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STRENGTH ANALYSIS OF AXIALLY SYMMETRIC ELEMENTS
WITH A SERIES OF RECTANGULAR NOTCHES

L.DIETRICH, J. MIASTKOWSXI (WARSZAWA)
and R. SZCZEBIOT (BIALYSTOK)

Complete solutions for axjally-symmetric tensile rods with rectangular notches of ar-
bitrary spacing are presented. On the basis of the obtained sclutions both limit values of
a diameter of the rod outside notch and appropriate spacings of a series of notches have
been determined. Strength analysis of such elements within enlire range of their geometri-
cal parameters has also been made. The obtained results are compared with experimental
tests on specimens made of aluminium alloy.

1. INTRODUCTION

Shield’s method [1] to solve the plastic flow boundary value problems
in the conditions of rotational symmetry has proved to be an effective tool
to determine ultimate load of notched elements. The necessary system of
equations for stresses comprises two equilibrium equations, Tresca’s yield
condition and the Haar-Kdrmén hypothesis whereas for plastic strain rates
we have additionally the incompressibility and the isotropy conditions. This
system of equations can be solved with the use of the method of characteris-
tics, first in stresses and afterwards in strain rates. Many specific problems
of plastic flow have been solved in this manner [2-8]. Some of the solutions
are also collected in the monograph [10].

The solutions for stresses and strain rates in the plastic region should
be completed with an extension of the stress state into neighbouring rigid
regions; suitable procedure was proposed by BisHop [9]. Such an exten-
sion is necessary to ensure that nowhere outside the plastic region the yield
condition is violated. Moreover, the stress state extension provides very
important practical information on the required dimensions, diameters and
lengths of a considered element outside its notch. In addition, the knowl-
edge of stress state extension into a rigid region in the case of notches having
various shapes and dimensions makes it possible to rationally assess their
load-carrying capacity in spite of the fact that exact solution is unattainable.
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However, the extension of the stress field into a rigid region is usually
more difficult and much time-consuming than determination of the stress
state and strain rate state in the plastic region itself. Increased amount
of time results from the fact that the rigid region is usually much bigger
than the zone under yielding. Substantial difficulties also arise due to the
existence of stress discontinuities, especially when the notches are rather
sharp and the ultimate load factor reaches a relatively large value. This
factor is defined as a ratio of the ultimate load of a notched bar to the
wtimate load of a prismatic bar having a net cross-section. The discontinuity
lines are a result of overlapping of different regions of characteristic nets and
considerably hinder the numerical procedure for the solution of the system
of equations. The stress field has so far been extended with either the
use of a graphical method [5] or a numerical procedure. Solution regions
have been glued together step-by-step by means of a graphical procedure
in a close vicinity of the stress discontinuity line [6]. In both cases the
extension proved to be very cumbersome and was usually confined to one
or at most two solutions in the whole range parameters that characterized
a notch under consideration.

In the paper a numerical procedure is worked out to extend the stress
state into a rigid zone for rotationally symmetric rods weakened by a notch
of an arbitrary shape and dimensions. The procedure is capable of recog-
nizing an appearance of stress discontinuity line and determinig its shape.
The construction of characteristic lines net in the entire rigid region can be
realized in a single numerical programme written for a PC/AT compatible
microcomputer. Thus, a characteristic net in the rigid zone can be found for
various dimensional situations and precise dimensions of the rod outside the
notch can be found as a function of the notch itself. This, in turn, makes
it possible to analyse the ultimate behaviour of a rod with a number of
rectangular notches and to find the right spacing between the neighbouring
ones. The theoretical analysis based on the plasticity theory was not veri-
fied experimentally with the help of suitable specimens made of structural
aluminium alloy.

2. ULTIMATE LOAD OF A ROD WITH A SINGLE RECTANGULAR NOTCH

The ultimate load of an axially symmetric rod with a circumferential
notch of rectangular profile can be arrived at by solving the system of
simultaneous equations consisting of two equilibrium equations, Tresca’s
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yield condition and the Iaar-Kirmén full plasticity hypothesis. It was
R.T. SuteLp [1], who proposed to introduce two new unknowns, namely
an angle 9 included between the direction of the major principal stress and
the r-axis and p, i.e. a mean value of two principal stresses oy, and o3 acting
in a meridional plane. This substitution enabled the governing system of
equations to reduce two partial differential equations of the hyperbolic type.
Suitable characteristic equations and the compatibility equations along them
have the form:
for the family o

dr
for the family 8

(2.1) 2 _ g9,  dp—2kdd— %(dz—dr) -0,

k
(2.2) % = —ctgd, dp + 2k d9 + ;(dz +dr)=0,

where z and r are the coordinate axes and k denotes the yield point in
shear.

