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IMPACT OF A CYLINDER AGAINST A RIGID TARGET
PART 1. COMPATIBILITY CONDITIONS AND THE
VISCOPLASTIC REGION EVOLUTION

W. KOSINSKI and A. NOWINSKA (WARSZAWA)

In the paper the impact test of a short deformable cylinder against a rigid target is analysed

‘in terms of the rigid viscoplastic model [1]. The one-dimensional analysis of that experimental
configuration has been carried out by numerous authors, e.g., [2, 3, 4, 5, 7}. In this paper the
“axi-symmetric geometry, radial inertia, and finite deformations are taken into account, The
‘equations of motion together with the constitutive model lead to an initial moving boundary-
“value problem. The analysis of the field regularity on the moving rigid-viscoplastic boundary is
'fhe crucial point of the considerations. It leads to the conclusion that the initial discontinuous
- ﬁondition does not belong to the solution. The relationship describing the displacement velocity

of the boundary is derived as a function of the process fields.

1. INTRODUCTION

The paper is related to the series of publications (cf.[2]-[7]) devo-
ted to the analysis of the dynamic test carried out for the first time by
WHIFFIN [6], widely known as the " Taylor’s experimental configuration”
[7]. In those papers, however, the 1D {one-dimensional) rigid viscopla-
stic formulation of the test has been presented. Moreover, a complicated
elastic-plastic wave analysis has been omitted by disregarding the elastic
response of materials.

In the present paper the 3D formulation of space variables is discus-
sed under the cylindrical symmetry conditions. As far as the constitutive
- model is concerned, the rigidity before the plastic limit is assumed first
and rate-dependent viscoplastic behaviour afterwards. For the discussed
test of the impact of a cylinder against a rigid target, the equations of
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motion together with the constitutive model adopted in the paper lead
to an initial moving boundary-value problem.

The moving boundary bounds the plastic region propagating towards
the rear end. The axi-symmetric formulation of this problem demands
the analysis of the properties of fields on the moving surface bounding
the plastic region.

The statement of the initial conditions for the system of equations is
a crucial point. The phenomenon of the impact of a cylinder against a
rigid target leads in the mathematical model to the initial discontinuity
of the velocity on the cylinder-target contact plane. Therefore, the ana-
lysis of the regularity degree carried out in the paper is very important
for the problem statement correctness. The continuity and compati-
bility conditions on the separating surface for the fields describing the
deformation process have been investigated. Moreover, the relationships
determining the shape and the velocity of the surface during the pro-
cess for the proposed parametrization have been derived. The proof of
the velocity field continuity presented in the paper shows that the finite
jumps of discontinuites are not admitted for the system of equations go-
verning the problem and, consequently, a discontinuous initial-boundary
condition can not be included in the solution of the problem. Thus, the
equations of the viscoplastic process have to be considered in a left-sided
open interval (#; , t;], where ¢} is the process final time. '

2. FORMULATION OF THE INITIAL-BOUNDARY PROBLEM

A short and stress-free cylindrical specimen strikes perpendicularly
on a rigid target with the veloeity vy {Fig.1). The velocity vy belongs
to the interval from ca. 50m/s to 500m/s. The interval is related to the
structural dynamic problems for a viscoplastic material model. Hence,
the velocity does not exceed the value of 600 m/s when the complete
penetration phenomenon may occur (according to empirical tests) ,

It is assumed that thermal effects, body forces and friction forces
between the target and the specimen are neglected. Radial inertia and

()The critical velocity determined empirically when the complete penetration occurs with
the 50% probability is 850 m/s. Some copsiderations on that topic are to be found, e.g., in [8],

[9].
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axi-symmetric state of stress only are taken into account. The axial-
symmetry condition allows to restrict considerations to fields determined
for two space Euler variables z, r and the time {. Hence, instead of 3D
regions W and Wy, it is sufficient to consider their projections on the
plane z—r (subsets of a semiplane lying above the z axis). Then, instead
of the boundary surfaces Sy, Sg, Sy, S5 and Sy, it is sufficient to consider
boundary curves.

