU,

(2.12) A; = (Uil + AU)T(Ui + AT — AL,

Normally, Eq.(2.9) has two roots. The suitable root is the one that
guarantees a positive angle betwen vectors U; and U;_y, calculated as
the dot product of the two vectors. If both roots yield positive angles,
the root closer to the linear solution AX\; = —A;/A, is selected. After
A is selected, the load level is adjusted as:

(2.13) af = qf(1+ AN,

where g? and ¢ are the load vectors at the beginning and at the end
of iteration 4, respectively. The performance of the method is shown
schematically in Fig.2.

g

&y

/U3 w/Y

Fig. 2. Arc-length method.

It is interesting to note that for one-dimensional problems the discri-
minant of Eq.(2.9)

(2.14) A = A2 — 4A; A3 = 4AUTAULALR




NONLINEAR SOLUTION METHODS FOR FEM ANALYSIS OF CONCRETE STRUCTURES 63

_ is always positive for any non-zero Al. This indicates that for any
© displacement increment vector AU; , a suitable value of A); can be
¢ guaranteed. Therefore, as long as the tangent stiffness function and
. its derivative are both finite and non-zero [11], that is they satisfy the
. general requirements for the convergence of the Newton—Raphson type
_ iteration process, the solution of the nonlinear equations can always be
. obtained with the desired accuracy. This conclusion, however, does not
¢ hold for multidimensional systems of equations since the non-negative
value of the discriminant of Eq.(2.9) cannot be assured.
' The arc-length method has proved efficient in tracing load-deflection
- curves in structures exhibiting, primarily, geometrical nonlinearity. The
method does not perform equally well in the analyses of concrete struc-
© tures. The main difficulty is due to the constraint equation (Eq.(2.7))
' which often fails to predict the real root and thus it seems too restrictive
in the analysis of cracking concrete. Crisfield obtained an improvement
in the performance of the method when analysing concrete structures
by combining the arc-length constrained iterations with the line search
technique [12].

Also very suitable for the analysis of concrete structures is the linear
constraint equation proposed by RamM [13]. Ramm’s equation is a
modification of RiKks’s and WEMPNER’S spherical arc-length formula
[9,10] and is expressed as:

(2.15) AUTAU; + A ANgTq =0,

in which AU; and AUj; are the displacement increment vectors, A
and A); are the load step parameters in iteration 1 and ¢, respectively,
q is the total load vector. This equation constrains the iterations to fol-
low the plane normal to the tangent direction in the particular iteration
cycle. The displacement increment vector is decomposed according to
Egs.{2.1)-(2.3). From Egs.(2.1) and (2.15), the value of the load para-
meter, A;, is calculated as:

_ AUTAT
AUTAU7r + AMqTq

(2.16) AN =

Two modifications can be introduced to the formula in Eq.(2.16).
First, it was noticed that the term AX;q7q in the denominator can be
suppressed since in multi-degree-of-freedom systems, its influence on the
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value AJ; is negligible. Secondly, the vector AU, can be replaced by
the vector of accumulated displacements U;_; . This is possible because
all the iterations are performed in the same plane and thus the direction
of the vector U;_; is the same as the direction of all its components.
Finally, the following formula for the calculation of parameter A); is
obtained:

In one-dimensional problems, the convergence of Ramm'’s normal
path method can be demonstrated if the stiffness function complies with
the conditions which guarantee the convergence of Newton Raphson
type solution procedures. The value of the load parameter A); is obta-
ined at any iteration due to the linear nature of the constraint formula-
tion. Ocasionally, the method may fail in real, multi-degree-of-freedom
problems. DE BORST [14] suggested that the failure of constrained ite-
rative procedures is caused by employing global displacement vectors
to calculate load parameters AX. It is known that in porous and ce-
mentitious materials like concrete, material damage tends to localize in
a certain regions of a structure. Due to localization, certain degrees of
freedom should have more influence on controlling the load during itera-
tions than others. Therefore, the vectors composed only of the dominant
nodal values should enter constraint equation. The major difficulty of
this so-called indirect displacement control method is that it is usually
not known which degrees of freedom should be controlled. Furthermore,
it may be necessary to change the composition of the dominant degrees
of freedom being constrained as damage to the structure progresses. The
method may become atractive for materially nonlinear problems if some
practical guidelines on selecting the nodal values to be controlled are
given,

For sufficiently small load increments, the Ramm’s normal path me-
thod does not differ from the arc-length approach. The simplicity and
flexibility of the proposed constraint makes the method very useful in
the analysis of concrete and reinforced concrete structures. The perfor-
mance of the method in one DOF problem is demonstrated in Fig.3.
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Fig. 3. Orthogonal path method (Ramm’s method).