Solution for a rectangular notch with specific dimensions consists in the
numetical construction of a characteristics net, starting from a degenerated
characteristic problem DBE (Fig.1), determined by a point B and a line
DB. In a triangle ABD we have clearly a one-dinensional tension. A curve
ED determines a solution of a mixed problem in DFEQO. Yielding zone is
bounded by a characteristic BEO through the origin of the coordinate axes
and a fan angle at the point B cannot exceed 45°. If an a-characteristic
starting from a fan at the point B for ¥ = 0° (fan angle 45°) will intersect
the r-axis at a distance larger than the accuracy 6, of aiming at the origin
(6, is here assumed to be 107?), then the region of solution will be enlarged
by a zone of influence of a free edge BC of the notch. Solution net is then
as shown in I'ig.2 in which the following additional regions can be seen:
Cauchy’s problem BCF, a fan FBG with an included angle of 45°, char-
acteristic problem BGHIJE and mixed problem IOJ. The distance of the
point C from the bottom of the notch AB is such that the a-characteristic
starting from the point C hit the origin of the reference frame. Type of
the characteristic net in the plastic region depends on the characteristic di-
mension of the notch; in the case of a rectangular one what counts is the
width AB denoted either by e, or nondimensionally by 8 as a ratio of e the
minimum diameter of the cross-section of the rod in question. The char-
acteristic net shown in Fig.l is valid for 8 > 0.40608 and is constructed
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for a specific ratio § = 0.5. The other type of characteristic net, shown in
Fig.2, is applicable for 8 < 0.40608. For an ideal (8 = 0) notch the solution
corresponds to that given by SHIELD [1] in which the fan included angle is
equal to 90°. Once a characteristic net in the plastic region is established,
the axial stresses o, in the minimum cross-section OA can be found and
investigated over the whole area. Then the ultimate load factor f can be
readily calculated as the ratio of the notched bar ultimate load capacity
to that without any notch and having the diameter.corresponding to the
notched segment. The factor f is a nondimentional parameter describing
the strength of an axially symmetric rod weakened by a:rectangular notch
designated by a number 3 = ¢/R. e sk

A solution for stresses should be supplemeﬁted'&:by.j.aéfstra,in rate solution
which enables the former to be checked .by'a;s'ce:rtéi_i;ﬁh:g'fithat the power dissi-
pated at particular nodes of the characteristic net remains positive. A proce-
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Fig. 2.

dure to determine such a strain rate field was put forward by R.T. Suierp [1].
The starting system of equations contains the requirement of isotropy and
incompressibility and turns out to be hyperbolic. In addition, the same
two characteristic lines as those valid for stresses govern the plastic flow
situation. The differential relationships which must be satisfied along the
characteristic have now the form

AU - Wdd = ——;—;dsa along the family o,

(2.3)
AW + U dd = —%dsQ along the family 4,

where v, U, W are the strain rate components along the directions r, o, 3,
respectively and ds,, dsg are incremental segments of corresponding char-
acteristic lines. :

Boundary conditions along the characterictic BEQO resuli from a given
velocity vo of rigid portions of the bar in the z-direction. The solution starts
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from the point D, at which the velocity vr = 29g/7, see [1]. Step-by-step
~ integration of the equation {2] leads to the velocity hodograph for all the
‘nodal points within the yielding region. As an examplé; two velocity plans
corresponding 1o two types of characteristic netswthﬁ = 0.5and 8= 0.16
~ “are shown in Figs.3 and 4, respectively.: Dissipation power is positive for all
""*the boundary value problems solved-:ii’i"thé;‘?ﬁp_ S
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3. EXTENSION OF THE STRESS FIELD INTO RIGID REGION