The behaviour of the material is described by the rigid-perfectly
plastic constitutive equations (2.1), (2.2) proposed by PERZYNA [1].

(2.1) d = 'y(ﬂ— )3\/5_,]—2 for @——1>0,

K
(2.2) d = 0 for @—ISO,

where d is the stretching tensor, s the deviatoric Cauchy stress tensor, Jy
the second invariant of s, v the viscosity coefficient, and « the yield limit
in shearing. Hence, equation v/J; = & represents the yield condition. In
the problem under consideration, the tensor d is equal to its deviatoric
part because of the incompressibility constraints tr d = 0.

In the case when the elastic response of the material is taken into
account, the wave propagation phenomena must be considered. The
introducing of the constitutive relations (2.1), (2.2) is equivalent to the
assumption that the elastic wave speed caused by dynamic loading is
infinite.

From the physical point of view, after the impact the elastic loading
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and unloading processes in the specimen occur in the final time interval.
For the rigid-viscoplastic material model, however, the loading process
occurs in an infinitly short time, because the wave propagation pro-
cess has been neglected. In what follows, for the process model under
consideration, the time #y refers to the instant at which the stress-free
cylinder just touches the target and the condition v, = vy on Sy is ful-
filled. If the initial striking velocity is high enough, the yield condition

ri | t>1,

=f

Fig. 2.

is exceeded (v/J; — k > 0) and the plastic deformation in the region Wy
occurs. On S, (Fig.2), where the surface separates two parts of the spe-
cimen, i.e., the plastic one W5 and the rigid one Wi (where the condition
v Ja — k < 0 is valid), the relation VJo — % = 0 holds. The velocity ¢ of
the surface Sy (see, e.g., {11}, [12]) is one of unknowns to be determined
as a part of the solution.

The rigid specimen end moves parallelly to the z direction with the
velocity v. Hence, the physical components of v are v, = v(t), v, = 0,
vg = (0, with the normal in the z direction.

The viscoplastic flow process for ¢ > g, when W #0, is governed by
the system of Eqgs.(2.3)(2.12) formulated in the physical components of
the cylindrical coordinate system
a(sm: + U) 33::1' Sgr

oz +6‘r +T=pv‘”’

asa:r 6(Srr + 0') 28pr + 8oz _ .
Oz + Or + r = P

(2.3)

(2.4)
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(2.5) | dmzfy(g—l)a\s/‘%for %uwo,
(2.6) drr=’y(@—1)3;’}_2 for @—bo,
(2.7) | dmrzfy(g-—l)g\s/% for @——1>0,
(2.8) ez =dp =dpp =0 for ? -1<0,
(2.9) oy = %, = %’l, dp = 2T,
)

(2.11) %’: + %*:'Jr%’-:o.

The equations are nontrivial to be satisfied only in region Wy . In the
rigid (time-dependent) region W for each ¢ € (#g, ), due to vanishing of
d and v,, the only nontrivial equation is the global momentum balance

d
(2.12) P (v(t) f dv) = / (0N, + Szonty + Sgpnty) ds
W1 34

+ f (01 + Spaha + S2om,) ds.
85US8s
The system of equations (2.3)-(2.12) is accompanied by boundary
and initial conditions for ¢ > ¢, (Fig.2) in the following form

(sm: + U)nz + Syt = 01

(2.13) M (S,.,- 1 O‘)TL,. —0, on S;U 55U S,
(2.14) v, =0, 8zr =0, on Sy,
(2.15) v, = 0, Sqr =0, on S3US;.

The spherical part of the stress tensor is denoted by &, while p is the
specimen mass density, n, and n, are components of the unit normal
to the surface Sy, and @, ¥, denote components of the velocity material
- derivatives.
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The physical initial conditions at ¢t = &, (Fig.1) are as follows

(2.16) x = &,
(2.17) vy =y, v, =0, on WiUS,,

where ¥ is the motion function on W2U.Ss, X, describes the initial speci-
men configuration, while conditions (2.17)1, (2.17)s are the consequence
of the rigid specimen behaviour (Fig.1).