3. METHODS BASED ON QUASI-NEWTON ITERATIONS

Load level variability during iterations in the quasi-Newton method
is achieved by the decomposition of the displacement increment vector
described by Egs.(2.1)-(2.3). In the quasi-Newton approach, the inverse
of the stiffness matrix K;!, used in Eqs(2.2) and (2.3), is replaced by a
modified matrix obtained by a suitable quasi-Newton update procedure,
such as BROYDEN’S approach [15] or BFGS approach [16].

Alternatively, the original tangent stiffness matrix can be used
throughout the iteration cycle and modifications can be carried out on
the components of the displacement increment vector. This approach
was successfully pursued by DE BoRrsT in Ref.[17]. Using Broyden’s
updating procedure, vectors AU;;, and AUy, are calculated as:

(3.1) AU = (I + @i AUT)(a; + ANAUT),
(3.2) AUriy1 = AUgi+ ;AU AUpa;,

where

(3.3) o = [AUT(AD; —a)]™,

(3.4) a; = ANAUp +:1:[1(I+ 00, AUT)Ki' Apy;

Ky! is the stiffness matrix at the beginning of the iteration cycle. The
first iteration is the Newton-Raphson iteration. After the values AU},
AUp; and AX; are found, the procedure follows the quasi-Newton re-
- gime. The loading parameter A);, is calculated on the basis of vectors
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AUy and AUryyy from the normal path or the arc-length constra-
int. It was demonstrated in Ref.[17] that the method gives satisfactory
results when employed in materially nonlinear problems.

4. METHODS BASED ON SECANT-NEWTON FORMULATION

Secant-Newton methods are the variations of the secant method [11]
where true tangent iteration is approximated by some secant relation-
ship. CRISFIELD [18, 19] showed that secant-Newton methods, which
he derived from quasi-Newton and conjugate gradient methods, can be
efficiently employed to improve the performance of the modified Newton-
Raphson technique, ’

The simplest secant-Newton method is obtained by applying a one-
step line search to the modified Newton-Raphson iteration. The line
search based step length parameter, 4; , calculated in iteration ¢ — 1,
can be used to obtain a better approximation of the new displacement
vector:

(4.1) U; = Ui + 4:AU;,
where AUT A
42 A; i=12Pi-1

~ AUL(Api-1 — Apy)’

U;_; and U; are the displacement vectors, Ap;_; and Ap; are the out-
of-balance force vectors in iteration i — 1 and 4, respectively. As seen
from Eq.(4.2), this first order secant-Newton approach coincides with
the one step approximation line search.

A more stable, second order secant-Newton procedure approximates
the secant displacement increment in iteration ¢ by means of a modified
Newton—Raphson displacement increment vector AU; and the secant
increment vector AU;_; obtained in iteration i — 1. The displacement
vector U; in iteration ¢ is approximated as:

(4.3) U; = U,_; + AATU; + B,AU;_,

where A; is the line search parameter obtained in iteration i—1 according
to Eq.(4.2). The following secant relationship holds for the incremental
vectors shown in Fig.4:

AU; Ap;

4.4 = - .
44 AU, Ap; — Api_y
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o}

Fig. 4. Secant-relationship.

From Eqgs.(4.2), (4.3) and (4.4), the value of parameter B; is derived as:

_ _AU(Apidpi-1) ) _1
AU (Ap; — Api)

Occasionally, the above second order secant-Newton method may
produce more iterations than the modified Newton—-Raphson method.
This can happen whenever the value of parameter B; becomes large
compared with A; . CRISFIELD [18] recommends the use of standard
modified Newton—Raphson iteration whenever the following holds:

1 B; 1
—5 STOL < E < STOL or STOLL

where STOLL1 is usually taken around 0.5 and STOL is assumed between
2 and 3.

The second order secant-Newton method is used with the implicit
line search introduced by parameter A; (Eq.(4.2)). However, explicit
line searches can be introduced to establish a more exact value of A;
which may be necessary for problems involving concrete cracking.