The knowledge of the stress and strain rate solutions in the plastic re-
gion constitutes an exact solution that satisfies all the static and kinematics
requirements provided the dimensions of the bar beyond the notch are suffi-
ciently large and at no other point except in the plastic region bounded by
a characteristic through the origin of the coordinate axes the yield condition
is violated. Extension of the stress field into a rigid zone follows a procedure
devised by J.F.Bisaor [9]. The solution (Fig.1) starts from a boundary
characteristic BEO of the rigid region at a point lying on the symmetry
axis z. Next, locations of the points of the following a-line are found by first
solving the chracteristic problem (points e — b), the degenerated problem
(points of the fan b — ¢) and an inverse Cauchy’s problem (point &), Fig.1.
In the case of the other type of characteristic set, the extension addition-
ally includes the points ¢ — f, Fig.2, of the characteristic problem. Solution
~ pattern in particular extension zones is virtually arbitrary, although it ap-
pears expedient to perfom calculations for the consecutive a-lines order to
minimize the tables in which the data for only one current o-line must be
stored. Subsequent o-lines of the extension are determined so long as the
determined free edge becomes parallel to the z-axis. Point M at which a tan-
gent to the free edge makes 90 ° with the r-axis is a beginning of a statically
admissible discontinuity surface M N PS. This surface is determined from
the condition that beyond it a uniaxial tension or compression takes place.
The next a-lines are found to terminate at a discontinuity line approaching
the z-axis.

For sufficiently narrow notches it is possible that, starting from certain
points T, U (Fig.2) in the rigid region, some stress discontinuity line may
appear. To ascertain its presence a check is necessary whether the coor-
dinates r of the next points on the d-line in question is larger than that
belonging to the preceding point,

(3.1) rli, 5 — 1} > »[4, ],

where ¢ denotes the rumber of an o-line, j denotes the number of a §-line,
increasing from the symmetry line. When the condition (3.1} is met, the cal-
culations are continued for the subsequent points. Its violation means that
the two neighbouring §-lines try to intersect each other. A procedure is now
engaged to determine a statically admissible discontinuity line for stresses
on both its sides. Next, consecutive points are found to fill the whole region
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bounded by a line BdM of a hypothetical frec edge and a stress discontinu-
ity line M N PS. The coordinate r of the point M and the coordinate z of
the point § determine the necessary diameter and lenght of the rigid part
of the bar. Integration of the o, stresses above the stress discontinuity line
M N PS makes it possible to evaluate an accuracy of the stress state assess-
ment by comparing this integral value with the tensile force at the notched
section O A. ' )

A complete ultimate load solution with properly s:f)ec'iﬁed boundary con-
ditions consists of the construction of the characteristic net for stresses and
strain rates in the plastic region ABEQ or ABCGHO, determination of
the plastic flow field in the region ander yielding, check on the dissipation
power being greater than zero and the extension of the stress field into a
rigid regioh. The latter operation makes it possible to find dimensions of
the considered bar outside the notch necessary for the assumed yielding
-pattern to be realized as governed by the characteristic net at the minimum
cross-section. Suitable segments of the numerical program were written in
FORTRAN and the calculations were made with the help of a PC/AT mi-

crocomputer.

Table 1.

=efR| f k=C/R |{ n=S5/R

0.0 2.8450 3.2000 3.3600

0.1 2.1434 2.5518

0.2 1.6388 1.9208 2.1805

0.3 1.3439 1.4981

c.4 1.1863 1.2824

0.5 1.0975 1.1588 1.3037:

0.6 1.0474 | 1.0858 1.1500

0.7 1.0200 1.0402 1.0922

0.8 | 1.0066 | 1.0162 {:1.0500:| ..

0.9 | 1.0011 1.0037:

1.0 1.0000 | 1.0000

All the situations referring to then _é.fé'_éilown in Table 1
together with the factors f, diameters C and. spa;cm'gi'_'_S:"(")f"the notches (see




STRENGTH ANALYSIS OF AXTALLY SYMMETRIC ELEMENTS 443

r
2.5 - ' .f }ﬂ_
F=2.851-8.746 3+ 16.2403%- a
-13.7803° + 449437 i
z0 : 20
k

IR =t
I

1.0 e ——C J
Ma a2 a4 a6 08 10
: ’ ' . ' A=e/R
Fia. 5.
z 3.36
¥20 w=C/R p=1/R
\ i
20 - jr it
) : P s e s e
»7=3.351—za?7,a+1951p2-2.344p3 ! a|
_-.[_.._.l.-

2.5 B p2r
I&YE —

2.0 Y I

\ ) #=3.044-8.759 f+ 12.3108°-6.9673 %+ 1.16237

3 . & .8 0
0.2 o4 .a @, A=e/R

15

10
a
FiG. 6.