In the time interval (y, #] the boundary conditions (2.13)-(2.15)
have been satisfied. When the boundary condition (2.13) is taken into
account, the last integral in Eq.(2.12) disappears. The form of Eq.(2.12)
simplified in such a way will be used in further considerations.

To compare the present formulation with the 1D formulation discus-
sed for example by TING [4], let us notice that the latter formulation
resolves itself into the solution of the nonlinear parabolic equation

(2.18) 0, 0<z<((),

oz \"oz) @t
with a moving boundary ((¢). Here {(¢) denotes the relative displace-
ment of the boundary with respect to the target, p is the exponent of the
constitutive function, « is the equivalent Saint-Venant parameter (sce
[2]), whereas v and z are nondimensional quantities denoting the velo-
city field and the Lagrangian coordinate, respectively. The existence of
the moving boundary in the Ting’s solution is expressed by the following
scalar differential equation

ov 1

5,,:(2 1-¢’

5 ( a?u)lfp Y

(2.19)

which completes the basic equation (2.18) determining the character of
the problem considered.

For the case considered in the present paper the 3D axi-symmetric
state permits the displacement velocity of the boundary Sy (Fig.2) to
be radially variable, Moreover, the governing system of equations (2.3)-
(2.11) can not be simplified to one scalar equation for the velocity com-
ponent v; we are left with three unknown field components v,, v, and o
not mentioning the position of the moving boundary. All these variables
are functions of two space variables z, r and time ¢. By a process of
resubstitution it is possible, however, to end up with two equations of
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motion of the second order in the spatial derivatives for v, and v,, and
one equation of the first order in v, v, and o. In the former two equ-
ations the first order time derivatives of v, and v, appear, whereas the
latter equation is time independent. Consequently, the resulting system
of equations formally unclassified can be split in two equations of a pa-
rabolic type and one first order differential equation in spatial variables,
provided that o is regarded as known (in the first two equations). For
the local problem formulation, the local equation relating this velocity
with other process fields has to be found. The velocity of the displa-
cement of the viscoplastic region will be defined in Sect.3. Since the
boundary between the viscoplastically deformed region denoted by W
and the rigid one denoted by W) may be a carrier of discontinuities in
some field variables, it is necessary to check whether the velocity and
acceleration fields preserve their continuity on the surface separating
the both regions (similarly to the 1D case), or whether they are loosing
it. If the latter case happens, it will be necessary to add to the system
of equations the relations imposing constraints on existing jumps, i.e.,
the so-called compatibility conditions. The study of that problem has
already been initiated in paper [10].

3. COMPATIBILITY CONDITIONS ON THE MOVING SURFACE

In the problem considered the moving surface Sy separates the spe-
cimen regions possessing different material properties. It may happen
that on S, fields describing the process lose their continuity. The va- -
lues of discontinuity jumps are not unrestricted, however, so some con-
straints are imposed on them resulting from the balance laws and the .
kinematic compatibility conditions. These constraints, known as the
generalized Rankine-Hugoniot (dynamic and kinematic) compatibility
conditions (see, e.g., [11], {12]¥) for points lying on the surface, sup-
plement the basic system of equations (2.3)—(2.12). They will form for
us a kind of tool in analyzing the continuity of the fields describing the
process in the whole region W, U W,.