The constrained formulation of the secant-Newton methods can be
obtained by changing the out-of-balance force vector to allow for varia-
tion of the load level. In the iteration 7, the following adjustment to the
out-of-balance force vector has to be made [19]:

(4.6) Ap; = Ap; — ANg,

(4.5) B = A (1

< A; < STOLL1,

where Ap; is the out-of-balance force vector at the beginning of iteration
t and A); is the load adjustment parameter.
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Assuming the first order secant-Newton scheme described by Eq.(4.2),
the parameter A; can be expressed as: :

AUT  Ap;
4.7 Ai=1- - '
(4.7) © AUL(Ap: — Apiy)

Replacing vector Ap; in the numerator of Eq.(4.7) by the vector given -
in Eq.(4.6), and noting that the variation of the load level in iteration -
i does not affect the length of the vector Ap; — Ap;..; (see Fig.4), the
following form of the displacement increment in iteration 7 is obtained:

AUZ’P—M e
AUT (Ap; — Apiy) AU

(48) AU; = A,‘Aﬁ,‘ + AN

Introducing the decomposition of Eq.(2.1) into Eq.(4.8) and ignoring
higher order terms in AJ;, the final form of the displacement increment
is derived as:

(4.9) AU; = A,AT; + AM(A:AUr + GATY),
in which r
(4.10) C; AU.q

~ AUL,(Api— Apiy)|

The second order constrained secant-Newton procedure described in
Eqs.(4.3)-(4.5) is derived in an identical way to the first order procedure.
The first parameter required in the method is given by Egs.(4.9) and
(4.10), the second parameter is calculated from Eq.(4.5) with the aid of
Eqs.(2.1) and (4.6).

Therefore, ignoring higher order terms in A); :

(AU; + ANAU)T(Ap; — APi—l)) 1
AU (Ap; ~ Apiy)

(411) (A + ANCS) (1 -

= B; — A)\iA,'Di + A/\,-C,- - A/\iCiEi:

where T( )
AUT{Ap; — Ap;1

4.12 D; = T )

(4.12) AUT (Api — Api_1)

AU (Api - Api_1)




NONLINEAR SOLUTION METHODS FOR FEM ANALYSIS OF CONCRETE STRUCTURES 69

. From Eqs.(4.9) and (4.11), the final form of the constrained second-order
- gsecant-Newton method displacement increment vector AU; is obtained
- as:

- (4.14) AU; = AUD 4 axaul?,

~ where

- (4.15) AUO = 4AT; + BAU,,
(4.16) AUY = A,AUr+CAT; — [A:D; - (1 - E)CJAU_;.

The parameters A; and B; used in formulae (4.11), (4.15) and (4.16)
are the second order secant-Newton parameters for the fixed load level
iterations. The load adjustment parameter, AX;, can be calculated from
a suitable constraint equation obtained from the normal path (Eq.(2.17))
or the arc-length (Eq.(2.9)) control.

For difficult iterations, it may be necessary to change from secant
iterations to modified Newton—Raphson iterations, For automatic con-
trol of the iteration process, cut-out criteria are introduced, similar to
those described earlier. For the variable load iterations, these criteria
take the following form:

STOL1 < A; + AXNC; < STOLL,

B; — A)\l[A,-D,- — (1 - E;)C,']
A + ANG

—% STOL < < STOL.

5. FURTHER ACCELERATIONS

The highly nonlinear behaviour of structures entering strain-softening
regions requires special treatment of the system of equations obtained
in the incremental finite element method. On many occasions, the solu-
tion procedure was more stable if the modified stiffness matrix based on
the secant material stiffness relationship for the damaged material was
used. This, however, tended to slow down the convergence rate if modi-
fied Newton-Raphson iterations were employed. The following method
‘helps to overcome convergence problems in load control regime.
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5.1, Accelerated secant-Newton method

For problems requiring a load controlled solution, the second-order
secant-Newton method was implemented. As seen from Eqs.(4.2) and
(5.4), the secant-Newton method, compared with the modified Newton- -
Raphson method, requires two additional vectors AU;_; and Ap;_; to -
be stored in order to calculate parameters 4; and B;. The method
presented earlier was further accelerated by applying the explicit line
search parameter 7; to Eq.(4.3):

(51) U;=U; 1+ n;(AiAf],' + B,‘AU,'_I),

where the step length parameter #; is selected according to the procedure
described in Ref.[18].

The line search procedure employed is the three-step search. If the
tolerance criteria for the line search are not satisfied within the three
steps, the search is terminated. The method was used in load controlled
examples described in Ref.[20, 21] and proved to be very efficient. As
with the secant-Newton method of Eq.(4.3), the accelerated method
requires cut-out criteria. The following limits on A4; and B; were placed:

B
Ai <STOL, STOL1< ;1-’- < STOLZ,
i
where, depending on the problem analysed, STOL was taken between
1.5 and 3.0, STOL1 was between —0.20 and —0.40, and STOL2 was
between 0.30 and 0.50.