I'ig.6). These three magnitudes depend on the notch dimension e. Rela-
tionship between f and a dimensionless measure of e (8 = ¢/ R) is depicted
in Fig.5 in which an approximating polynomial function f = f(B) ia also
shown. Both the degree and the coefficients of the polynomial were found
via the least squares method. The function is

(3.2) £ = 2.851 — 8.7460 + 16.2404% — 13.7808° + 4.4448°.
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In a similar way the relationships between k = C/R and n = S/R as
depending on a dimensionless notch width # = e/R are given in I'ig.6.
These are:

for a nondimensional notch spacing

(3.3) = 3.361— 7.3778 + 7.9615% - 2.9443°
for a nondimensional bar diameter

(3.4) = 3.244 — 8.7598 + 12.3108% — 6.9674° + 1.16243%.

4. ULTIMATE LOAD ASSESSMENT FOR AN AXIALLY SYMMETRIC TENSILE
BAR WITH A SERIES OF RECTANGULAR NOTCHES

A complete solution for a single rectangular notch remains valid so long
as the spacing of notches is large enough not to introduce any interacting
disturbances. Such a situation is visualized in Fig.7. When the dimensions
C or 1 are smaller than those corresponding to the stress field extension, an
upper and lower assessment of the ultimate load can be furnished by making
use of various solutions each valid for a single notch.

@,/"\

$2R

1
2t

timate load of a singly

An influence of the parameter C'/R i the mate |
oy apers [3-5, 11] in which

notched bar was investigated in a num
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a method was also given for assessing the load-carrying capacity. The ob-
tained results remain valid for multiply notched bars provided -the value of
k = C/Ris less than a certain number. Stress field extensions into a rigid
region made it possible [5] to assess the tensile ultimate load for axially
symmetric bars weakened by a series of V-shaped notches. Detailed anal-
ysis of results and their collection was presented in the monograph [10].
A complete solution for an axially symmetric bar with a circular notch with
various radii was given in [6]. The above solutions were used later on to
make a comprehensive analysis of the elements in question throughout the
whole range of geometric parameters. In this paper both upper and lower
ultimate load assessments are provided for a round cross-section bar with
a series of rectangular notches, particular attention being paid to the specific
notch width 8 = e/l = 0.5. An assumption was made that the diameter of
a rigid part of the bar, defined by & = C/[R, is large enough. The obtained

Table 2.
Lp Des_igna— 2t op o = t _ f'";l = . o General
tion [mmn] | [MPa] | [MPa] R ot Tm data

1| N1 0.0 227.0 | 288.10 | 0.000 | 1.201 1.150

2 | Nia |00 ] 2200 |29010] 0000 | 1212 1.162 2Ry =

3 | N2 1.0 213.0 | 269.09 | 0.125 | 1.127 1.074 8.0 [mm]

4] N3 2.0 | 205.0 | 259.77 | 0.250 | 1.085 1.037

5 | N4 3.0 200.0 | 257.09 | 0.375 | 1.058 1.026 op =

6 | N5 4.0 198.0 | 255.58 | 0.500 | 1.048 1.020 | 189.0 [MPa]

7 | Né 50 | 204.0 | 262.63 | 0.625 | 1.079 1,048

8 N7 7.0 216.0 | 278.02 | 0.875 1.143 1.109 Tm =

9 | N8 10.0 | 225.0 | 28777 | 1.250 | 1.190 1.148 | 250.6 [MPa]
10 | No 14.0 | 226.0 | 287.45 | 1.750 | 1.196 1.147
11 | N1o 18.0 | 226.0 | 292.10 | 2.250 | 1.196 1166 | B=¢/R=
12 | Nu 22.0 | 225.0 | 288.06 | 2.750 | 1.190 1.149 0.5
13 | N12 98.0 | 229.0 | 289.27 | 3.500 | 1.212 1.154
14 | N3 32.0 | 228.0 | 289.02 | 4.000 | 1.206 1158 | k=C/R=
15 | N14 | 40.0 | 226.0 | 289.72 | 5.000 | 1.196 1.156 2.0
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assessments were referred to the ultimate load of singly notched specimens
(for instance, a diagram N1 in Fig.13 for which, according to Table 2, the
ratio 7 = t/ R equals zero — so does for the specimen Nla).