Let us consider any tensor function f continuous and differentiable
in the region W; U W excluding the surface S3. A jump of the function

{2 The position [12] is an extended English version of [11].
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J on the surface S is defined as

(3.1) [l = fo— f1

where fy and f; are the limit values of the function f when any point on
Sy is reached from Wy or W1, respectively. If [f] # 0, then the surface
Sy is called the discontinuity surface of the function f. We assume
that at any time from (o, #;] of the process, the component of the unit
normal 7, is different from zero. The stretching tensor field in the rigid
material region W) is equal zero. On the other side of the boundary
Sy from the constitutive properties of the region W, it results that for
points belonging to Sy and reached from the side of that region equality
(2.2) holds. Consequently, it follows that on the boundary S, separating
these two regions the field of stretching tensor d is equal to zero and
does not lose the continuity, i.e.,

(3.2) di=dy=0.
The mass balance equation restricted to the surface Sy is following

(3.3) [o(vn — ua)] =0,

where v, = v-n (n is the unit normal to S4) is the normal component of
the particle velocity on Sy and u, is the normal speed of displacemnent
of the surface (see e.g., [11], [12]), i.e., u, = c-n, where c is the velocity
of displacement of ;.

The mass balance law for incompressible continuum (div v=0, see
Eq.(2.11)) having a continuous initial density distribution is satisfied
by the density field p, uniform and stationary in the whole process.
However, the incompressibility condition is valid for both the rigid and
plastic regions. The field p = p; = py (see denotation (3.1)) is the
constant parameter of the process. From relationship (3.3) it results
that the normal component of the particle velocity on the moving boun-
dary Sy preserves its continuity for continuum with the isochoric motion
_condition,
(3.4) [v]-n = o] = 0,

where 1 = {n,, n,, 0].

In the 1D case (see [4]), when the only component of the particle
velocity v is vy, the condition (3.4) denotes the continuity of the velo-
city field v. In the axi-symmetric situation the continuity of the field
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results from the constitutive properties of the material. Moreover, the
‘relationship (2.9); due to the continuity and vanishing of d on either
side of Sy leads to

(3.5 | =0,

-whereby, taking into account condltmn (3.4) and the kinematic restric-
‘tion on the region W (v, = 0) we get, provided that n, # 0,

::(3.6) [v]=o0.

©  Let us examine whether the assumption about the continuous distri-
‘bution of the stress tensor field on the surface Sy can be accepted. For
the deviatoric part of the stress tensor the inverse transformation to the
‘constitutive equation (2.1) gives

.(3.7) s=n[(@)§+l]% for d#0.

If d tends to zero, then the deviatoric stress s reaches its limit value

: d

(3.8) - hf.%s = lim r—= T
Due to the continuity of d, this limit value® can be assigned to the
deviatoric stress field for points lying on the surface Sy and reached
from the region W5. Then, the deviatoric stress tensor could be made
continuous in the whole region W; U Wy. However it is not possible till
now to determine the exact value of the deviatoric stress tensor on Sy
only from the relation (3.8), because the expression on the right side
will take in the limit the form of 0/0. On the contrary, the invariant Jo
has the determined value k% on the surface Sy .

To examine the spherical part of the stress tensor let us utilize the
first order dynamical condition of compatibility expressed by the relation

(3.9) - [p(vn —ua)v + (s+01)-n] =0.

Making use of (3.3) and the conclusion (3 6), the equatlon (3.9) can
be simplified to
(3.10) | [s}-n+[e1] -n=0.
()1t should be noted that this Kmit exists for each (z,t), because the series {s}q_,o is norm

convergent and the tensor space is finite-dimensional, hence it is reflexive (and each sphere is
weakly compact).
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The continuity of the deviatoric stress s on Sy would imply that the
first term in (3.10) disappears; this would lead to the continuity of the
pressure o.

