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NON-UNIQUE NUMERICAL SOLUTIONS IN VISCO-PLASTICITY

H.J. ANTUNEZ (WARSZAWA)

We present the numerical analysis of a series of cutting problems for a visco-plastic
material. The model is implemented in a finite element program written in the flow for-
mulation framework. Almost ideal plasticity is achieved as the limit case of a visco-plastic
material. Solution dependence on the chosen initial configuration (the final one being not
known) suggests non-uniqueness inherent to the visco-plastic material with free surfaces,
since a residual rate dependence is conserved in the model.

1. INTRODUCTION

The behaviour of a perfectly plastic material under continuous defor-
mation has attracted the attention of researchers for several decades. Al-
though in most of the contributions severe assumptions have been stated
— namely, no strain hardening, no stress rate dependence, two dimensional
flow, isothermal conditions, etc. — astonishingly accurate results can be
obtained as compared with experimental data.

The mathematical model for rigid-perfectly plastic material yields a hy-
perbolic system of differential equations. Among the traditional methods
for solving this system of equations, the slip line field theory [1] is for sure
the most popular, and the one which has been used in most different prob-
lems. Special attention was devoted to the presence of non-unique solutions,
all of which are complete in the sense that they satisfy all the static and
kinematic requirements. This non-uniqueness is partly due to the idealized
nature of the material model, but in addition, it has been proved [2-4] that
free surfaces introduce the possibility of non-unique solutions, since the fi-
nal configuration is not known. Different positions of the free surface can
be shown to satisfy the governing equations, by application of the slip line
theory.
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On the other hand, computer numerical methods have constituted an
alternative and complementary approach to these problems. It has been
possible to reproduce slip line theory results and, in addition, to find out
solutions where that method is not applicable. A historical account of the
main features which constitute the so-called flow approach, dealing with
rigid-visco-plastic materials in metal-forming processes by the finite element
method, can be found in [5]. The perfectly plastic material is placed as
a strain-rate-independent limit of a visco-plastic material. However, this
limit involves a singular problem, from the mathematical and, therefore,
numerical point of view. ANTUNEZ and IDELSOHN [7] have proposed an
effective way, based on matrix scaling, to make the problem well posed and,
as byproduct, to extend essentially the range of strain rates for which the
model can be applied without being distorted.

In this paper, we solve the problem of cutting a semi-infinite domain
of a plastic material with a residual viscous effect by a rigid sharp wedge
moving parallel to the metal surface. The model considers the material as
a non-Newtonian fluid, and therefore the crack formation and propagation
is not taken into account. A free surface is found in most of the boundary
which can have large variations in shape and orientation from the initial
configuration. This behaviour is taken into account by an integration along a
streamline using an intrinsic coordinate system with an additional condition
for determining the updated configuration. In order to avoid excessive mesh
distortion we also introduce an algorithm for mesh rearrangement.

It is found that the final configuration depends on the initial guess. Sen-
sitivity of this results to the specific configuration, i.e. to the wedge angle,
is observed.

2. PHYSICAL AND COMPUTATIONAL MODEL

In order to model the behaviour of the visco-plastic material during form-
ing processes, it is assumed that the overall strains are large enough so that
elastic ones can be neglected. With additional assumptions of associated
plastic low and a power-type law for the plastic potential, the constitutive
equation can be written in analogy with the one of a non-Newtonian fluid,
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where the viscosity is given by
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(2.2)

and
€;; strain rate tensor,

s;; stress deviator tensor,
oy = oy(T,E,0,,) yield stress,
E= \/2€;6i; second invariant of the strain rate tensor,
~v fluidity parameter,
1 power of the visco-plastic law,
T temperature,
Oy, Mean stress,

£ equivalent total deformation.
In general, the yield stress can be dependent on the total strain, the tem-

perature, and the pressure. For the rigid-perfectly-plastic material we take
it as constant.

Bearing this in mind and following standard finite element patterns, it
can be shown that the equilibrium equations for a non-Newtonian fluid are
satisfied by solving the system of equations which results from weighting
them throughout the domain with suitable functions W;

(2.3) fm(v o+ 0)d02 =0,
2

where o denotes stresses and f applied forces. For elliptic problems the
weighting functions W; are best chosen (with respect to convergence of the
discretized to the exact solution) as the same shape functions used for ap-
proximating the solution {Galerkin approximation).