4.1, Upper bound on the ullimate load

. An assessment from above is arrived at by assuming an arbitrary, kine-
matically: admissible deformation. pattern. Assuming P* to be an exact
answer, its upper bound P, can.be readily found via virtual work equation,
i.e.- by equating the work done by external loads to the work dissipated or
an arbitrary, kinematically admissible collapse mode {12]. The ultimate load
factor for a notched bar is described by a ratio

P*
== FO' ’
where Py is a yield force for a constant cross-section bar with the diameter
2R. Upper bound on f has the form

(4.1)

P
(4.2) fy= Ff, .
P2C

2t
2
L

In the paper three simple 'shé::i_l_‘ mecha.msms are __a',dtfhit.ted as shown in
i gonally two points A,
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each at the bottom of two adjacent notches. The angle -y is here variable
and clearly depends on the spacing of notches. Upper assessment of the
ultimate tensile load is obtained to be

1 2
(4.3)1 5“:4;»(% for 0<7<8,
and
2
(4.3)2 = %(A +B) for 728,
where
A = 1+;—0(52K-L),
_ 2(n-5) B
B = 7r(n+ﬁ)(RCOSK cos L),
K = arcsin E??]_-i-ﬁﬁ) ,
L = arcsin ;g .

The notation & = C/R, 8 = ¢/R, n = t/R was used in the above formulae
as indicated in Fig.9.

G Efo G
r B=0.5
14 % =1158 n=1304 /
F=10G7 M
g
13 [0 ¥
A -2
\ ] I
12 &
? g =
11 8 /-\ | ¢2C
I F. 1
|
1'.00 ! c.‘)'
a 10 n=t/R 15
Fia. 9.

In the mechanism I7, Fig.8, the slip plane starts from the point A and
makes an angle 45 ° with the logitudinal axis of the specimen. Upper bound
on the ultimate load is given by

(4.4),

strIa = A+

B

for (1—13)31751,
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where

A = 1+TS—[2(K+M) L-N|,

B = [(1 - 28)(kcos K —cos L) + (2n — l)(n cos M —cosN))| ,
K = arc sinl 25 ,
K
L = arcsin(l—28),
M = arc sin2n 1 ,
K

N = arcsin(2n—1),

(4.4)y f=A+B for igng%(mﬂ),
where
A = 05+‘1—‘[2(I(+M) L]

B = ; [(1—28)(x cos K — cos L)+ &(2n— 1) cos M},

-2
K = arc sinl p ,
I = arcsin(l-—28),
-1
M = arcsin 2 s
K
and _
(4.4)3 HC_— A+B for n<0.5(k+ 1) ,
where

A = 05+3—[2(90+1{) L]

B = [(1 ~2B)(kcos K — cos L)]

1-2
K = arcsin ﬁ,
K

I = arcsin(l—28).

The mechanism III is formed by a shp plane passmg through the point
B and inclined at 45°. The upper bound here 1s o

(4.511 fHe=A+B (lﬂﬂ)<n<(1+ﬁ)
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where
_ 1. s
A = 90(511+L),
9(p — ‘
B = w(ncoslf—%inl,),
K = arcsint— ,
K
L = arccos(n—f3),
(4.5)2 Hle=A+B  for (1+B)<n<(x+p),
where
2
A = (= BK - (n= ),
1 n~ﬁ)
— 2 o
B = & (1 goa,rccos - ,
and
4.5)3 =K or >(k+5).
(4.5) go=r for n2(k+p)

For known dimension of the element and given notch characteristic 2¢ the
above formulae became much simpler. The above obtained solutions were
subject to experimental verification on notched samples with the following
dimensions: k = C/R = 2.0, § = ¢/R = 0.5. The derived general formuale
take the specific forms:

Instead of (4.3) we have:

7+ 7+ 1.25

(46)1 f_ga = 217 + 1

and

2
n_ 7 +n+1.25
(4.6)2 g = 277' 71

(A+B) for <05,
where
1
A = 14 —{(4K - L

2n—1

B = ———(2cosK —cosl),
x(n+ 0.5)( )
K = arcsin— 0.5
B 41’
L = arcsint— 0-5




450 L. DIETRICH, J. MIASTKOWSKI and R. SZCZEBIOT

Instead of Eqgs.(4.4) we get:
(4.7h fle=A+B  for 05<9<1,
where

1
= 1+@(4M_N)’

= %[(217-— 1)(2cos M —cos N)J,

A
B
-1
M = arcsinzn )
2
N

= arcsin(2g-1).
(4.7)2 fM_44B for 1<n<15,
Wh.(.é.l'é.

1
A = 05+_Ma

45
B = %[2(27)— 1)cos M] ,
L 2n—1
M = arcsin )
2
and
{(4.7)s ;Ic =25 for n>1.5.

Instead of Eqs.{4.5) we obtain
(4.8); fHe =44+ B for 0.5<n<15,
where
A = ! (4K — L)
S 90 ’

B = M(? cos K —2sin L),

s
- 0.5
K = arcsiun 5

L = arccos(n—0.5).

(4.8)2 - 44+B  for 1.5<7<25,
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where
2
A = ;(n - 05375+ -2,
1 n—0.5
B = 41~ —
( 903,1‘(: €os 5 ) ,
and
Ille _
(4.8)3 fi =4 for n>25.

The relationships (4.6), (4.7) and (4.8) are persented diagrammatically in
Fig.9. It can be readily seen that the best, i.e. the lowest, upper bound for
the worked out example is associated with the mechanism I for 0 < 5 < 0.5
(line AC') and with the mechanism {fI for n > 0.5 (line C'G). For a bar
having a rectangular notch with g = 0.5, the ultimate load factor resulting
from the complete solution amounts to f = 1.0975 and is shown in Fig.9 by
a horizontal broken line. It intersects the curve AC at B and the curve C'G¢
at F. The coordinate 7 of the point B is found to be

(4.9) 7’ + (26— 2.195)n + A% — 2.1958 + 1 = 0.

For a particular value 8 = (0.5 it assumes the form of a standard quadratic
equation
n® — 1.1957 4 0.1525 = 0,

whose meaningful root supplies the sought value g = 0.1453. The value of
fgm“ for the point F equals 1.0975. Inserting 8 = 0.5 into Eq.(4.8); yields
nr = 0.65085. Upper bound on the ultimate load for 0 < < 0.1453 is
associated with a single notch bar having 8 = 0.5. Ultimate load within
this range is certainly larger than the complete answer for a bar provided
with two notches.

It is worth remembering that for n = 1.304 there exists an exact solution.
It is only for > 1.304 that we have an exact value of the ultimate load
factor f = 1.0975, whereas for n between ng = 0.65085 and 1.304 we obtain
orﬂy an assessinent,

4.2. Lower bound on the ultimate load

For 1 < = 1/R < 1.304 a lower bound for a rectangularly notched bar
with § = e/R was assumed to be equal to that corresponding to such a
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2e

o
s

1 +
tZe, |

Fia. 10.

notch width 2e, for which a complete solution can be found (corresponding
bar is shown in Fig.10 by broken line). For 0 < 5 < 1 a lower bound was
determined by plotting a rectangular notch 2e wide and reaching on outer
circumference of the bar, see Fig.11. The ultimate load of a bar weakened
by such a single notch constitutes a lower assessment for a bar with closely
spaced notches and, at the same time, represents a solution for a single notch
provided the parameter 5 decreases to reach = (3, and thus the width of
a middle part, separating the two notches, completely vanishes and only one