Let us analyse the continuity of the acceleration field. Because of
the continuity of the velocity field on S4 one can employ the Maxwell
theorem (see, e.g., [11], [12]) for this field expressed by the following
relations oy

ov ov
. dv]=[— = —u,[—
(1) [eradvi=[den,  [51=-ulz]
where "®” denotes the tensor product. Recall that in the process con-
sidered we exclude such configuration of the boundary S4 for which at

some point n, = 0. Let us carry out the componentwise analysis of the
tensor relationships (3.11); and (3.11):

(3.12) 122 = 1551,

~ On the left side of (3.12) we have the component d,, of the stretching
tensor d which is continuous on the boundary S;, hence for the first
component of the velocity gradient on the normal direction we have
condition

(3.13) |

Exploiting it for the next component (3.11)

Ovzy v,
57 or 1= II('?n In.

gives us the continuity of the mixed components of the velocity gradient
(3.19) Ze)=0, [

where (3.15)3 can be obtained from (3.2) for mixed components of the
tensor d

avx]I 0.

(3.14)

=0,

1 6‘1}ﬂc 31),.
3.1 = =
(3.16) 152+ 5] =
Let us analyse the subsequent componentw1se consequence of Eq.(3.11)1
dv A, '
(3.17) o Bl g L

From the above relationship one can see that condition (3.15); implies
the continuity of the component dv,/on.
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The above considerations lead to the conclusion that the both normal
components and whole velocity gradient preserve the continuity on the
moving boundary Sy of the spreading plastic region. The conclusion can
be formulated in the tensor notation

(3.18) !{g—;]l =0, [grad v] = 0.

Note that from the rigidity of the region W) characterized by the disap-
pearing of the velocity gradient in the whole region W) it results that
(grad v)s = 0, because of Eq.(3.18),. Utilizing relationship (3.18);, we
can prove easily the continuity of the velocity field partial derivative.
The zero value of the jump

(3.19) 11%’-]] =0

results directly from taking into account (3.18); in relationship (3.11)s,
if the boundary Sy is not stationary, i.e., u, # 0.

Currently we have all conditions needed to state whether on 54 can
lay points of the first order discontinuity for the acceleration field. The
acceleration of the material points of the continuum is given by relation-
ship 5

. v
(3.20) V=

which formulated in jumps takes a form

+grad v-v,

(3.21) [¥1= [[(?9—:]] + [grad v - v].

Disappearing of the jumps at the right side of Eq.(3.21) (see Egs.(3.6),
(3.18); and (3.19)) preserves the continuity of the acceleration field
on 34
(3.22) =0,
and in the whole region Wy U W, as well.

Note that the local time derivative 9v/Jt does not need to disappear
in the rigid region, so it is not neccesary that

should hold.
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Let us check the material derivative of the acceleration field. Assu-
ming that Sy is a third order singular surface of the motion function ¥,
it is possible to derive (using the Maxwell theorem for second derivatives
of the velocity field) following relationships

3.24 dgrad v] = HQEX]} ®
(3.24) [grad grad v] = Famen,
3.25) a2 = —ufZY

(3. [gra 2 = Uy, B ®n,
(3.26) LAl ] i)

After contraction of Eq.(3.25) we get

. Ov v
(327) [[dlv-é—t—]] = —’Uﬂ[@]] + 1.

Recall that the conditiorn of isochoric motion div v = 0 written after
differentiation v

d
(3.28) ﬁdxv v =div — e =0,

should be fulfilled on both sides of the boundary S;. Thus, it can be
written as follows

(3.29) [divv] =0 and [div%—:]} =

Comparing Eq.(3.27) with Egs.(3.29); we can see that, if the boun-
dary Sy is not stationary, i.e., u,, # 0, then the normal projection of the

jump of the second derivative of v must be zero. If this jump is denoted
by

2
(3.30) o

[5.2]

=: a,
then for the nonstationary boundary the condition (3.27) takes the form
(3.31) a-n=0

The expression (3.32) for the jump acceleration material derivative
is obtained using the definition of this field written in jumps
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(3.32) [v] = [[ ]] +[grad v-v] =

6 (grad v-v)+grad (6 +grad v- v) -v].

I[ at2 ot

Differentiating and mal{ing use of the continuity conditions (3.18)y and
- (3.19) for the first time and space derivatives of the velocity, we get

(3.32) [vl= l{ 5 T+ 2grad :99

Taking into account the Maxwell theorem (Eqs.(3.24)~(3.26)) and the
denotation (3.30), we obtain an expression for the jump of the accelera-
- tion material derivative in the following form

- (333) [] = (un — v2)%a.