5.2. Modified Ramm’s method

To trace full load-deflection curves, the variable load level iterative
method with Ramm’s normal path constraint can be successfully em-
ployed. Since, in its original form, Ramm’s method was based on modi-
fied Newton—Raphson iterations, the method was modified by including
the line search concept. :

The consistent use of the line search with a variable load level itera-
tive method requires the use of an internal loop to determine compatible
values of the line search based step length parameter, 1; , and the load
adjustment, AX;. The introduction of the step length parameter 7; into




NONLINEAR SOLUTION METHODS FOR FEM ANALYSIS OF CONCRETE 8TRUCTURES 71

Eq.(2.1) results in the change of the value of A); calculated in Eq.(2.17).
The new value of A); alters, in turn, the value of the dot product of the
out-of-balance force vector and the displacement increment vector.

To avoid the need to implement an internal loop, an approximate
method is proposed. This alternative method is a two-step approach.
In the first step, the load level is adjusted by using the constraint of
Eq.(2.17) as:

(5.2) /\1'+1 =M+ A)\,',

where ); and A\ are the load multipliers at the beginning of iteration
i and 7 + 1, respectively. After the load level is altered, the line search
on the new load level is carried out as:

(5.3) AU; = 5 AT; + ANAUT).

This variable load level iterative method was successfully employed
in the numerical examples requiring displacement controlled loading pre-
sented in detail in Refs [21-23).

6. CONCLUSIONS

One of the most important aspects of nonlinear finite element anal-
ysis is the solution procedure used for the system of nonlinear equa-
tions. This paper has presented several important solution algorithms
which can be used effectively in nonlinear problems. The emphasis has
been placed on numerical procedures capable of converging in problems
where severe material nonlinearity occurs. It is the author’s belief that
the introduction of some form of line search, preferably the explicit pro-
cedure, may greatly improve the performance of the solution technique
in problems involving strain-softening of the material, This is of great
importance in strategies where different material stiffness laws are used
to assemble the global stiffness matrix and to integrate element stresses.
The use of procedures iterating simultaneously in load and displacement
spaces opens possibility of detecting instabilities in the behaviour of a
structure. Such instabilities are easily missed if load controlled process
is used.
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STRESZCZENIE

ANALIZA NIELINIOWYCH ROZWIAZAN METODA ELEMENTOW SKONCZONYCH
DLA KONSTRUKCJI BETONOWYCH

Podstawowym celem nieliniowej metody elementéw skoriczonych jest rozwiazanie ukladu
nieliniowych réwnan. Ze wzgledu na odksztaleceniowo-oslabieniows nature proceséw zniszeze-
nia konstrukeje betonowe wymagajy specjalnej ostroznodci w stosowaniu wygodnej nielinio-
wej procedury rozwiazujacej. Nowe, zlozone modele materialu i potzzeba okreslenia punk-
téw granicznych oraz pokrytycznego zachowania si¢ konstrukeji wymaga zastosowania me-
tod zdolnych do uzyskania rozwiazan zbieznych w otoczeniu takich punktéw gramicznych.
Praca podaje przeglad kilku nieliriowych metod rozwiazan ze szczegdlnym zwréceniem uwagi
na ich uzytecznodé w nieliniowej analizie konstrukeji betonowych wykazujacych efekty od-
ksztalceniowego oslabienia.
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PeszmomMme

AHAJIN3 HEJIMHEHHEIX PEITEHMIA METOJOM KOHEYHbIX SMEMEHTOB JUIS
BETOHHBIX KOHC TPYKLII

OcHOBEOH LENbI0 HeNAHENHOro MeTOHa KOHEYHLIX SIeMEHTOB ABRACTCH pelleHHE CH-
CTeMbl HeIMHEHHEIX ympanrenmid. Hs-aa pedopMmanuorHoii-ocnabnennolt mpupoarl mpo-
[eccon paspymieRHd, GeTOHHbIE KOHCTPYKLURH TpebyOT cuequantuoil 0¢cTOPOKHOCTH, PU
npUMeHeHA BRITONHOK HenuHeiiHoi pemarcinedl npouemypsl. Hobpie, cIOXHELIE MOOENH
MaTEpANa H HeoOXOOHMOCTE OUpefleNeHHA NpefelLHEIX TOUEK, A TaKie NMOCAEKPHTHYe-
CKOro NOBefeHusd KOHCTpYKuHE TpelyioT OPHMeHEHNA MeTONOB CHOCOOHBIX AA DOAYHe-
HAS pelleHHH CXONAMUXCH B OKPeCTHOCTH TaKUX Npefelbubrx Toyek. HacToamas pabora
OpHEBOAGT 0Go3peRMe HECKONEKHX HeNMBeHHHIX MeTONOB pelleHHH, ¢ ocofenHsIM obpa-
UleHHEM BHEMAHHMA Ha HX IOJNe3HOCTs B HENNMHeHHOM aHan#se GeTORNLIX KOACTPYKIHIA,
obnamaromiux addexTamu medopManEOEHOro ocnabienus.
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