notch 2e wide remains.
. "”’1"_
C‘
% ﬁ ‘

¢2c
NI -\

5. TEST RESULTS

Experimental verification of the presented exact and approximate solu-
tions was made with the use of axially symmetric bars each having two cir-
cumferential rectangular notches done by turning. 17 specimens were tested
(two unnotched ones were used for standard uniaxial test}). Aluminium alloy
PA 2(AlMg 2) was selected as having very: d_is?;__ip_ctipla_,stic properties and as
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a widely used structural material to manufacture various parts in the air-
craft and construction industry as well as in naval architecture, chemistry
and food processing. Relevant shapes and dimensions are shown in Fig.12.
Minimum diameter 2R at the bottom of a notch was assumed to be constant
for all testpieces and so was the notch width 2e. Average value of the param-
eter 8 = e/R (neglecting some tolerances) was 0.5 whereas the parameter
k = ¢/ R was taken to be 2.0. Thus the latter value was greater than that
assumed in theoretical solutions (for # = 0.5 it amounted to 1.159, cf. Fig.6
and Table 1).
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Spacing n = t/R is given in Table 2, different for each specimen and
contained within the range 0 + 5. ‘

Tests were performed on a universal hydraulically-driven testing machine.
To avoid unnecessary bending, spherical hinge, were used. Strains were mea-
sured with the use of an AMSLER mechanical extensometer whose minimum
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division was 0.01 mm and the base was 120 mm. A number of initial tensile
curves are shown in Fig.13. Nominal yield points are shown with the help
of arrows. These were determined by identifying points at the tensile dia-
gras whose slopes were 0.3 of the initial straight part slope of the diagram.
Relevant values are given in Table 2. These yield stresses are also shown in
Fig.14 by small circles thus visualizing an influence of notch spacing n = t/R
on the nominal yield stress. Theoretical value of the parameter n: = 1.304
is shown by broken line. It corresponds to the solution for # = 0.5 (Table 1
and Fig.6). Location of circles in Fig.14 that, as mentioned before, indicate
the yielding of notched specimens show that for notch spacing 2¢ smaller
than the theoretical spacing for n < 7 = 1.304 an initially smooth and then
more abrupt decrease of the ultimate load can be observed. The smallest
load-carrying capacity corresponds to 7 = 0.5. For further decrease in notch
spacing (for 7 < 0.5) an increased ultimate load is observed reaching the
value associated with a bar weakened by a single notch (7 = 0). A decrease
in the ultimate load is accompanied by a change in the collapse mechanism.
Specimens with 7 larger than the theoretical one split in one of the notches
whereas for the specimens with 0 < n < 7, the collapse was taking place on
the surface between the notches. Theoretical assessments obtained before
are shown in Fig.14 by solid lines.
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““The tension process of the specimehéf:_.'_'\&'a,s-'ééntihued up to failure and
“the tensile strength was duly registered. Tensile strength o7, as a function
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of the dimensionless notch spacing 7 = t/R is shown in Fig.15. Similarly
as for the ultimate load (Fig.14) a distinct drop in the tensile strength is
observed for 5 = /R smaller than the theoretical value 7, = S/R = 1.304.
Miniumum strength occurs for # = 0.5. Due to further decrease of the notch
spacing the tensile strength begins to grow to eventually reach the strength
of a specimen with a single notch, 7 = 0.

6. CONCLUSIONS

The obtained diagrams of the optimum geometrical parameters £ = ¢/ R
and n = s/R as depending on the notch characteristics § = ¢/R (Fig.6)
together with the diagram of the load factor f (Fig.5) make it possible
to readily select suitable dimensions of axially symmetric elements with
rectangular notches of various sharpness and ensure their adequate strength.

The reported tests corroborated the suitability of the proposed theoreti-
cal predictions on how to space optimally the notches to ascertain the best
tensile resistance of multiply notched pieces, (Fig.15).
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For 0 < t/R < f)min, Where 7yin denotes a theoretical value for a notch
characterized by 8 = e/R, see Fig.6, it is only an evaluation of the upper
and the lower bound that is at all possible as shown in the paper.
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The applied procedure, similar to: that put forward in [5] for axially
symetric bars with V-shaped notchies and checked in the paper [6] for round
elements with a series of circular notches, has been here confirmed in the case
of elements with a number of rectahgula;r' fictches. The procedure is thus
suitable for a simple determination of proper dimensions and ultimate loads
for round structural elements with a series of notches of arbitrary profiles.
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