" v+ grad grad v-v@v].

. If we employ relationship (3.31) in the analysis of the equation written
- above, then as a result we conclude that the tangent component of
- the acceleration field only can suffer a jump on the surface S; . The
- continuity of both the components of that derivative takes place only in
. the case, when the surface S is the material one, i.e., u, = v, .

The results we have obtained indicate that the moving boundary is
. at least the second order surface for the velocity function v, i.e., the
first derivatives of the velocity function are continuous. Closing these
. considerations, let us turn to the condition (3.24) that, combined with
.. the rigidity condition for the region Wi, leads to the relationship

G (v =a,

 where A denotes Laplacian.

4. DESCRIPTION OF THE MOVING BOUNDARY IN THE PROCESS

In the 1D case [4] the description of movement of the rigid-plastic
' boundary is based on Eq.(2.19) which gives the motion of the point at
. which two subintervals, i.e., rigid and plastically deformed, meet. For
the combined state of stress, however, the projection of the boundary
surface on the & — r-plane is a curve, moving in the z direction. Hence,
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its velocity of displacement ¢ will depend on r; after performing the
time differentation in Eq.(2.12) the velocity ¢ will appear on its left
hand side. It is worthwile to notice that (2.19) corresponds to the diffe-
rentiated form of (2.12) which expresses the global balance law of linear
momentum for the rigid part Wi.

For the global formulation of the initial-value problem with the mo-
ving boundary separating two 2D regions, a local relationship deter-
minig the velocity ¢ of this boundary could be of the great help. The
surface S (the curve, exactly) moving in the continuum can be described
either by the implicit form

(4.1) g(z,r,t) =0
or by the parametric representation
(4.2} z = (l,1); r=I,

where [ is a parameter of the curve Sy and g is a C? -class function with
the nonvanishing gradient. The velocity of displacement of S is given

by (see, e.g., [11], [12])
(4'3) c= 56;(9077') = (aa_f$0) .

The main problem concerns the form of the function g(z,r,t). For this
purpose we employ the yield condition that has to hold on the boundary
S4 in every configuration during the deformation process. Hence, the
moving boundary S, is given by

(4.4) {(z,rt):g(z,r,t) =0}, where g(z,r,t)=1-VJa/x.

The total time differentation of Egs.(4.4) gives on the boundary S, the
following relation

(4.5) 99 +gradg-c=0,
at
where d
grad g
4.6 n:= ——r->"
(40) ||lgrad g]
represents the normal vector to the boundary S4 and
9
ot

(&7 U= grad gl
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gives the normal speed of displacement of the surface, i.e., u, = c-n
~ the normal component of the velocity ¢. The velocity vector ¢ has
_ two components normal and tangential to S4. The latter one depends
. on the assumed parametrization. We have proposed the parametric
- representation of the moving boundary in the form (4.2). It results
from the axi-symmetric geometry that permits to consider a curve S
. instead of the surface Sy .

In the general 3D case the third component @ should occur with the
' refering parametric equation § = §. Then, we have two vectors tangent
to the surface Sy : e1 = (¢r,1,0) and ey = (0,0, 1); hence we get

(4.8) n=(1,—p;0)//1+ ¢

For the parametrization Eq.{4.2) the paths of the points I = constans
lying on the surface Sy are straight lines parallel to the z axis. This pa-
rametrization comes in the natural way from the geometric character of
the phenomenon and simplifies the analysis of the boundary kinematics.
From the form of Eq.(4.2) one can see that for this parametrization the
¢, component of the velocity disappears

(4.9) e = 0.

What we have to determine yet is the ¢, component that is to be obta-
ined from Eq.(4.5).