Equation (2.3) is completed by specifying appropriate boundary condi-
tions: velocities

(2.4) u = i, on Iy,
and tractions
(2.5) t =1, on Ii,

where the boundary is I' = Iy U I,
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To the given equations, the incompressibility condition is added by re-
quiring the compressive work rate to vanish

(2.6)  [Ipataa=o.
2

The perfectly plastic limit is reached by imposing n — oo, in Eq.(2.2).

3. T'REE SURFACES

A particularly important feature of the presént problem is to handle free
surfaces appropriately, in order to reach the final configuration as a part
of the solution. Since for steady state the free surfaces are streamlines, the
updated coordinates can be calculated by integration from a fixed point. The
most straightforward way of performing this integration is, as suggested by
ZIENKIEWICZ et al. [6],

& T
— dy I O ’U,y
(3.1) yq_yo—}-/dida,_. yg-i—/umdf,
Lo

o

u, and u, being the velocity components in global coordinates. In Eq.(3.1),
the nodal coordinates in one direction are kept fixed, and the free surface
is followed by changing the coordinates in the other direction. This scheme
is convenient, for its simplicity, where free surfaces are roughly parallel to
the coordinate axes, and if it is known in advance that the variations from
an initial, estimated configuration will not be very large. However, in cases
where the free surfaces are expected to have considerable variations, or even
to change the orientation with respect to the global coordinate system, a
more general algorithm is required. For such cases, we state the free surface
condition as

(3.2) | /1u,,_|ds o0,

s

where S is the unknown free surface, and u, is the velocity component
normal to the surface.

When calculating this integral in the discretized model, we have the
velocities and the configuration for the iteration n, and we find the configu-
ration for the iteration n + 1. Equation (3.2) will require a rotation of each
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Fia. 1. Free surface updating by curvilinear integration.

segment 7,2+ 1, in order to have the velocity tangent to it, Fig.1. Here, the
condition of a constant length of each segment must be included, because
Eq.(3.2) leaves this magnitude undetermined.

In addition, we perform a node rearrangement within the whole domain
in order to have the least distorsion in the mesh. To this end, we consider
separately the displacements in two orthogonal directions from two succes-
sive configurations in the free surface as the imposed boundary values in the
Laplace equation. Calling w the nodal displacements in one direction, we
solve

(3.3) Vi =0,

where the boundary conditions are given by the imposed or null displace-
ments on the boundary, according to either free or fixed boundaries, respec-
tively. This gives a proportional displacement field for all the nodes which
keeps a low distortion in the mesh.

4, PLASTIC MATERIAL WITH A RESIDUAL VISCOUS EFFECT

For the numerical applications we have taken n = 40 in Eq.{2.2) to
obtain the visco-plastic limit. If, in addition, oy = 200, v = 1, and a,, =

oy + (5/7\/5)?1", we have

€ Tup
1078 200.70
. 1 200,99

10¢ 201.39
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This means a very small, but non-zero, viscous effect. A perfectly plastic
material would yield a singular stiffness matrix, making impossible the nu-
merical solution by this method. Besides, we are interested in solving this
problem with this residual viscous effect, since it has been an open question
whether such behaviour would eliminate any non-uniqueness. It should be
kept in mind that Hill’s uniqueness theorem [8)] does not apply to problems
involving unspecified boundaries.

5. NUMERICAL RESULTS

For the numerical calculations a steady state module is used of a fi-
nite element code written by the author [9]. The program implements the
model presented in Secs. 2 to 4, following standard finite element tech-
niques: mixed, velocity /pressure formulation with isoparametric nine and
four nade elements for velocities and pressure, respectively. The nonlinear
system of equations is iteratively solved by the frontal method. ‘A simple
back-substitution scheme is adopted, becanse the Newton-Raphson method
is not applicable — it does not converge — when the material behaviour is
close to perfectly plastic.

a) b)

Fi1G. 2. Wedge angle = 110°, mesh 1; a. Initial mesh; b, Final mesh.

We model a cutting problem as a semi-infinite domain, a narrow strip
of which, h, is removed by the motion of a rigid sharp wedge parallel to
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the metal surface. A uniform, velocity directed downwards is imposed on
the upper boundary. The horizontal component is enforced to be zero on
the left boundary, as well as the component normal to the solid boundary.
The metal chip and the undeformed matrix constitute two regions with a
uniform velocity field, separated by a narrow transition zone where all the
plastic deformation is concentrated. In correspondence to these two regions,
the free surface has two straight segments which form a sharp angle. The line
from this corner to the tool edge separates the two rigid body displacement
regions,

a) | b)

F1G. 3. Wedge angle = 110°, mesh 2; a. Initial mesh; b. Final mesh.