Using the definition of the scalar product and taking into account
Eq.(4.9) we get from Eq.(4.5)

g , 09 99 _
(4.10) 5 T 3, T 5,0 =0

w=-(2)/(2)

_If for the representation (4.2) the normal versor takes the form (4.8),
then the normal velocity component of the moving curve will be given
by

(4.12) Un = —pp/ 1+ 6%,

where ¢ denotes the partial time derivative of .
Due to the form g(z,r,t) given by Eq.(4.4}, the relation (4.10) yields

(4.13) Ce=- (%) / (%?)
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w14) w = (22) \j(%g)t (22"

An important feature of this formulation is that the invariant J; is given
on the boundary Sy by the yield condition

(4.15) Jo = K2,

whereas the deviatoric part of the Cauchy’s stress tensor is undetermined
on this boundary (see constitutive equations (2.1) and (2.2)).

The relationships (4.9) and (4.13) give the explicit representation of
the velocity vector ¢ = [c;,0] as well as its normal component by the
field derivatives of the second invariant of the deviatoric Cauchy’s stress

5. CONCLUSIONS

From the analysis of the compatibility conditions on the surface bo-
unding the viscoplastic region on can conclude that the equations de-
scribing the problem do not permit the first order discontinuity of the
velocity field. It means that, taking into account the discontinuity of -
the physical initial conditions, one should look for the solution of this
problem in the one-sided open interval (#y,%:]. Hence, in order to so-
lve numerically the initial boundary-value problem in the whole interval
[t0, %] an extra treatement of the initial condition is necessary. It will |
be the subject of the next part of this paper [13], where the rigidity pro-
perty of the material of specimen up to the yield limit will be weakened
by introducing non-vanishing initial time increment At after which an
initially advanced plastic ow will proceed. ‘

To conclude this part one should notice that, in spite of the lack of
deviatoric stress tensor determination on the moving boundary (accor-
ding with material model), the local relationship has been proposed in
the previous section that determines the velocity of the bounding curve.
For this purpose the field of the deviatoric invariant is used, for it is well
defined in the whole viscoplastic region W3 including S4.



IMPACT OF A CYLINDER AGAINST A RIGID TARGET. PART I. 47

REFERENCES

. P.PERZYNA, The constitutive equations for rate sensitive plastic materials, Q. Appl.
Math., 20, 321-332, 1963.

. I'.U.Bapenbnart, A.J0.Hmnuaucknil, 06 yaape SA3Ko-NIACTHYECKOTO CTEPIKHA O Hec-
Tokylo nperpany, llpakn. Mar. Mem., 26, 497-502, 1962.

. J.BEIDA, Analysis of deformation in a short visco-plastic cylinder striking a rigid tar-
get, Arch. Mech. Stos., 15, 6, 879-888, 1063.

- T.C.T.TInG, Impact of a nonlinear viscoplastic rod on a rigid wall, J. Appl. Mech.,
Trans ASME, Ser. E, 33, 3, 505-513, 1966.

. T.Havasui, H.FUKuoKA, H.Topa, Azial impect of low carbon mild steel rod, Bull.
JSME, 14, 75, 901-908, 1971.

. A.C.WHIFFIN, The use of flut-ended projectiles for determining dynamic yield stress,
Proc, Roy. Soc. Lond., 194, A, 300-332, 1948.

. G.LTAYLOR, The use of flat-ended projeciiles for determining dynamic yield stress,
Proc. Roy. Soc. Lond., 194, A, 289-299, 1948,

- 5.J.JoNEs, P.P.GiLL1S, On the penetration of semi-infinite targets by long rods, . Mech.
Phys. Solids, 35, 1, 195-201, 1887.

. K.JacH, E.WLODARCZYK, Compuler modelling of shield pieveing process, . Tech.Phys.,
1990 [in press].

. A.NOWINSKA, Fermulation of the general initial-boundary-value problem modelling the
impact test of a cylindrical specimen striking a rigid wall [in Polish], Prace IPPT, 20,
1988,

. W.KosIfsKI, Introduction to the field singularity theory and wave analysis [in Polish],
PWN, Warszawa-Poznai 1981,

. W.Kosiiskl, Field singularities and wave analysis in continuum mechanics, PWN,
Warszawa, BE. Horwood, Chichester 1986.

. W.Kosiiski, A.NowINsSKA, Impact of @ eylinder against a rigid target, Part II. Initial
condition [under preparation].



48 W. KOSINSKI and A. NOWINSKA

STRESEZCZENIE

PROBLEM UDERZENIA WALCA O PRZEGRODE .
Cz. I. WARUNKI ZGODNOSCI I EWOLUCJA STREFY LEPKOSPREZYSTEJ

W pracy podano analize préby dynamicznej zderzenia krétkiej odksztalcalnej prébki cy-
lindrycznej ze satywna przegroda, dla sztywno-lepkoplastycznego modelu materialu zapropono-
wanego przez PERZYNE w pracy [1]. Problem ten rozwazany byl w ramach teorii jednoosiowej
w wieln pracach, np. [2, 3, 4, 5, 7]. Przedstawione w niniejszej pracy sformulowanie uwzglednia
osiowo-symetryczny charakter problemu, inercje radialna i skoficzone deformacje. Réwnanie
ruchu wraz ze zwiazkami konstytutywnymi opisujacymi przyjety model materialu prowadza
do problemu poczatkowo-brzegowego z ruchoma, granica. Istotng czeéé pracy stanowi analiza
regularnoéci pél procesu na ruchomej, sztywno-lepkoplastycznej granicy. 7 analizy tej wynika,
#e nieciagly warunek poczatkowy nie naleiy do rozwigzania. W pracy sformulowano ponadto
zwiazek wyrasajacy predkoéé przemieszczania ruchome] granicy w funkeji pdl procesu.

PeawoMme

TIPOBJIEMA YHAPA ITUTMHIPA O IIPETPALRY
Y. 1. YCJIOBHUSI COBMECTHOCTH M 9BOMIOLIMSA BA3KOYIIPYT O 30HBI

B pafoTe npefcTanged aHATHS AWHAMHYECKOTO HCNBITAHNA CTONKHOBEHUA KOPOTKOr0
nedopMEPYeMore NETHHApPHYecKOoro o6pasia ¢ 3KeCTKOH mperpamod piag JKecTKo-BAIKO-
NIACTAYeCKoH MOeNy MaTepuania, upefnoxenroi Ilamxuua B pabore [1]. Dra mpobnema
paccMaTpPHBalach B paMKaX OfHOOCHOU Teopuu B MHOIMX paboTax, mampuMep, [2, 3, 4,
5, 7]. TpepcraBnerHas B HacToAmed pabore GopMyNMpPOBKa YYHTLIBAET OCECHMMETPAY-
HEIN XapakTep npofieMsl, pagUalLHYI0 HHEPIUIO W KoNeuHkle fedopMallnl. YIpaBHenue
JIBN KEeEUA, COBMECTHO ¢ ONpefeffioliMy COOTHOINEHHSMH ONWCHIBAIOIINMH DPHHATYIO
MOfieNlb MATEPHAKA, OPHBONAT K HaYalbHO-KpaeBoif 3afaye ¢ NogBHACHOR rparunel. Cyme-
CTBEHHYI0 YacTh PabOThI COCTABIAET aHANYS PeTyIAPHOCTE NoNell Iponecca Ha MOABHHOIM,
JEeCTKO-BAIKOMNacTHYeckoll rpapune. M3 sToro ananusa ciegyeT, 4TO pa3pyBHOE Ha-
YanLHOE YCIORME He NPHHALIEXKHT K pelicAno. Kpome aToro B paboTe chopMynuposaHo
COOTHOIIEHNE, BLIpaXNcalolliee CKOPOCTEL MepeMelneHYA TOMBMMKHON CpaHuis B ¢YHKIHEN
OOMIei MpPOIEecca.
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