Figures 2 to 4 show three initial and final meshes for a wedge angle of
110° with respect to the imposed velocity. Initial configurations are gener-
ated parametrically, where the assumed chip thickness, eg, is the main vari-
able. It is pointed out that the different final chip thicknesses correspond
to the steady-state solutions and result from assuming different initial con-
figurations, as shown in the figures. We state that the solution is not mesh
dependent, since we have refined the mesh both in the direction parallel and
normal to the free surface, and obtained essentially the same results. Minor
variations are produced by changing the initial radius connecting both parts
of the domain, which can also be seen as producing different initial configu-
rations. The range of obtained solutions is shown in Fig.5, where, in terms
of the initial chip thickness/cutting depth ratio (ep/h), both the final chip
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Fiz. 4. Wedge angle = 110°, mesh 3; a. Initial mesh; b. Final mesh.
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Fig. 5. Wedge angle = 110°, chip thickness/cutting depth ratio. .

thickness/cutting depth ratio (e/h) and a thickness/cutting depth ratio nor-
malized in terms of the applied force and the stress at pure shear (ek/Th) are-
visualized. The latter can be compared with PETRYK’S non-unique solution
[3], whose extreme values are shown by the dashed lines.in the same fig-
ure. In Fig.6 the strain rate contours are plotted, showing how the velocity
gradients are concentrated in a narrow band.
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Fig. 6. Strain rate contours.

Fic. 7. Wedge angle = 90°, final mesh.

Similar calculations are carried out for tool angles of 90° and 70° (Figs. 7
to 10) showing final meshes and thickness/cutting depth ratios. It can be
pointed out that with increasing angles, sensitivity to initial guesses de-
creases.
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Fiq. 8 Wedge angle = 90°, chip thickness/cutting depth ratio.
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Fi¢. 9. Wedge angle = 70°, final mesh.
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FIG. 10. Wedge angle = 70°, chip thickness/cutting depth ratio.

[534)



NON-UNIQUE NUMERICAL SOLUTIONS IN VISCO-PLASTICITY 535
6. CONCLYUSIONS

We have shown the numerical solution of some cutting problems where
non-uniqueness is found by considering different initial guesses. Because the
rigid-perfectly plastic material is reached as a limit of the rigid-visco-plastic
one, a residual rate sensitivity is present, and still the non-uniqueness is
present. This means that a small amount of rate dependence does not
eliminate the non-uniqueness in the cutting problem.

7. ACKNOWLEDGEMENTS

The author gratefully acknowledges Prof. PETRYK for his interest, en-
couragement and useful discussions, and the Polish Academy of Sciences
which granted the support for the present work.

REFERENCES

1. W.SzczZEPINSKI, Introduction to the mechanics of plastic forming of metals, Sijthoff
and Noordhoff, The Nederlands 1979.

2. H.PeTRYK, Slip line field solutions for sliding contact, Proc. Inst. Mech. Engngs.,
Int. Conf. Tribology - Friction, Lubrication and Wear, Fifty Years On, II, 987-994,
London 1987.

3. H.PETRYK, On the stability of non-uniquely defined processes of plustic deforma-
tions, J. Mecharique Théorique et Appliquée, 187-202, spec. nr,, 1982,

4. H.PETRYK, Non-unique slip-line field solutions for the wedge indentation problem,
J. Mechanique Appliquée, 4, 3, 255-282, 1980.

5. O.C.ZIENKIEWICZ, Flow formulation for numerical solution of forming precesses,
{in:] Numerical Analysis of Forming Processes, J.F.PITMANN et al. [Eds.], Wiley
1984.

6. 0.C.ZENKIEWICZ, P.C.JAIN and E.ONATE, Flow of solids during forming and
extrusion: some aspects of numerical solutions, Int. J. Solids Structures, 14, 15-38,
1978,

7. H.J.ANTUNEZ and S.R.IDELSOHN, Topics in numerical solulion of isothermal and
thermal-coupled forming processes, Latin American Applied Research, 20, §9-83,
-1990.



536 H.J. ANTUNEZ

8. R.HILL, On the state of stress in a plastic-rigid body at the yield point, Phil. Mag.,
42, 868-875, 1951,

9. H.J.ANTONEZ, Andlisis por elementos finitos del conformado de melales, con orien-
tacion a la laminacidn de tubos sin costura, Ph-I) Dissertation, Universidad Na-
cional de Cérdoba, Argentina 1990.

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH, WARSZAWA.

Received October 27, 1592.





